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Abstract
We consider the corrosion detection problem in terms of the Laplace equation and
study a simply connected bounded domain with Wentzell-type GIBC boundary
condition. We derive the systems of integral equations and establish the equivalence
to the inverse shape problem in a Sobolev space setting. For the direct problem, we
use potential theory to simulate the Neumann data from Dirichlet data on Dirichlet
boundary. Then we propose a Newton iterative approach based on the boundary
integral equations derived from Green’s representation theorem. After describing the
linearization and the iteration scheme for the inverse shape, we compute the Fréchet
derivatives with respect to the unknowns. We conclude by presenting several
numerical examples for shape reconstructions to show the validity of the proposed
method.
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1 Introduction
The Laplace equation is a special partial differential equation. Solving the boundary value
problem of the Laplace equation is an important mathematical problem often encoun-
tered in the fields of electromagnetics, astronomy, thermodynamics, and hydrodynamics,
because such equations describe the properties of physical objects such as electric, grav-
itational, and flow fields in the form of potential function. Many physical problems, for
instance, thermal imaging, electrostatic imaging, and corrosion detection, are mathemat-
ically regarded as inverse boundary value problems of the Laplace equation. Such inverse
problems can be interpreted as reconstructing the boundary shape or the impedance co-
efficients on the boundary from the measurements. Much work has been done on these
problems [7, 10, 11, 13, 14, 21, 22, 28], where the authors used the nonlinear integral equa-
tion method proposed by Kress and Rundell [24]. In [10, 13, 14] the authors applied the
method of [24] to reconstruct the impedance boundary shape of the corrosion problems.
The integral equation method is also widely used [8, 9, 12].

In many cases, complex scattering problems need to be considered, which usually are
described as the scattering problems with absorbing boundary or multiple scatterers
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[15, 19, 29] (and references therein). A layer of medium on the surface of a scatterer can be
used to protect the coated scatterer from external environment corrosion and also can be
used to absorb the incident wave according to its own needs to reduce the intensity of scat-
tering to achieve stealth purpose. These problems can be mathematically described by the
Laplace equation. The boundary conditions of scatterers are sometimes assumed because
of physical requirements or limitations. At this time, some boundary conditions satisfy
the Dirichlet condition, and others satisfy the damped boundary conditions or other non-
Dirichlet boundary conditions, resulting in Wentzell boundary problems. The scattering
model of partial boundary coatings satisfies different kinds of boundary conditions in dif-
ferent parts of the boundary. Because the boundary impedance coefficients essentially re-
flect the absorption of energy by the boundary. On one hand, the scattering model can be
invisible to the target by appropriately adjusting the coefficients. On the other hand, the
boundary impedance coefficients can be appropriately adjusted as the task of antistealth.
Therefore an important study in this kind of inverse scattering problem is reconstructing
the boundary shape or the boundary impedance coefficients from the measured data of the
forward problem [2–7, 25], so as to effectively identify the target object. In [7] the authors
studied the inverse problem for a mixed boundary value problem of the Laplace equation.
They considered a doubly connected bounded domain with exterior Dirichlet boundary
condition and interior generalized impedance boundary condition (GIBC). They derived
an integral equation system and proved the equivalence to the original inverse problem of
reconstructing the boundary shape and boundary impedance in a Sobolev space setting.

In this paper, we consider a Wentzell-type GIBC boundary condition of the Laplace
equation. Two generalized impedance coefficients of the corrosion boundary are known.
The shape of the GIBC part is reconstructed from a set of Cauchy data measured on the
known boundary. The direct problem is computing Neumann data from the correspond-
ing Dirichlet data on the known boundary by the jump relation of the single-layer poten-
tial. Then we use a set of Cauchy data obtained from the direct problem to reconstruct the
corrosion boundary shape with generalized impedance condition based on Green’s for-
mula. The background of this formulation is that the generalized impedance coefficients
are defined on the corresponding boundary, so these coefficients can also be regarded as
two functions of the shape of the unknown boundary. This problem of reconstructing the
geometry, which is also included in the crack problems [21], can be regarded as a simpli-
fied model with unknown generalized impedance boundary. The inverse problem to be
solved by Green’s formula is transformed into a set of nonlinear integral equations with
respect to the boundaries. The Fréchet derivatives are computed to linearize the system,
and then the ill-posed equations are solved by regularization to reconstruct the boundary
shape. We propose an iterative numerical inversion scheme for recovering the geometry.
Because the solution of the boundary value problem of the Laplace equation is singular at
the boundary points of the mixed boundary conditions in a simply connected region, qual-
itative theoretical research needs to be carried out in a more general function space. The
inverse problem in this paper is an application based on the nonlinear integral equations
proposed in [24].

