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Abstract

Fractal analysis is one of interesting research areas of computer science and
engineering, which depicts a precise description of phenomena in modeling. Visual
beauty and self-similarity has made it an attractive field of research. The fractal sets
are the effective tools to describe the accuracy of the inequalities for convex
functions. In this paper, we employ linear fractals R to investigate the

(s, m)-convexity and relate them to derive generalized Hermite—Hadamard (HH) type
inequalities and several other associated variants depending on an auxiliary result.
Under this novel approach, we aim at establishing an analog with the help of local
fractional integration. Meanwhile, we establish generalized Simpson-type inequalities
for (s, m)-convex functions. The results in the frame of local fractional showed that
among all comparisons, we can only see the correlation between novel strategies and
the earlier consequences in generalized s-convex, generalized m-convex, and
generalized convex functions. We obtain application in probability density functions
and generalized special means to confirm the relevance and computational
effectiveness of the considered method. Similar results in this dynamic field can also
be widely applied to other types of fractals and explored similarly to what has been
done in this paper.

MSC: 26E60
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1 Introduction and prelimnaries

Fractional calculus based on differential and difference equations is of considerable impor-
tance due to their connection with real-world problems that depend not only on the in-
stant time but also on the previous time, in particular, modeling the phenomena by means
of fractals, random walk processes, control theory, signal processing, acoustics, and so
on (see [1-12]). It has been shown that fractional-order models are much more adequate
than integer-order models. A number of methods used to solve nonlinear partial differen-
tial equations have been successfully generalized to fractional differential equations, such
as the Adomian decomposition method, homotopy analysis method, variational iteration
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method, transform method, symmetry group method, and invariant subspace method.
The concepts of fractional differentiation and fractional integration were examined by
Riemann, Liouville, Abel, Laurent, Hardy, and Littlewood. Detailed discussions of frac-
tional calculus and related work can be found in [13—16]. Fractal analysis is an entirely new
field of research based on fractional calculus. It has introduced some fascinating complex
graphs, picture compressions, and computer graphics. In 1982, Benoit Mandelbrot [17],
the father of fractal geometry, in his book “The Fractal Geometry of Nature” predicted
that “clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line” Individuals accept that the items
in nature can be made or can be depicted by images, for example, lines, circles, conic ar-
eas, polygons, circles, and quadratic surfaces. The utilization of new scientific tools and
concepts in this field of research will have an inordinate impression on enlightening image
compression, where fractals and fractal-concerned techniques have demonstrated appli-
cations [18-20]. It is interesting that the authors [21, 22] investigated the local fractional
functions on fractal space deliberately, which comprises of local fractional calculus and the
monotonicity of functions. Numerous analysts contemplated the characteristics of func-
tions on fractal space and built numerous sorts of fractional calculus by utilizing various
strategies [23-25].

The connection among fractal sets, integral inequalities, and convexity is very strong.
Therefore it is essential to create mathematical inequalities that inspect the fractal sets and
their significance in various areas of mathematics and engineering problems. Convexity
is utilized to portray the functional values of a framework that we normally deal with in-
equalities. Convex functions are firmly identified with the most celebrated HH inequality
[26, 27], which is the principal essential consequence for convex functions with natural
geometrical interpretation and numerous applications. It has attained considerably much
interest in elementary mathematics and is stated as follows:

A+ A 2 H(r) + Hr
s —m%( L ) < [t du = -2 HEEHE, (L)
A1
provided that H : Z € R — R is a convex function on an interval Z of reals with A1, Ay € 7
defined by
H(Ch + (1= ha) < THG) + (1= 0)H(hs) (1.2)

for 11,1y € Z and ¢ € [0, 1]. For a concave function #, the inequalities in (1.1) hold in re-
verse direction. Over the last two decades, these types of generalizations have led to many
novel testimonies, stimulating extensions, conspicuous generalizations, innovative HH-
type inequalities, and a lot of applications of inequalities (1.1) in the literature of mathe-
matical inequalities and in other branches of pure and applied mathematics; see [28-30]
and the references therein.

Simpson’s inequality is widely studied in the literature occupying a significant place in
numerical analysis and inequality theory due to its systematic nature and is stated as fol-

lows:

A2
’1[7{(,\1)+H(A2)+2H(A1+,\2>]_ 1 H) du
3 2 2 Ay — A1 Jy
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1

g4 44
5288O||H |2 = 21)% (1.3)

where the mapping H : [A1,A2] — R is assumed to be four times continuously differen-
tiable on the interval, and H* to be bounded on (A,A;), that is, [|H*||le =
SUD, (o 00) |#%(¢)| < oo. For more generalizations of Simpson-type inequalities, see [31-
36]. Adopting the aforementioned trend, we intend to establish some novel results on
(s, m)-convex functions via local fractional integrals. To be more precise, Simpson-type
inequalities in local fractional integrals are also presented.

Toader [37] gave the idea of m-convexity as follows.

Definition 1.1 ([37]) A mapping H : [0, b*] — R is known to be m-convex if
H(¢h +m(L =)o) < CH () +m(1 - ) H(hs) (1.4)
for m € [0,1], A1, A2 € [0,b%],and ¢ € [0, 1].

Also, IC,,(b) denotes the set of m-convex functions on [A, A,] for which #H(0) < 0. For
some modifications and generalizations related to m-convex functions, we refer to [28, 38].

Hudzik and Maligranda [39] proposed, among others, a class of functions, known as
s-convex functions, defined as follows.

Definition 1.2 ([39]) A mapping H :Z C R — R is said be s-convex if
H(Er + (1= 0)ha) < EHG) + (1= ) H () (1.5)
forall A, Ay € Z,¢ € [0,1] and some fixed s € (0, 1].

Clearly, we see that for s = 1, s-convexity becomes the classical convexity of functions
on [0, 00). For generalizations and refinements on s-convex and m-convex functions, we
refer the readers to [28, 38—42].

Now we mention some preliminaries from the theory of local fractional calculus. These
ideas and important consequences associated with the local fractional derivative and local
fractional integral are mainly due to Yang [22].