Our paper is organized as follows. In the next section, we formulate the direct and in-
verse problems with mixed boundary conditions. In Sect. 3, we obtain a set of bound-
ary integral equations according to Green’s formula inside the cavity and the boundary
jump relations. Thus the inverse problem of reconstructing the generalized impedance



Hu et al. Advances in Difference Equations        (2020) 2020:405 Page 3 of 19

boundary shape of the cavity is transformed into solving the nonlinear boundary inte-
gral equations. Then we propose the Newton method to reconstruct the boundary shape.
Firstly, we obtain the Fréchet derivative of corrosion boundary Γc and transform the orig-
inal nonlinear integral equations into linear integral equations. In addition, we use the
regularized Newton iterative method to solve the linear equations equivalent to the in-
verse problem. We end the paper with various numerical examples of reconstructing the
generalized impedance boundary shape. We also discuss the validity of the regularized
Newton method and its stability to data errors.

2 The inverse problem with mixed boundary conditions
In this paper, we consider the inverse corrosion problem of electrostatic imaging in
bounded domain under certain boundary conditions, which is usually considered as the
inverse boundary value problem of the Laplace equation with respect to electrostatic po-
tential or temperature. More specifically, let D ⊂ R

2 be a simply connected bounded do-
main with piecewise smooth boundary ∂D. We assume that the boundary is composed as
∂D = Γ m ∪ Γ c where Γm and Γc are two connected open disjoint portions of ∂D of class
C2 without cusps at two intersection points. Moreover, Γm is assumed to be nonempty
with |Γm| > 0. Denote by ν the unit outward normal to ∂D defined almost everywhere.
We assume that ∂D is the boundary of the cross-section of a cylindrical partially coated
perfectly conducting cavity where Γc represents the portion coated by a conducting ma-
terial. For the electrostatic imaging problem, the electrostatic potential u can be given as
the following boundary value problem: given a function f ∈ H 3

2 (Γm), consider the Laplace
equation

�u = 0 in D (1)

with mixed boundary condition

∂u
∂ν

– divΓc (μgradΓc u) + λu = 0 on Γc (2)

and

u = f on Γm, (3)

where λ ∈ L∞(Γc) is not negative and nonconstant to zero, and μ ∈ L∞(Γc) is positive. Both
λ and μ denote the surface corrosion coefficients on the boundary Γc, divΓc and gradΓc are
the divergence and gradient of the unknown boundary, respectively, and f is the voltage
on the boundary Γm.

Thus the forward problem is as follows: compute the corresponding Neumann data from
Dirichlet data f on Γm, which is the partial boundary of conductive medium. We define
Neumann data

g :=
∂u
∂ν

on Γm. (4)

For the following discussion, we define the data (f , g) ∈ H 3
2 (Γm)×H 1

2 (Γm) on the bound-
ary Γm as Cauchy data such that (f , g) �= 0. In the two-dimensional case the inhomogeneous
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Laplace–Beltrami differential operator divΓc (μgradΓc u) can be rewritten as [20]

divΓc (μgradΓc u) =
d
ds

μ
du
ds

,

where d/ds is the tangent derivative, and s is the arc length of Γc. The latter is the form we
use from now on.

In particular, given f ∈ H 3
2 (Γm), there exists a unique harmonic function u ∈ H2(D) sat-

isfying the generalized impedance condition (2) on Γc and the Dirichlet boundary condi-
tion u = f on Γm. This is a boundary value problem: For f ∈ H 3

2 (Γm) and h ∈ H 1
2 (Γc), find

a solution u ∈ H2(D) such that

�u = 0 in D, (5)

u = f on Γm, (6)

and

∂u
∂ν

– divΓc (μgradΓc u) + λu = h on Γc, (7)

where λ ∈ L∞(Γc) is nonnegative and not identically zero, μ ∈ L∞(Γc) is positive, and s
is the arc length variable on Γc. Suppose f = 0 and h = 0. Applying Green’s first integral
theorem and using the boundary condition, we have that [3, 11]

∫
D

|∇u|2 dx =
∫

D
u

∂u
∂ν

ds = –
∫

Γc

μ

∣∣∣∣du
ds

∣∣∣∣
2

ds –
∫

Γc

λ|u|2 ds.

In view of the positivity of λ and μ, we have u = 0 in D, which yields that the boundary
value problem (5)–(7) has at most one solution. Hence, for f ∈ H 3

2 (Γm), there exists a
unique solution u ∈ H2(D) of (1)–(3).

The inverse problem is as follows: determine the shape of the corrosion boundary Γc

from Cauchy data on Γm.
Bacchelli [1] discussed the impedance boundary on Γc, that is, μ = 0 in (2). She estab-

lished that two pairs of Cauchy data on Γm can uniquely determine both the shape of the
domain D and the impedance function λ on ∂D, provided that f1 and f2 are linearly inde-
pendent and one of them is positive. In [10] the authors considered the particular case of
Neumann boundary data on Γc, λ = 0 and μ = 0 in (2), and showed that one pair of Cauchy
data can uniquely determine the missing part of the boundary. For our inverse problem,
the uniqueness of the boundary Γc with finitely many Cauchy pairs is an open problem,
even if we assume that λ and μ are known. We will not deal with identifiability result in
this paper even although this is a crucial question.

3 Integral equations
Based on Green’s representation formula, in this section, we derive two nonlinear inte-
gral equations equivalent to the inverse problem to be solved. To get nonlinear integral
equations from the fundamental solution of the Laplace equation in R

2

Φ(x, y) =
1

2π
ln

1
|x – y| , x �= y,
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we define the single potential operator S : H– 1
2 (∂D) → H 1

2 (∂D) by

(Sφ)(x) :=
∫

∂D
Φ(x, y)φ(y) ds(y), x ∈ ∂D, (8)

and the double potential operator K : H 1
2 (∂D) → H 1

2 (∂D) by

(Kφ)(x) :=
∫

∂D

∂Φ(x, y)
∂ν(y)

φ(y) ds(y), x ∈ ∂D. (9)

The forms of the operators on the boundaries are

(Sjkφ)(x) :=
∫

Γj

Φ(x, y)φ(y) ds(y), x ∈ Γk , (10)

and

(Kjkφ)(x) :=
∫

Γj

∂Φ(x, y)
∂ν(y)

φ(y) ds(y), x ∈ Γk , (11)

respectively, where j, k = m, c.
From now on, without loss of generality, we assume that there exists a point x∗ ∈ D such

that |x – x∗| �= 1 for all x ∈ ∂D. Then by the definition of a single potential operator in (8)
the operator S is injective [23]. Suppose that u ∈ H2(D) is the solution to the boundary
value problem (1)–(3). To simplify the definition, let

η := u|Γc

and then denote

Ψ :=
d
ds

μ
dη

ds
– λη. (12)

Using Green’s formula, two different boundary conditions, and the Cauchy data on the
boundaries, we derive

u(x) =
∫

Γm

{
Φ(x, y)g(y) –

∂Φ(x, y)
∂ν(y)

f (y)
}

ds(y)

+
∫

Γc

{
Φ(x, y)Ψ (y) –

∂Φ(x, y)
∂ν(y)

η(y)
}

ds(y), x ∈ D. (13)

Let x be close to the two boundaries Γm and Γc from the inside of the cavity D based on
(13). By means of the jump relations of double potential and the continuity of the single
potential on the boundary, we get the following nonlinear boundary integral equations:

Smmg + Scm

(
d
ds

μ
dη

ds
– λη

)
– Kcmη =

f
2

+ Kmmf , x ∈ Γm, (14)

Smcg + Scc

(
d
ds

μ
dη

ds
– λη

)
– Kccη –

η

2
= Kmcf , x ∈ Γc, (15)
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where g := ∂u
∂ν

|Γm ∈ H 1
2 (Γm), η ∈ H 3

2 (Γc), and m, c denote the corresponding two different
boundaries.

Conversely, assume that given a Cauchy pair (f , g) on Γm, the functions λ and μ on
Γc, the curve Γc, and η solve the system of integral equations (14) and (15), define the
function u by the right-hand side of (13) for all x ∈ R2\∂D. Then �u = 0 in D and R2\D̄.
From the integral equations (14) and (15) and the jump relations it follows that the limits
of u obtained by approaching ∂D from outside vanish. The uniqueness for the exterior
Dirichlet problem, together with some consideration on the behavior of the single-layer
potentials at infinity using our assumption that there exists x∗ ∈ D such that |x – x∗| �= 1
for all x ∈ ∂D, now implies that u vanishes in R2\D̄. Again, the jump relations finally yield
that the harmonic function u has Cauchy data (f , g) on Γm and Dirichlet values u = η on Γc

and satisfies the generalized impedance condition with coefficients λ and μ on Γc. Hence
we can state the following equivalence (see also [13, 14]).

Theorem 3.1 Reconstructing the shape of corrosion boundary is equivalent to finding the
solution Γc and η from equations (14)–(15).

Theorem 3.2 For given impedance coefficients λ and μ, the integral equation (15) has a
unique solution η ∈ H 3

2 (Γc) [11].