Let v¥", v, and v belong to R*" (0 < a* < 1). Then

(1) ¢ +v$" and v 1" belong to R*”;

(2) v‘l"* + vg‘* = vg‘* + v‘f* = +2)% = (v + 1)

(3) vj"* + (vg‘* + vg‘*) = (vf‘* + ug’*) + vg"*;

(4) v v = v = () = (vpvy)™

(5) vi"*(\)g‘* vg‘*) = (vf‘* vg‘*)vg‘*;

6) v¥ (" +vg) = v g + v Vg

(

* * * * * * * * * *
7) vy +0% =0 +vf =vY and vy 1% =190 =y

Definition 1.3 A nondifferentiable mapping H : R — R*",0 — H(e), is said to be local
fractional continuous at €, if for any € > 0, there exists / > 0 such that

*

<e”

|[H(e) - H(eo)

for |€ — €,| < k. If H(e) is local continuous on (A1, 12), then we write H(e) € Cy+(A1,12).
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Definition 1.4 The local fractional derivative of H(€) of order a* at € = ¢, is defined by

d* H(e)
de®”

€=¢,

AT (MO ()
= lim - ,
e—e€o (e — €)™

H ) (e,) = . DY He) =

where A” (H(e) - H(e,)) = T'(a* + 1)(H(e) = He,)). Let H@ ) (e) = Dg‘*H(e). If there exists
(k+1)times
1t

H & () = D‘:*...Dg‘* H(e) for any € € 2 C R, then we write H € Di11)q+ (L), where k =
0,1,2,....

Definition 1.5 Let H(e) € Cy+[11,A2], and let A = {ng,n1,...,nn} (N € N) be a partition
of [A1,A2] such that A1 =59 < 0y < --- < gy = A2. Then the local fractional integral of  on
[A1, 2] of order o™ is defined as follows:

r2
(™) _ 1 ao*
L, H<€)_7F(1+a*) . H(n)(dn)
N-1

1
=i )(An),
F(1+a*)8;in0;7{(m)( 1)

where 67 := max{Any, Any,..., Anyn_1} and An; =11 —0;,j=0,...,N-1.
It follows that MIg*)H(e) =0if Al = A2 and MIS;*)’H(G) = —MIS*)H(E) if X1 < A2. For
any € € [A1,A2], if there exists ,\11)(\02‘*)7-[(6), then we write H(¢) € Ig‘* [A1,A2].

Lemma 1.6 ([22])
(1) Suppose that H(u) = G () € Cyx[A1,12]. Then

I8 Hw) = G(2) - G().
(2) Suppose that H(u), G(u) € Dy [11,12] and H (1), G (u) € Cyox[A1,12]. Then
LS H@WG W () = Hu)G )22 = TS H )G (w).
Lemma 1.7 ([22])

as ke’ Fl+ka®) g

du T+ (k=1

1 2 @ () = I'(1+ka*)
ra+en )y " T+ k+ Dan)

()L(ZkJrl)a* _ A(1k+1)a*), k> 0.

Lemma 1.8 ([43] Generalized Hélder’s inequality) Lets,q > 1 with s + g™ = 1, and let
H,G € Cyx[A1,A2]. Then

A2
ﬁ /M [HGw)|(d)”
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1 22 s . § 1 22 . . 1
E(F(1+a*) 0 |H(”)| (du) ) (m . |7'l(u)| (du) ) .

Mo et al. [24] derived the following generalized HH inequality for generalized s-convex

functions:

o(s-Dja* (?»1 +)\2> - AlIﬁ‘;*)H(u) - I'(1+sa*)

Firan '\ 2 )= ta-i™ = Flsray i)+ RO (1)

In 1994, Hudzik and Maligranda [39] provided several generalizations via s-convexity
and presented intriguing outcomes about the HH inequality for s-convex functions. In
1915, Bernstein and Doetsch [40] established a variant of the HH inequality for s-convex
functions in the second sense. Moreover, some well-known integral inequalities via local
fractional integral have been studied by several researchers; for instance, Kilicman and
Saleh [41, 42] derived generalized HH inequalities for generalized s-convex functions. Du
et al. [38] contemplated certain inequalities for generalized m-convex functions on fractal
sets with utilities. Also, Vivas et al. [44] explored generalized Jensen and HH inequalities
for h-convex functions. For results associated with local fractional inequalities, we refer
the interested readers to [24, 45—47] and the references therein.

Owing to the phenomena mentioned, the principal purpose of this research is exploring
a novel concept of (s, m)-convex functions, and we address important properties for such
functions. Also, we establish some novel variants, which interact between (s, #1)-convex
functions and local fractional integrals. In fractal sets, we carry out two novel general-
ized identities to investigate the local differentiability of (s, 71)-convex functions, s-convex
functions, and generalized m-convex functions. Meanwhile, we present some new gener-
alized Simpson-type inequalities for (s, 71)-convexity. Generalized new special cases show
the impressive performance of the local fractional integration. Some special cases corre-

late with existing results in classical convexity.

2 Generalized (s, m)-convex functions

We now present the concept of generalized (s, 7)-convex functions on a fractal space.

Definition 2.1 Lets € (0,1]. A function H : [0, 6*] — R®" with b* > 0 is said to be gener-

alized (s, m)-convex if
H(Gu+m(1-¢)v) <& Hw) + m* (1= H(v) (2.1)
for u,v € [0,b*],s € (0, 1], and some fixed m € [0, 1].

Remark 2.2 Definition 2.1 leads to the conclusion that
1. If we take s = 1, then we get Definition 2.1 in [38].
If we take s = 1 and o™ = 1, then we get Definition in [39].
If we take m = 1, then we get Definition in [23].
If we take m = 1 and o* = 1, then we get Definition in [37].

If we take m = 1 and s = 1, then we get Definition in [24].

S A T i

If we take m =s =1 and o™ = 1, then we get the concept of classical convex functions.
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Moreover, if we take ¢ = % in (2.1), then the generalized (s, m)-convex functions become

Jensen-type generalized (s, m)-convex functions as follows:

H(” +2mv) < Zia [H(w) + m* 1)) (2.2)

for u,v € [0,b%],s € (0, 1], and for some fixed m € [0, 1].

It is worth mentioning that (s, m1)-convex functions reduce to generalized convex, gen-
eralized m-convex functions, and generalized s-convex functions as particular cases. This
shows that outcomes derived in the present paper continue to hold for these classes of

convex functions and their variant forms.

Proposition 2.3 For m € [0,1] and s € (0,1], if H,G : 2 — R* isa generalized (s, m)-
convex functions, then
(1) H + G is a generalized (s, m)-convex function;

(2) A*"H is a generalized (s, m)-convex function.

Proof (1) Since H and G are generalized (s, m)-convex functions on §2 and ¢ € [0, 1], we

have

(H+G)(cu+m(1-¢))
=H(tu+m1-¢)W)+G(cu+m(l-¢)v)
< ECHW) A m (1= HE) + 5 Gw)
+m* (1-0)* GW)
= (H+ G)w) +m* (1= ) (H +G)).
So, H + G is a generalized (s, m)-convex function on £2.