More specifically, equations (14) and (15) are linear with respect to η, but they are non-
linear with respect to the reconstructed boundary Γc. Equation (15) is well posed, whereas
the data equation (14) is seriously ill-posed for the inverse problem. Suppose that we can
measure accurate or slightly perturbed Cauchy data; however, because of the ill-poseness
of the equation, a stable regularization method is needed to solve equation (14) in the
process of inverse problem. Because the L2-norm is often used to measure the error data,
considering equation (14) under the L2-norm is better than discussing the equation in its
trace space.

To solve the nonlinear integral equations (14)–(15), we adopt the Newton iterative
method. We solve equations (14)–(15) simultaneously to get the solutions Γc and η by
iteration. This means that we need to linearize equations (14) and (15) simultaneously
corresponding to the two unknowns Γc and η, which are required to be solved.

4 The iterative method of the inverse problem
In this section, we present a Newton iterative method for solving nonlinear boundary inte-
gral equations (14)–(15). Based on the nonlinearity of equations (14)–(15) on the bound-
ary Γc, we need to linearize equations (14)–(15) respect to the corrosion boundary curve
Γc by solving the Fréchet derivatives of the integral operators on the boundary. Thus the
unknowns of the inverse problem can be solved in the linear systems of the equations.
First, we parameterize the boundary and its integral operators.

4.1 Integral equations parameterization
For further investigation of the integral equations, we present

∂D =
{

z(t) : t ∈ [0, 2π ]
}
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with a 2π-periodic C2-smooth function z : R → R
2 such that z is injective on [0, 2π ) and

satisfies z′(t) �= 0 for all t. Without losing generality, suppose that

Γm =
{

zm(t) : t ∈ (0,π )
}

, Γc =
{

zc(t) : t ∈ (π , 2π )
}

(16)

are the parameterized representations of C2-boundaries Γm and Γc, respectively. To in-
corporate possible singularities of the solutions at the end points of Γc and Γm, we can
employ sigmoidal transformations; see [17, 18]. Here we write a⊥ = (a2, –a1) for any vec-
tor a = (a1, a2), that is, a⊥ is obtained by rotating a clockwise by 90o. For j, k = m, c, denote
ψ = φ ◦ zj. In view of (10) and (11), we introduce the parameterized single- and double-
layer operators S̃jk : H– 1

2 (∂D) → H 1
2 (∂D) and K̃jk : H 1

2 (∂D) → H 1
2 (∂D) by

(S̃cjψ)(x) :=
1

2π

∫ π

0
ln

1
|zj(t) – zc(τ )|

∣∣z′
c(τ )

∣∣ψ(τ ) dτ (17)

and

(K̃cjψ)(x) :=
1

2π

∫ π

0

[z′
c(τ )]⊥ · [zj(t) – zc(τ )]

|zj(t) – zc(τ )|2 ψ(τ ) dτ . (18)

To discretize the integral operators, the kernel of the operator S̃jj can be decomposed as

ln
1

|zj(t) – zj(τ )| = – ln

∣∣∣∣sin
t – τ

2

∣∣∣∣ + ln
| sin t–τ

2 |
|zj(t) – zj(τ )| , j = c, m,

where the second item is smooth, and the diagonal value is

lim
τ→t

ln
| sin t–τ

2 |
|zj(t) – zj(τ )| = – ln 2

∣∣z′
j(t)

∣∣.

The kernel of the operator K̃jk is smooth; when j = k, the element on diagonals becomes

lim
τ→t

[z′
j(τ )]⊥ · [zj(t) – zj(τ )]

|zj(t) – zj(τ )|2 =
[z′

j(t)]⊥ · z′′
j (t)

2|z′
j(t)|2 , j = c, m. (19)

4.2 Newton iterative method and computation of Fréchet derivatives
Now we present an algorithm for solving the linear integral equations (14)–(15), the New-
ton Iterative Method. Linearizing equations (14)–(15) completely corresponding to the
unknown boundary shape Γc and the boundary value η, we get the equations

S̃cc

(
d
dt

μ
dη

dt
– λη, zc

)
+ S̃cc

(
d
dt

μ
dγ

dt
– λγ , zc

)
+ dS̃cc[Ψ , zc; ζ ]