(2) Since H and G are generalized (s, m)-convex functions on §2, for ¢ € [0,1] and A € R,

we have

A“*H(Cu +m(l-¢)v) = A“*H(Cu +m(1-¢)v)
< AT [ Hu) + m* (1= ) H)]
= ¢ (" H) @) + M (1= 67 (0 H)O),

and hence A" H isa generalized (s, m)-convex function on £2. O

Proposition 2.4 Let H, : 2 — R*", n € N, be a sequence of generalized (s, m)-convex
functions converging pointwise to a function H : 2 — R*". Then H is a generalized (s, m)-

convex function on 2.

Proof Letu,v e £2,¢ €[0,1], and let lim,,_, oo H,, (1) = H(u). Then

H(u+1-2¢)) :nlig}o’}-[,,({u+ (1-¢)w)
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< lim [0 A, 0+ (1= 0% H, )]
= ¢ lim M)+ (1= 0) lim Hy(v)
= Hw) + m* (1= ) HW),
that is, H is a generalized (s, m)-convex function on £2. O

Proposition 2.5 For m € [0,1] and s € (0,1], let H : [0,00) — R*" be a generalized (s, m)-
convex function such that 0 < Ay < mhy < 00. If H € Cyx[A1, mA;), then

I(a*)’}-l(z) I(a*)H(Z) (1 Ot*)
M~Emry mi1+y, L
(s~ G =iy = ) O Gy 23)

Proof Utilizing the generalized (s, m)-convexity of H, for all ¢ € [0,1] and A, X, € £2, we

have

H(Eh +m(1=)ha) < & HO) +m® (1= ) H(h),
H(Sho +m(1=)h) < & H() + m® (1= ) H(n),
H((L = Oh1 +miha) < (1= H) + m® ¢ H(h)

and
H((L = Oha+m(l=£)hr) < (1= ) H(ka) + m* ¢ H (k).
Adding these inequalities, we get

7‘[(;)\1 + m(l - C))\Q) + H(C)\.z + Wl(l - {))\.1)
+ (A =)y +mEhs) + H((L = Az + m(1 = )Ay)
< [HO) + HO)] (1 + m™). (2.4)

Integrating inequality (2.4) with respect to ¢ over (0, 1), we have

1 1 .
m/o H(¢h +m(1 = )ho)(dl)
1 L y
* m/o H(Eho +m(1 = )Ar)(di)
1 1 ”
+m/0 H((1 = )y +mi hy)(dl)

1 1 .
* m/() H((L= 0o+ m(1=)r1)(de)

1 +m*)

<[Hn)+ H(Az)]m.
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Therefore we get

WIEHED I (1+me)
A M) —,
(mdy — A% (g — mhy)® — < [HO4) + 0] 20T (1 +a*)
the desired result. 4

3 Certain new results on generalized (s, m)-convexity
This section is devoted to the generalized HH inequality for generalized (s, 7)-convex

functions via local fractional integrals.

Theorem 3.1 For s,m € (0,1], let H : 2 — R*" be a generalized (s, m)-convex function
defined on a fractal space. If’H“"*) € Cyx[A1, mAy] for some 0 < Xy < Ay, then

H()\.l +Wl)»2)
2

2019 (1 + o*)
(mhy = A)*"

1 I'+a®)I (1 +sa*) 20+ AL
T 26 e (14 (s + 1)ar*) I:H(M) - H(mz)]

+ (%) [H(Az) + m“*H<%):| (3.1)

Proof Taking into account inequality (2.2), for all &, v € £2, we have

* *
1102 I H(u) + i z¢ ;m H(u)]

1 *
H(” +2mv) < Gy [H0 +m”HO)] (3.2)

Substituting u = %)\.1 rmEEin,,v= %Al + %Az, for all ¢ € [0, 1], we have

2
25“*7{(@) < [’H(EAH ) - 7—[( ~ St gxz)} (3.3)
2 2 2m 2

Integrating this inequality with respect to ¢ over (0, 1), we have
)\1 + Wl)uz *
d o
F(l +a*) / ( >( &)
1
c $2-C .
<= A “ Ao J(dg)®
_[F(1+a),/7-[(2 1+m — 2)( £)

¢ "
F(1+a*)/ ( A”zkz)(d;) ]

_r o m 2“7%‘)( o / 2 HW)
F(1+oz*) ey (g =) r(1+a*) (mhs = 2)

2

—————(du)”’

20"

_ (o)
= m[xﬁgm mh’H(u) + mk1 Ih;yz H(u)].

Page 8 of 27
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Also, using the fact that

M+ mhy w2 M+ mhy
ru+aﬂ/ﬂ ( )wn "Pu+aﬂH( 2 )

we have

2(s-1)a* AL+ mh
(M 2
r(d+a) 2
5___i__7[
(mhg — A1)*

sy T H ) + ] &‘jﬁmz Hw)].
2m

For the proof of the second inequality in (3.1), noting that # is a generalized (s, m)-
convex function, for ¢ € [0, 1], we have

92—
H(%)\1+Wl 2§)L2> D[H( mé-)n1+g)x2>

< (£>sa [’H(Al) - m2“*H()L—12>] +m® [7—[()»2) + m“*H()L—;>:|
2 m m

Integrating this inequality with respect to ¢ over (0, 1), we have

*

20{
(Mg — A)*"

1 I'(1+sa¥) 2at [ M
= 25¢" (1 + (s + 1)a*) [H(M) - rH(nﬂ)]

I’Vla* oF )\.1
"T+a )[WZ) w H<W>]

where we have used Lemma 1.7 and the fact that

(1100, T, O H(w) + mz"‘ Iﬁ‘jwzy(u)]

w (1 +sa)
1’(1+a*)/0§ dt T (14 (s + Da*)

This completes the proof. O

We present some remarkable cases of Theorem 3.1 as corollaries and remarks.
I If we take s = 1, then we have a new result for generalized m-convex functions.

Corollary 3.2 Form € (0,1, let H : 2 — RY" be a generalized m-convex function defined
on a fractal space. If’H("‘*) € Cyx[A1, mAy] for some 0 < &y < Xy, then

)\,1 +Wl}»2
(757

r'(l+a*) L)
< m[m mzH(u) + m “EZ” H(u)]

1 r’(1+a) st (M m\* v M
= 22a*m|:7{()&1)—m H(ﬁ>}+<5> [H(A2)+m H(ﬁ)}

Page 9 of 27
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II. If we take m = 1, then we have a new result for s-convex functions.

Corollary 3.3 Fors € (0,1], let H : 2 — R be a generalized s-convex function defined
on a fractal space. If H®") € Cys[A1, Ao] for some 0 < A, < Ay, then

)\,1 +)\2
#(257)

20091 (1 + a¥)
< - @@ 7

< e Ly B+, T, H)

*

< (%) [H() + H()]. (3.4)

III. If we take m = 1 and s = 1, then we have a new result for generalized convex functions.

Corollary 3.4 Fors e (0,1], let H: 2 — R*" be a generalized convex function defined on
a fractal space. [f’H("‘*) € Cyx[A1, 12] for some 0 < X1 < Xy, then

R [a+ar) (a*) ()
H( 2 > E ()\‘2 _ )\’1)05* [wz)hz H(M) +)\1 I%H(u)]

*

< (%) [H02) + HO)]- (3.5)

Remark 3.5 If we choose a* = 1 and m = s = 1, then Theorem 3.1 reduces to inequality
(1.1).

Further, we obtain novel bounds that refine the generalized HH inequality for functions
whose first derivative in absolute value raised to a certain power greater than one, respec-
tively, at least one, is a generalized (s, m)-convex function. For our further results, we need

the following lemma.

Lemma 3.6 For m € (0,1], let H : 2° — RY" (§2° is the interior of 2) be a function such
that H € Dy« (2°) and H@) € Cyr [A1, mAy] for A1, hy € 2° with Ay > A Then

F(l +Ol*) (a*) 20* (a*)
m[kv—;ﬂz Im)QH(u) + I’l’l;ﬁ(;::;q I% H(M)]

1 o« )x1+l4’l)u2 oF )»1+WZ)\2
() [ ) (25
_(mkz—kl)“* 1 1 ¥ @*) £ 2—§ aF
- = [F(1+a*),/o§ H (2A1+m 5 /\z)(d;“)

1 b (2-¢ ¢ .
- o 7_[(05 ) 2 o
1 (1+a*)/o ¢ < om Y 2“)“0 ] (3.6)

Proof Utilizing local fractional integration by parts, we get

(mhg =) 1 Y 2-¢ o
I = 2 |:1"(1+a*)/0§ H <§)»1+Wl 2 )»2>(d§) ]

Page 10 of 27



Abdeljawad et al. Advances in Difference Equations (2020) 2020:406 Page 11 of 27

WZ_M [ g (gk +m2_§)\-2)|(1)
(m)\Z_ 2 2
o* F1+a*) o (¢ 2-¢ y
(mxz—)\l) r(1+a*) H <2k1+m 5 kz)(dg“) i|
(mM _ M A1+ mda
m)\.z— 2
F(l+o{*) mhy X
d o
<””)‘2—)\1) r'(1+a*) w}[(”)( u) i|
(mkz_ )\1+mk2
mkz_kl)a* 9
(m)\Z—}\1> 1+O[ A“;”)“Z msz( )]

Analogously, we have

12 _ _(m)»24;*)»1)01 [ 1 / é_ H(a ( é‘)\,l + ;‘}\2)((1()0{ ]
+a*

(mhy — A1)*" m)*" A+ m)Q)
- - —H
4« (Wl)\.z - )\.1)0‘

2m

2 2 :
- (—m) F(1+a) 1amy T m(u)}.
2m n

m)\‘z - }\.1
Adding ; and I, we get the desired result. O

Theorem 3.7 Fors,m € (0,1] and p,q>1 withp™ +q ' =1, let H : 2° — R*" be a dif-
ferentiable function on 2° such that HE) € Cye (A1, mAy] for ki, Ay € §2° with Xy > M. If

|H @9 is generalized (s, m)-convex on $2 for q > 1, then

ra+a - o
IW[WI’WH(”) * mlz—’"z M (w)

1\ [, (1 +mhy i {21+ A
(3) [ (5]
(mha = 2)* [ T +a) TPIT IV T+ G5+ D" | ooy o 4
T [F(l+2a*)] H(E) F(1+(s+2)a*)|H ()]

o] T +a*) N T+ (s + Da¥) (@) p i
o |:F(1 T 2aY) (5) T+G+ 2)a*)]m () ]

| T +a®) N T+ (s + Dab) 24 A\ |2
+[’” [P(1+2a*)_(§> r(1+(s+2)a*)” <W>‘

L Tl ), ]
+(2> F(1+(s+2)a*)|H (AZ)N]]' (3.7)
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Proof Using Lemma 3.6, the generalized power mean inequality, and the generalized

(s, m)-convexity of |H®")|4, we have

r+ar) (@) 2 (@)
‘m[klzpﬂz I},:)QH(M) + Wlﬁzzkz I;; H(M)]

\“[, (M +mh i, M1+ 1A
(o) [ ) (5]
(Mg — 1)* 1 Y oetlen (€ 2-¢
= 4" [F(1+a*)fo e (5 2 A2)
(a™®) ¢ ¢ a*
F(1+a*)/ | ( ’\”2“) (dz) ]
(mhg — A1) 1 P
< [mm*)/o £ (de) ]
1 Ul e (€ 2-¢ \|7 .77
- o (a*) 2 o
X[[F(lm*)fo “ (2 2 “) : }

1 Vol e (2-¢ ¢\ R
JE— 3 (a¥) 2 o
+[F(1+a*)/0 & ( 2m it 2)0) (@) ] :|

_ o =) [ M40 ’
- 40* 1 +2a*)

1 ][t “ (@) a
X|:|:F(1+Ol*)/0§ {(5> [H*00]
e (555) oo haor |

1 ol (2=
[ﬁ/ ‘ {’“ <T>

(de)”

sa* 1
&) o]
Taking into consideration Lemma 1.7, we easily see that
1 1 o C sa* o 1 sa* 1_,(1 + (S+ 1)06*)
m/o ¢ (E) )" = (5) T G20 (3.9)
1 ! o* 2- C so” a*
m/o ¢ (7) ()
_ Tra) (1N I+ s+ Dar)
1+ 2a%) <2> T(1+(s+2)a*) (3.10)

Combining (3.8)—(3.10), we get the desired inequality (3.7). This completes the proof. [

Some particular cases of Theorem 3.7 are presented as follows.