– K̃cc(η, zc) – K̃cc(γ , zc) – dK̃cc[η, zc; ζ ] –
η

2
–

γ

2

= wc + ζ · (grad(wc)
) ◦ zc, x ∈ Γc, (20)

and

S̃cm

(
d
dt

μ
dη

dt
– λη, zc

)
+ S̃cm

(
d
dt

μ
dγ

dt
– λγ , zc

)
+ dS̃cm[Ψ , zc; ζ ]
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– K̃cm(η, zc) – K̃cm(γ , zc) – dK̃cm[η, zc; ζ ] = wm, x ∈ Γm, (21)

where wc := K̃mcf – S̃mcg, wm := f
2 +K̃mmf – S̃mmg , the operators dS̃cm[Ψ , zc; ζ ], dK̃cm[η, zc; ζ ],

dS̃cc[Ψ , zc; ζ ], and dK̃cc[η, zc; ζ ] represent the Fréchet derivatives of S̃cmΨ , K̃cmη, S̃ccΨ , and
K̃ccη, along the direction of ζ with respect to the unknown boundary zc.

The method can be summarized as three steps:
1. Given the initial value of zc, which is the parameterized form of corrosion boundary

Γc. Compute the solution from the well-posed equation (15), given as the initial value
of η.

2. Plug the initial values of zc and η obtained in the first step into equations (20)–(21).
Solve the linearized system (20)–(21) by Tikhonov regularization for ζ and γ . Hence
the unknown boundary is updated as zc + ζ , whereas the boundary value is updated
as η + γ .

3. Repeat the second step until the iteration stop criterion is satisfied.

Remark 4.1 In addition to the Newton iterative method for solving the inverse problems
of (14) and (15), there are also two feasible methods. From the ill-posed equation (14) we
get the density η, then linearize the well-posed equation (15), so the approximate boundary
can be obtained by iterative updating. This method is referred in [10, 27]. Similarly, com-
pute η from the well-posed equation (15), then linearize the ill-posed equation(14), and
reconstruct the corrosion boundary shape by regularization method.

We use the Tikhonov regularization method in the second step of iteration. Without
regularization, the equations are unstable, that is, strong numerical oscillations appear.
More specifically, we add the penalty terms

αζ‖ζ‖2
H2 + αγ ‖γ ‖2

L2

to the square of the L2-norm of the difference of the left- and right-hand sides of equations
(20)–(21) as usual in the Tikhonov regularization, where αζ ,αγ are the regularization pa-
rameters to the respective unknowns. Penalizing not only the function values but also the
first and second derivatives adds stability. For this reason, we choose the H2 penalty term
to the reconstructed boundary ζ due to its nonlinearity and the L2 penalty term to the
density η. We use Tikhonov regularization to solve the equations and use the projection
method to solve the inverse problem.

To simplify the computation, we present some operators. The Fréchet derivatives of the
operators S̃jk and K̃jk can be derived from the differential of the smooth kernel of the op-
erators with respect to the unknown zc [26]. Thus, the Fréchet derivatives of the operators
S̃cm and K̃cm can be computed as follows:

dS̃cm[Ψ , zc; ζ ](t) =
1

2π

∫ π

0

[zm(t) – zc(τ )] · ζ (τ )
|zm(t) – zc(τ )|2

d
dτ

μ

|z′
c(τ )|

dη

dτ
dτ

+
1

2π

∫ π

0
ln

1
|zm(t) – zc(τ )|

d
dτ

μ

(
–

1
|z′

c(τ )|2
z′

c(τ ) · ζ ′(τ )
|z′

c(τ )|
)

dη

dτ
dτ

–
1

2π

∫ π

0

[zm(t) – zc(τ )] · ζ (τ )
|zm(t) – zc(τ )|2

∣∣z′
c(τ )

∣∣λη dτ
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–
1

2π

∫ π

0
ln

1
|zm(t) – zc(τ )|λη

z′
c(τ ) · ζ ′(τ )
|z′

c(τ )| dτ ,

dK̃cm[ψ , zc; ζ ](t) =
1

2π

∫ π

0

[ζ ′(τ )]⊥ · [zm(t) – zc(τ )] – [z′
c(τ )]⊥ · ζ (τ )

|zm(t) – zc(τ )|2 ψ(τ ) dτ

+
1
π

∫ π

0

[z′
c(τ )]⊥ · [zm(t) – zc(τ )][zm(t) – zc(τ )] · ζ (τ )

|zm(t) – zc(τ )|4 ψ(τ ) dτ ,

where t ∈ [0,π ]. Similarly, we get

dS̃cc[Ψ , zc; ζ ](t) =
1

2π

∫ π

0

[zc(t) – zc(τ )] · [ζ (t) – ζ (τ )]
|zc(t) – zc(τ )|2

d
dτ

μ

|z′
c(τ )|

dη

dτ
dτ

–
1

2π

∫ π

0
ln

1
|zc(t) – zc(τ )|

d
dτ

μ

(
–

1
|z′

c(τ )|2
z′

c(τ ) · ζ ′(τ )
|z′

c(τ )|
)

dη

dτ
dτ

+
1

2π

∫ π

0

[zc(t) – zc(τ )] · [ζ (t) – ζ (τ )]
|zc(t) – zc(τ )|2

∣∣z′
c(τ )