I If we choose s = 1, then we get a new result for generalized m-convex functions.
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Corollary 3.8 For m € (0,1] and p,q > 1 withp™ +q* =1, let H: 2° — RY be a dif-
ferentiable function on 2° such that H@) € Cyr (A1, mAy] for ki, Ay € §2° with dy > M. If
|H @D s generalized m-convex on 2 for q > 1, then

r'(l+a*)
(mAg — A)™

) ) ()]

. (mhy = A1)* [ r+ao*) ]%H(;>"’*M|H<a*>(m|q

[mzmz TS H () + 13,0 T H (W)
2m m

4 I(1+2a%) 2) TI(1+3a¥)
e[ TA+an) (N TO+209T ]
" [F(1+2a*) <2) p(1+3a*)]lH (2]

q

o[ T+ (1N I +2a%) ‘H(‘X*) M
+[m |:F(1+2a*)_(2> F(1+3a*)i| (m2>
N TA+20) ooy 1]
+<2) Fis3an) " (“)‘] }

II. If we choose m = 1, then we get a new result for generalized s-convex functions.

Corollary 3.9 Forse (0,1 and p,q>1withp™ +q ' =1,let H : 2° — RY" be a differen-
tiable function on 2° such that HE@) € Cype [A1,A2] for d1, Ay € 82° with Ay > Aq. Ifl’;’-l("‘*)l‘f7
is generalized s-convex on S2 for q > 1, then

’ r(l+a*)

* * A+ A
o gle®) (a™) 1 2
7(/\2_/\1)“[1132@2 'H(M)+A1;AZ A H(u)]—H(—)‘

2
(o= 2)* [ TA4a®) T[T T+ 6+ D) ey g
=T |:1"(1+2a*)i| [[(5) 1"(1+(s+2)a*)|H G

F(L+a?) (1 T+ 6+Da) 7w ;
*[m‘(a) m]m (m{]

TOsay) (N TA4641a)] 0w ;e
' [[F(1+2“*) _(2> F(1+(s+2)a*)]|H ()]

N T+ 64102 6]
+(2> F(1+(s+2)a*)|H ()‘2)‘] ]

II1. If we choose m = 1 and s = 1, then we get a new result for generalized convex func-
tions.

Corollary 3.10 Forp,q>1withp™ +q ' =1,let H : 2° — RY" be a differentiable func-
tion on 2° such that H®") € Cy» (A1, X2] for dy, hy € §2° with Ay > Aq. Ifl?-l("‘*)|‘1 is general-
ized convex on 2 for q > 1, then

(Ag = A1)

‘ I'(l+o*)
2

a* a* A+ A
[%32 ’”H(u)+¥1§1 )’H(u)]—”H( ! 2)‘

(o =)™ [ FA+a) PII(1\" TA+20%) oy 10
=T [1"(1+2a*)] [[<2> 1"(1+306*)|H G

Page 13 of 27
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LQre) (NTT+20] 0 ]

+[F(1+20£*) (2) F(1+3a*)j||H ()]
r(l+a*) (1 +20*) ;

+[[F(1+2a*)_<2> F(Hw)ﬁ ()|
DN LA 20 ey, ]

+<2) F(1+3a*)’H ()‘2)‘] ]

Remark 3.11 If we choose a* = 1 and s = m = 1, then Theorem 3.7 reduces to the result in
[48].

Theorem 3.12 Fors,m € (0,1] and p,q>1withp™ +q ' =1,let H: 2° — R*" be a dif-

ferentiable function on $2° such that H@) € Cye (A1, mAy] for ki, Ao € §2° with Ly > M. If
|H @) s generalized (s, m)-convex on §2 for q > 1, then

r(1+a*)
(mhy — A)*"

(5) [ (5]
<) ([G) v o
O e )
- G) el Gl
+ (%)Sa*%|ﬂw*>(xz)|qr1. (3.11)

Proof Using Lemma 3.6, the generalized Holder inequality, and the generalized (s, m)-
convexity of [H©|4, we have

[Al+mA2 Iﬁnkz) (M) + mAl;mAz 7-L(M)]

r'(+a*) (@) 7
m[*%mlmxz (u) + mm:sxz n H(u)]

() [P oo ()|
AP Lo nts)
mw*)/ e ( foﬁixg) (d;)“*]

- (m)»24;*)»1)“* [F(lia*) /(;lgpa*(dé_)a*]}?

[ [ Gt

1
*T
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q RE
(dé)a] ]

1 Woown(2-¢ ¢
(™) >
+[r(1+a*)/0 7 < om 1t 2A2>

- (mkz—kl)“*l: (1 +pa*) ]p
- 40* r'(1+Q1+p)a*)

1 1 ¢ so* ) .
A [AG) e

1

o (555) e ]

2
1 1 o* 2—; st (O(*) )\.1
+[F(1+01*)f0{m ( 2 ) " (W>

+<%) |H<“*>(x2)|q}(d;)“*]q}

_(mip=2)*' [ I(1+pa®) 1 SQ*M @)y |4
) 4 |:F(1+(1 +p)a*):| |:|:(2) F(1+(S+1)a*)’H ()\1)’

ol (1Y T+sa?) o) q] a*]%
o |:1 <2) F(1+(s+1)ot*):||H (A2)| (d¢)

ol 1\ I(1+sa¥) (a*)(ﬂ)
+[’” [l (2) F(1+(s+1)a*)”H e

DN Do) )
+<2) i+ (s Do) “2)‘]]' (3.12)

q

q

the required result. This completes the proof. O

We present some particular cases of Theorem 3.12.
L If we take s = 1, then we get a new result for generalized m-convex functions.

Corollary 3.13 For m € (0,1] and p,q>1 withp™ +q ' =1, let H : 2° — R*" be a dif-
ferentiable function on 2° such that H@) € Cyr (A1, mAy] for ki, Ay € §2° with dy > A If
|H @9 is generalized m-convex on $2 for q > 1, then

*

I'(l+a%)
(Mg — M)t 272 o

I\ [, (1 +mhy i (M1 + A
-(3) () (5 )
_ w1 [ (4 pa) ’ <1> ra+ao)
- g [F(1+(1+p)a*)] H 2) T+2a)

2
a* 1 o F(1+(X*) (%) q %
+m [1_(_) 7}|’H <x2>|]

[pomy Zo H(00) + 1020y T8 H ()]

ARICHI

2) T(1+20%)
" 1N A+ | @n( A
[’” [“(2) r(l+2a*)”” <m>

N TA+a?) oy e
+<2> Fs2a) " “2"] }

q
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II. If we take m = 1, then we get a new result for generalized s-convex functions.

Corollary3.14 Fors e (0,1 andp,q > 1withp™ +q ' = 1,let H : 2° — R bea differen-
tiable function on §2° such that HE) € Cyr [A1, 2] for A1, Ao € £2° with dy > Aq. Ifl’z'-l("‘*)l‘f7

is generalized s-convex on S2 for q > 1, then

r'l+a*)
(Ag = A)*"

Oa=a)” [ FQ+pa’) TPI[(1\_LQ+s0?) e,
S |:F(l+(1+l9)0‘*):| [[(2> F(1+(s+1)a*)|H ()|

A ACET O N A

' [1_ <2> F(1+(s+1)a*):|’,H ()V2)’ ]
1 sa* F(1+S()l*) o) ]

+[[1_<5> m}lﬂ (11)]

1

NS Pase) ]

III. If we take m = 1 = s, then we get a new result for generalized convex functions.

oF oF AL+ A
Laga 800 13 8 0] (7572 )|

Corollary 3.15 Forp,q>1withp™ +q ' =1, let H : 2° — R*" be a differentiable func-
tion on §2° such that H*") € Cyx [A1, A2] for Ay, Ay € §2° with Xy > Aq. If|’H(°‘*)|q is general-

ized convex on S2 for q > 1, then

r'l+a*)
(Ag = A1)

Go=2)* [ TQ+pa®) T[T\ TA+a") | o
=T [r<1+<1+p>a*>} [[(5) Tz O

N TA+a) ey ja]?
+[1'<5) F(1+2a*)}|H (AZM

(LY L) Y e (L) L0 e qH
+[[1 (2> F(1+2a*)]|H )| +<2) Fy2ag K|

Remark 3.16 If we choose o* =1 and s = m = 1, then Theorem 3.12 reduces to the result
in [48].

a* a* A+ A
[ 28 MO0 v 2 H00) - (2152 )|

4 New estimates for generalized Simpson'’s type via (s, m)-convex functions
Before continuing toward our main results in regards to generalized Simpson’s inequality

utilizing m-convex functions, we start with the accompanying lemma.

Page 16 of 27
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Lemma 4.1 For m € (0,1], let H.: £2° — R*" (£2° is the interior of §2) be such that H €
Do+ (£2°) and H@) € Cys (A1, mAy] for Ay, Ao € 2° with Ay > Lq. Then

1\ win o [(A1+ My r'(1+a¥) @)
() [ e rn(Pee) moma |- 55555 2

(mry —11)* 1

= Tra) ), MOHT ke m-0h) @), w
- l Ol*’ Oxl ’
w(g) = « g) . CE[I 2)
¢-2), telzll

Proof Consider
71 ' (™) *
1 *
1 2 1\% . .
- _2 (@) _ o
T ra +a*)/0 (C 6) H (CM +m(1 {)kg)(d{)
T / 1 ¢-> M?—L("‘*)(CM +m(1 = £)ha)(dg)” . (4.2)
'(1l+a*) 1 6
Using the local fractional integration by parts, we get

1 3 1N .
_ — (a®) _ o
I'(1+a*) /0 (C 6) H (f)‘l +m(l g))\z)(dﬁ)

1

() [G) (52) - (5) o)

'(l+a®)

(@)

* Gt ) sy T T (4.3)

2
and
1 3 5\ ¢
m/o (C—g> H (2hy +m(1 = 0)ro)(dE)™
_<mk2—)»1) [<3> H( 2 ) (6) H()‘l)]
r(1+a*)

(@*)
t o L5y (). (4.4)
(mhy —A1)*,, 52

Combining (2.1), (4.3), and Definition 2.1, suitable rearrangements give the desired iden-
tity (4.1). O

Theorem 4.2 For m € (0,1] and s € (0,1], let H : 2° — R be a differentiable function
on 2° such that H'@) € Cy» [A1, mAa] for A1, ho € 2° with Ly > Aq. IfIH("‘*)I is generalized
(s, m)-convex on $2, then

1 o o* A+ Ay F(l + Ol*) (™)
(3 o a2 o] 2222
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< (mhry—11)*

. 201* (5a*(s+2) _ 301*(s+1)) _ 50{* (3a*(s+1) + 6a*(s+1))
{ 6™ (s+2) }

I'(1+ sa®) I'(l+(s+1a*)
k

(a*)
1+ (s+1a*) " I'(1+(s+2)a*) ]HH 'G) | |H (?»2)|]- (4:5)

Proof Utilizing Lemma 4.1, the modulus property, and generalized (s, m)-convexity of
|H" |, we obtain

‘(1) [H(M) . (4)“*%(“ i ”“2) . H(mm] - (mi) )

6 2 mhy = h1)* 5,
20 [ W (6214 m(1 = £022)| o)
= (mhy = 2q)" [W i ) [HED (g0 + m(1 = 0)hs) ()™
* e ), "H("‘*)(gkl+m(1—§))L2)|(d§)°‘*} (4.6)

()| o)™

+ m"‘*(l - {)S“*

L
+F(1+a*)/0
T IHEOO, §/1 oo . (2 NN .
= (mhy = 20" [%{/{J (g—c> £ (de)® +/l (z:—g> £ (dg)”
(5 N\ e 5\
+f% (5—;) £ (dg) /(;——) £ (dg) }
e [HE) ()| e
e {/0 (——c) (1= ) (dg)

+ff(c—%) (L) (o)

6

ot

[ 1O )|+ m* (1)

5
7%

*(x2)|}<d;)“*}

NS

Q

g 5 o sa* a¥ ! 5 “ sa® o*
JHCe) ot +/2<;—g> -0 @ f] a

2

Utilizing Lemma 1.7, we get

F(1+a*)/( ) )

(1 o (s+2) I'(1+a*s) I'l+a*(s+1)) (4.8)
- (E) [ru +(+Da¥) I'(1+ (s+2)ot*)i|’ :
1 % 1 “ so* o*
—F(lw*)/é (c-5) e
(3D INT A+ (s+ Da¥) (3D 1\ I(1+a%s) (4.9)
‘( 6*(5+2) )F(1+(s+2)oz*) _< 6*(5+2) )F(1+(s+ Da*)’ '
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5 *
1 o (5 Ot gt
71,(1“)[*)/é (E—C> ™ (dg)

~ 501*(s+2) _ 501* (3)0(*(s+1) F(l + Ol*S)
- 6% (5+2) L1+ (s+1)a*)

I(1+o*(s+1)) (5‘1*(”2) - (3)“*“”))

_ 4.10
T+ (s+2)a*) 69" (s+2) (4.10)

and

1 LB\ e
—F(lw*)/g(g—g) ¢ (de)

(646 — 56297 P(1 4 (s + 1)ar¥)
- 6% (5+2) L(1+(s+2)a%)

5a*6a*(s+1) _ 5a*(s+2) 1—'(1 + OZ*S)
69" (5+2) 1+ (s+1a*)

(4.11)

Again, using Lemma 1.7 and change of variable # = 1 — ¢, we have

F(1+a*)/( ) (-0 o)

1

0B\ e
=F(1+a*)/ (”_8) W (du)

5
6
) 627 (6+D) _ 5+ (1 4 (s + 1)a*)
- 6% (5+2) F(l + (s +2)a*)
50{*601*(S+1) _ 5‘1*(3+2) F(l + (X*S)
6 *(s+2) '+ (s+1)a*)

(4.12)

and, similarly,

I(1+a*) +a*) / ( _> (=) ey

~ 501 s+2)_5a (3)0{ (s+1) F(1+Ol*S)
- 6% (s+2) 1+ (s+1a*)

F(1+a*(s+1)) (5276+2) —(3)«76+D
I'(1+(s+2)a*) 6" (s+2) ’

vy (§¢) -0

(BTSN T A+ (s+a?) (37N _1\  T(1+a%s)
6762 ) (1 4+ (s + 2)a¥) 64" 62 J (1 + (s + 1)a*)’

(4.13)

(4.14)

and

1 L5\ o
e / (g—g) (1- )" (de) (4.15)
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(NI rAsats) FA+at(s+1)
- (E) [ru +(+Da¥) I+ (s+2)ot*)i|'

Combining (4.6) and (4.8)—(4.15), we get the desired inequality (4.5). This completes the
proof. O

We present aome particular cases of Theorem 4.2.