∣∣λη dτ

–
1

2π

∫ π

0
ln

1
|zc(t) – zc(τ )|λη

z′
c(τ ) · ζ ′(τ )
|z′

c(τ )| dτ ,

where t ∈ [π , 2π ]. The kernel of the operator dS̃cc is smooth, and the diagonal values of
the first and third items can be shown as

lim
τ→t

[zc(t) – zc(τ )] · [ζ (t) – ζ (τ )]
|zc(t) – zc(τ )|2 =

z′
c(t) · ζ ′(t)
|z′

c(t)|2 .

The Fréchet derivative of the operator K̃cc along the direction ζ can be computed as

dK̃cc[ψ , zc; ζ ](t) =
1
π

∫ π

0

(
[z′

c(τ )]⊥ · [ζ (t) – ζ (τ )] + [ζ ′(τ )]⊥ · [zc(t) – zc(τ )]
2|zc(t) – zc(τ )|2 ψ(τ )

–
[z′

c(τ )]⊥ · [zc(t) – zc(τ )][zc(t) – zc(τ )] · [ζ (t) – ζ (τ )]
|zc(t) – zc(τ )|4 ψ(τ )

)
dτ ,

where t ∈ [π , 2π ]. The kernel K(t, τ ) of the operator dK̃cc is smooth with the diagonal value

lim
τ→t

K(t, τ ) =
[z′

c(t)]⊥ · ζ ′′(t) + [ζ ′(t)]⊥ · z′′
c (t)

4|z′
c(t)|2 –

[z′
c(t)]⊥ · z′′

c (t)z′
c(t) · ζ ′(t)

2|z′
c(t)|4 .

Let wc = w ◦ zc be the parametric form of the single- and double-layer potential of the
unknown boundary Γc. The Frćchet derivative of the potential wc along the direction ζ

with respect to the unknown boundary zc can be expressed as,

ζ · (grad(wc)
) ◦ zc

=
1

2π

∫ 2π

π

f
(
zm(τ )

) [z′
m(τ )]⊥ · ζ (t)

|zc(t) – zm(τ )|2 dτ

–
1
π

∫ 2π

π

f
(
zm(τ )

) [z′
m(τ )]⊥ · [zc(t) – zm(τ )][zc(t) – zm(τ )] · ζ (t)

|zc(t) – zm(τ )|4 dτ

+
1

2π

∫ 2π

π

g
(
zm(τ )

) [zc(t) – zm(τ )] · ζ (t)
|zc(t) – zm(τ )|2

∣∣z′
m(τ )

∣∣dτ , where t ∈ [π , 2π ].
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Figure 1 Reconstruction of the corrosion boundary of ellipse with exact data above and with 5% noisy data
below, respectively. We choose Dirichlet data on Γm as f (zm(t)) = 1, t ∈ [0,π ], the impedance coefficients on
boundary Γc are chosen as λ = 0.8 + cos4 t and μ = 1

1+0.15 cos 2t , t ∈ [π , 2π ]

5 Numerical examples
In this section, we give some numerical examples to verify the feasibility of the proposed
Newton iterative method. We solve the solution to the direct problem by the single-layer
potential method [11]. We use the Green’s formula method to reconstruct the corrosion
boundary curve. However, because of singularities of the solution to (1)–(3) at the two
intersection points, discretizing the equations with equidistant points on [0, 2π ] would
lead to a poor accuracy. For this reason, it is more appropriate to use a mesh graded toward
the intersection points [13, 14, 16]. Such a grading can be achieved most efficiently by
using a sigmoidal transformation. We parameterize the unknown part of the boundary
in the form that automatically satisfies the continuity condition to overcome a possible
mismatch between two boundaries. Note that the boundary integral equations for creating
the data are obtained via the potential approach, whereas the integral equations in the
inverse algorithm are based on Green’s formula, and thus committing an inverse crime is
avoided.
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Figure 2 Reconstruction the corrosion boundary of ellipse with exact data above and with 3% noisy data
below, respectively. We choose Dirichlet data on Γm as f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], the impedance
coefficients on boundary Γc are chosen as λ = 0.8 + cos4 t and μ = 1

1+0.15 cos 2t , t ∈ [π , 2π ]