I If we choose s = 1, then we get a new result for generalized m-convex functions.

Corollary 4.3 For m € (0,1], let H : 2° — RY be a differentiable function on 2° such
that H@) € Cyx [A1, mAy] for Ay, Ay € £2° with Ay > Aq. IfI’H(“*)I is generalized m-convex
on §2, then

Kl) [H(m + (4)“*11(7“ +2”“2> : H(mxz)] EACLLVNNY (o

6 (mhiy — A1) 5, 2

(mho -2 [ FQ+a*)  I'(Q+2a%) () o )
=T e I:F(1+2oz*)+1"(1+3a*)i|[’% O]+ [HED )]

II. If we choose m = 1, then we get a new result for generalized s-convex functions.

Corollary 4.4 Forse (0,1], let H : 2° — R*" be a differentiable function on 2° such that
HE) e Cox[A1, A2] for X1, Ao € £2° with Ay > Aq. 1f|’H("‘*)| is generalized s-convex on 2, then

1\ oo M1+ 2 r+a* g
(5) [ron@rn(252) v - 500 1

. 2a* (Sa*(s+2) _ 30(*(s+1)) _ 50(* (3a*(s+l) + 601*(s+1))
o
< a0 | S

|: I'(1+sa®) I'(l+(s+1a*)

(a*) (a®)
I'(1+(s+1)a*) " I'(1+(s+ Z)a*)]HH ()] + [HY ()]

Remark 4.5 If we choose s = 1 = m, then Theorem 4.2 reduces to Theorem 7 in [36].

Theorem 4.6 For m,s € (0,1] and p,q>1 withp™ +q ' =1, let H: 2° — R*" be a dif-
ferentiable function on 2° such that H@) € Cyr (A1, mAy] for ki, Ay € §2° with dy > A1 If

|H |9 is generalized (s, m)-convex on $2 for q > 1, then

1\ oo (A1 1y rd+a*) oo
‘(g) [H(M) @) H(T) +7—l(m/\2)] - iy, T

o F(1+SO{*) % ]"(1+p0[*) }7 1 4 2p+1 %
< (miy—X1) (F(1+(S+1)a*)> <F(1+(p+1)ot*)> < 61 )

1

1)\« 6+ - . o 9a*(s+1) _ 1 @) 2\
() el e (Fp 0l

1

za*(s+l)_1 " o 1 a*(s+1) " i
*((721*(”1) )!H( ()| +m <§> |H >(x2)|q> ] (4.16)
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Proof Utilizing Lemma 4.1, the modulus property, and generalized (s, m)-convexity of

|H" |, we obtain

|(1> [?—L(M) N (4)“*%(%) " 'H(mxz)] _ fxed) g

6 (mhg — 1)@, "2

- (mha = A1)*
r(1+a*)

= (mhy —)\l)a*[ﬁ«[)
v e
< (mi —M)a*[<ﬁ /o%
(v | e a1 = ')
+ (ﬁ /; a*p(dg)a*)}

1 Lo i
(g o)

o

o r'(1+pa*) P 142w\ T
< (mh2 = 1) (F(1+(p+1)a*)> ( (o )

1 -
X[(r(ua*)/o i€
1 ! as
’ (1"(1+oe*)/% ¢

= (mhy =) (1 +sa*) i (1 + pa*) B (14200 =
- A2 A (F(1+(S+1)oz*)) (F(1+(p+1)a*)> ( oo+l )

1 a*(s+1) . . 20(*(s+1) _1 X %1

T et (s

ga*(s+l) _q . /1 a*(s+1) . %
+ (( 20{*(s+1) )‘H(a )(A1)|q +m* (E) |H(a )(AZ)’q> ] (417)

Using Lemma 1.7, and change of variable technique, we obtain

1 /% 1
ra+an ) 576
1 1
- r'1+a*) /;

1
1 2
B 1"(1+oc*)/0

1
/0 ()| [H) (a0 + m(L = 0)22) | ()"

o

(1 (er1 + m(Q = O)s)| ()

2 1
‘7%

HE (¢ Ay +m(1 = ¢)hs) |(d¢)“*}

177 NP
()" )

°
‘7%

‘7%

5
7%

H(a*)()vz)|q}(d§)a*) !

1

H<“*>(A2)Iq}<d;)a*) 5]

H )|+ (1= )

HE )|+ m (1)

a*p .
(dc)*

5“7
E-¢| @)

a*p

! (o)

g—C

é‘__

P 1 !
@O + T o /5 6
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(1 +pe®) <1+2P+1)“* (4.18)

TTA+(p+Dar)\ el

L If we choose s = 1, then we get a new result for generalized m-convex functions.

Corollary 4.7 For m € (0,1] and p,q > 1 withp™ + g =1, let H : 2° — RY" be a dif-
ferentiable function on 2° such that H@) € Cyr (A1, mAy] for ki, Ay € §2° with dy > M. If

|H @9 is generalized m-convex on $2 for q > 1, then

{(l>a |:7-l()q) " (4)“*7{(%) " ’H(m)\z)] _ M 7@

6 (mhiy —11)*" 5, 2

o F(l + a*) % F(l +pa*) }7 1+ 2[7+1 %
< (mhy = A1) (F(l +2a*)) (F(l +(p+ 1)(x*)) ( 6r+l )

1 Za* * * 22(1* - 1 * l
% [((5) |'H(a )()\1)|q+ma ( S >|H(a )(;Q),ﬂj)q

ot 20 %
L I

II. If we choose m = 1, then we get a new result for generalized s-convex functions.

Corollary 4.8 For s € (0,1] and p,q>1 withp™ +q ' =1, let H: 2° — RY" be a dif-
ferentiable function on 2° such that H@) € Cy (A1, mAy] for Ay, Ay € §2° with Ay > A1 If

|H @9 is generalized s-convex on 2 for q > 1, then

1\ win o 1+ A Fl+a®) o
’(6) [”H(M)+(4) H( 5 )+H(A2)]_4(A2—M)“*MI“

of T(lasa®) \i/ I(Lepa®) \F/l4+2\%
<(2-11) <]"(1 +(s+ l)a*)) (1"(1 +(p+ 1)0(*)) ( 61 >