In principle, the parameterization of the update ζ obtained from (20) and (21) is not
unique. To cope with this ambiguity, we use star-like parameterizations of the form

zc(t) = r(t)(cos t, sin t), t ∈ [π , 2π ], (22)

with a nonnegative function r representing the radial distance of Γc from the origin. Con-
sequently, the perturbations are of the form

ζ (t) = q(t)(cos t, sin t), t ∈ [π , 2π ], (23)

with a real function q. In the process of iteration approximation, we assume that q can be
extended to a trigonometric polynomial form which the series less than or equal to m ∈N,
more specifically,

q(t) ≈
m∑

j=0

aj cos(jt) +
m∑

j=1

bj sin(jt). (24)
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Figure 3 Reconstruction the corrosion boundary of ellipse with exact data above and with 3% noisy data
below, respectively. We choose Dirichlet data on Γm as f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], the impedance
coefficients on boundary Γc are chosen as two constants λ = 1 and μ = 3

We choose 64 configuration points on the two mixed boundaries in the simply con-
nected region, that is, m = 32. For the perturbed data, the random error with L2-norm
is

gδ := g + δ
‖g‖L2

‖ρ‖L2
ρ, (25)

where g is the exact data, δ is the relative error level, and ρ is a random variable of normal
distribution. The feasibility of the algorithm is verified by the initial values of different
impedance coefficients in numerical examples. The following examples solve equations
(20) and (21) approximately by using Tikhonov regularization. In the process of regular-
ization, we choose the H2-penalty term to the reconstructed boundary ζ . For the den-
sity function η, we choose the L2-penalty term. We use the projection method to solve
the inverse problem. Of course, based on the Newton iterative method mentioned previ-
ously, an appropriate algorithm stopping criterion is needed to terminate the operation.
In our numerical examples, our iteration steps and regularization parameters are chosen
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Figure 4 Reconstruction the corrosion boundary of pear with exact data above and with 2% noisy data
below, respectively. We choose Dirichlet data on Γm as f (zm(t)) = 1, t ∈ [0,π ], the impedance coefficients on
boundary Γc are chosen as λ = 0.8 + cos4 t and μ = 1

1+0.15 cos 2t , t ∈ [π , 2π ]

experimentally. In the first two numerical examples, we choose different Dirichlet data
and different impedance coefficients to show the validity of our method.

Example 1 We consider the parametric form of elliptic boundary

zc(t) = (0.6 cos t, 0.4 sin t), t ∈ [π , 2π ], (26)

and choose m = 5 in (24) and the given parametric form of known boundary Γm

zm(t) = (0.6 cos t, 0.4 sin t), t ∈ [0,π ]. (27)

We suppose zc0 (t) = (0.6 cos t, 0.6 sin t), t ∈ [π , 2π ], as the initial value of the bound-
ary Γc. Choosing different Dirichlet data and different boundary impedance coefficients,
the reconstruction method is feasible. In Fig. 1, we choose the Dirichlet data on Γm as
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Figure 5 Reconstruction the corrosion boundary of pear with exact data above and with 2% noisy data
below, respectively. We choose Dirichlet data on Γm as f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], the impedance
coefficients on boundary Γc are chosen as λ = 0.8 + cos4 t and μ = 1

1+0.15 cos 2t , t ∈ [π , 2π ]

f (zm(t)) = 1, t ∈ [0,π ], and the impedance coefficients on boundary Γc as

λ = 0.8 + cos4 t and μ =
1

1 + 0.15 cos 2t
, t ∈ [π , 2π ]. (28)

Using the exact Cauchy data with 7 iteration steps and the noisy data with δ = 5% and
9 iteration steps, we establish the reconstruction of the ellipse in Fig. 1. To consider the
influence of different Dirichlet data to the reconstruction, we choose f (zm(t)) = 1 + cos2(t),
t ∈ [0,π ], as Dirichlet data on Γm in Fig. 2, and the generalized impedance coefficients on
the boundary Γc are still given in (28). Using the exact Cauchy data with 13 iteration steps
and the noisy data with δ = 3% and 13 iteration steps, we establish the reconstruction of
the ellipse in Fig. 2. We choose f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], as Dirichlet data on Γm and
the impedance coefficients on the boundary Γc given as two constants λ = 1 and μ = 3 in
Fig. 3. Using the exact Cauchy data with 12 iteration steps and the noisy data with δ = 3%

and 13 iteration steps, we establish the reconstruction of the ellipse in Fig. 3.
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Figure 6 Reconstruction the corrosion boundary of pear with exact data above and with 2% noisy data
below, respectively. We choose Dirichlet data on Γm as f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], the impedance
coefficients on boundary Γc are chosen as two constants λ = 1 and μ = 3