1 a*(s+1) - . 201*(s+1) _1 - g 3}
201*(s+1) _1 . 1 o*(s+1) . %
' ((ﬁ)m( )|+ <5> 1 )(/\2)|q> }

III. If we choose m = 1 = s, then we get a new result for generalized convex functions.

Corollary 4.9 Forp,q>1withp +q ' =1,let 1 : 2° — R*" be a differentiable function
on §2° such that H@) € Cy» [A1,A2] for A1, Ao € 2° with Xy > Aq. IfI”H("‘*)Iq is generalized

convex on §2 for q > 1, then

1\ oo 1+ A Fl+a®) o
‘(6) [’H(M)+(4) H( 5 )+H(k2)]_4()\2—)\1)“*hz“

o* r'+a*) ‘li F(1+pa*) ,l; 1 4+ op+1 0;7*
S()\2—)\1) <F(1+20€*)) <F(1+(p+1)a*)> < 61”1 )

Page 22 of 27



Abdeljawad et al. Advances in Difference Equations (2020) 2020:406 Page 23 of 27

20" 2 . %
Q) (2w
20% 20* %

(B Jerers (5) - werear)'

5 Applications
5.1 Probability density functions
Consider a random variable x with generalized probability density function p : [A1, 12] —

[0%",1%"], which is generalized convex and has the cumulative distribution function

Pae(x <) = Firr () :=ﬁ v

Moreover, the generalized expectation can be expressed as

A

1 2 o* o*
Ea*=m . % p()do)™ .

For more information related to probability density functions, see [49].

Clearly, we see that

1

x o* o* 1 A2 o*
Ea*(u)=mfh§ AF = 18 —mfh Fur©)(de)"".

The following results are associated with Sect. 4.

Proposition 5.1 In Theorem 4.2, choosing m = 1 = s, we have

N\ . AL+ Ao A% — Eye(x)
) P <a) +4° Py x < +Pyr( < ho)) | - 22—l
’(6> [ (x =) <x =— > (x 2))] 00

2a* (53a* _ 320{*) _ 50(* (32&* + 62(1*) }

< (g —-2)" { 63

|: rl+o*) I'(l1+2a%)

I'(1+2a%) " 1+ Sa*)][{p(h)‘ + ‘P(KZ)H.

Proposition 5.2 In Theorem 4.6, choosing m = 1 = s, we have

N\ . A+ Ao AY = Eq+(x)
- Por( A1) +4% P [ x < Z="2 ) 4 P (x <)) | - 22— 27
’(6> [ (x =2)+ (x 5 > + Por (X z))] o h)e

o T(L+a¥) : ra+pa*) s 1 4+ 2ptl %*
<(A2—21) <F(1+2a*)) (p(1+(p+1)a*)> ( 61 >

1\ 2% _ 1 a
X [((5) lp(a)|” + <W)|P()&2)|q)

*

20% _ 200 %
(B ool (5) loear)' |
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5.2 Generalized special means
Considering the following o*-type special means [50]. For A; < Ay and Xq,X € RY", we
have:

1. The generalized arithmetic mean

A +xz>°‘* Ay

-Aa*(}\l:)LZ) = ( D) 9o+

II. The generalized logarithmic mean

r(1+no*) 28— A‘{‘**l]

£a* ()Ll, )\-2) = |:1"(1 + (y[ + 1)0!*) ()\2 - )\l)a*

nez \ {_1,0};)\1, )\-2 c R with )\1 7’)\.2.

Considering H(u) = u™" (u € R : n € Z, |n| > 2) in Corollaries 3.10 and 3.15, we obtain the
following inequalities stated by Propositions 5.3 and 5.4, respectively.

Proposition 5.3 Let A1, A€ R with Ay < Xy,0 € [A1, A3], and n € N\ {1}. Then

|F(1 + Ol*)[ na* ()\.2, A()\.l, )\.2)) + [':m)t* (./4()\.1, )\2),)\1)] - Z* ()\1,)\.2)|

_ o) [ ra+a) Ta H(;)“ ra+2e*) ra+ne) v
- 4 (1 +2a*) I'(1+3a*) M1+ (m—-1a*) !

q

2

ri+o? (1\TQ+2e%] IQ1+ne?) e i
[F(1+2a*) _(5) F(l+3a*)i|1“(1+(n—1)a*) 2 }

[[ r'(1+a*) (1)“*F(1+2a*)} (1 +na*) e
020 \2) TU+3em |[TU+ (=D
(1)"‘* ra+2e*) I'(1+na®) - q} %]

2 'l+3a*) I'(1+(n-1)a*)
Proposition 5.4 Let A1, Ar€ R with Ay < Ay,0 & [A1,A2], and n € N\ {1}. Then

*1q

|7(1+a*) [ L2 (Ao A1, 1)) + L2 (AGh1, A2), 1) ] = AL (A, 20)|

<(/\2—k1)"‘*[ I (1+par) F[[G)a* PO POema) e
- 4o r1+1+p)a*) 'd+2e*) '+ (#n-1)a*)

) N\ ra+ao) '+ na*)

" [ - (5) ra+ 2a*):| T+ (- 1)a*)
[[1 (1)0‘* r'(1+a*) :| I'(1+ na™) | (n Do |q

1177\2) Ta+20m |TA+G=1)an

N\ r+ae®) I'A+na* )
+(> (1+a%) (1 + na*) |)\(n_1>a |q:|.

2) T(+20%) C(1+(#n-1a¥)

q

=~

6 Conclusions
In this paper, we addressed a novel concept of (s, 7)-convex functions on a fractal do-
main. Moreover, we have discussed some algebraic properties of the proposed technique.
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Also, we established some appropriate results about generalized HH type inequalities and
local fractional Simpson’s-like type inequalities by using tools of fractal analysis and (s, m)-
convexity. Several novel results have been captured for generalized s-convex, generalized
m-convex, and generalized convex functions. The obtained results have been testified by
two intriguing applications to show the effectiveness of the derived results. To the best
of our knowledge, the said results are new for convexity theory involving fractal sets. In
the future the above theory and analysis can be extended to more complicated and appli-
cable problems of convexity involving fractal domains. Finally, our consequences have a
potential connection in fractal theory and machine learning [19, 20]. This new concept
will be opening new doors of investigation toward fractal differentiations and integrations
in convexity, preinvexity, fractal image processing, and camouflage in the garments indus-
try. We hope that the main results of this paper will inspire the interested readers and will
stimulate further research in this field.
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