Example 2 We consider the parametric form of pear-shaped boundary

zc(t) =
(
0.5 + 0.12 cos(3t)

)
(cos t, sin t), t ∈ [π , 2π ], (29)

and choose m = 3 in (24) and the given parametric form of known boundary Γm

zm(t) =
(
0.5 + 0.12 cos(3t)

)
(cos t, sin t), t ∈ [0,π ]. (30)

The initial value of the boundary Γc is the lower half-circle with center (0.12,0) and radius
0.5. We choose f (zm(t)) = 1, t ∈ [0,π ], as Dirichlet data on Γm in Fig. 4, and the generalized
impedance coefficients on the boundary Γc are still given in (28). Using the exact Cauchy
data with 7 iteration steps and the noisy data with δ = 2% with 9 iteration steps, we estab-
lish the reconstruction of the pear-shaped boundary in Fig. 4. To consider the influence
of different Dirichlet data to reconstruct the boundary, we choose f (zm(t)) = 1 + cos2(t),
t ∈ [0,π ], as Dirichlet data on Γm in Fig. 5, and the coefficients on boundary Γc are still
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Figure 7 Reconstruction of shape (32) with exact data above and with 2% noisy data below, respectively. We
choose Dirichlet data on Γm as f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], the impedance coefficients on boundary Γc

are chosen as λ = 1
1–0.1 sin 2t and μ = 1

1+0.3 cos t , t ∈ [π , 2π ]

given in (28). Using the exact Cauchy data with 7 iteration steps and the noisy data with
δ = 2% and 7 iteration steps, we establish the reconstruction of the pear-shaped bound-
ary in Fig. 5. We choose f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], as Dirichlet data on Γm, and the
impedance coefficients on the boundary Γc are given as two constants λ = 1 and μ = 3 in
Fig. 6. Using the exact Cauchy data with 9 iteration steps and the noisy data with δ = 2%

and 13 iteration steps, we establish the reconstruction of the pear-shaped boundary in
Fig. 6. Considering different Dirichlet data and different generalized impedance coeffi-
cients on the boundary, we obtain good reconstruction results.

In the previous examples, the boundary ∂D = Γ m ∪ Γ c of the domain D is smooth. We
further consider piecewise smooth boundaries.

Example 3 We consider a piecewise smooth boundary with corners at the intersection
points. For the latter, the upper part Γm is a circle given by

zm(t) = 0.5(cos t, sin t), t ∈ [0,π ], (31)
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Figure 8 Reconstruction of shape (34) with exact data above and with 2% noisy data below, respectively. We
choose Dirichlet data on Γm as f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], the impedance coefficients on boundary Γc

are chosen as λ = 1
1–0.1 sin 2t and μ = 1

1+0.3 cos t , t ∈ [π , 2π ]

and the lower part Γc is a peanut-shaped contour given by

zc(t) =
(
0.5

√
cos2 t + 0.15 sin2 t

)
(cos t, sin t), t ∈ [π , 2π ]. (32)

We choose m = 5 in (24). The initial value of the boundary Γc is the lower half-ellipse
given as zc0 (t) = (0.5 cos t, 0.4 sin t), t ∈ [π , 2π ], with end points coinciding with the end
points z(0) and z(π ) of Γm. We choose f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], as Dirichlet data
on Γm in Fig. 7, and the generalized impedance coefficients on the boundary Γc are given
as λ = 1

1–0.1 sin 2t and μ = 1
1+0.3 cos t , t ∈ [π , 2π ]. Using the exact Cauchy data with 9 iteration

steps and the noisy data with δ = 2% and 12 iteration steps, we establish the reconstruction
of the lower part of the peanut-shaped boundary in Fig. 7.

Example 4 We also consider a piecewise smooth boundary with corners at the intersec-
tion points. For the latter, the upper part Γm is given by

zm(t) =
(
0.5 + 0.25 cos2(3t) – 0.15 sin5(2t)

)
(sin t, cos t), t ∈ [0,π ], (33)
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and the lower part Γc is a peanut-shaped contour given by

zc(t) =
(
0.5

√
cos2 t + 0.15 sin2 t

)
(cos t, sin t), t ∈ [π , 2π ]. (34)

We choose m = 7 in (24). The initial value of the boundary Γc is the lower half-ellipse
given as zc0 (t) = (0.5 cos t, 0.4 sin t), t ∈ [π , 2π ], with end points coinciding with the end
points z(0) and z(π ) of Γm. We choose f (zm(t)) = 1 + cos2(t), t ∈ [0,π ], as Dirichlet data on
Γm in Fig. 8, and the generalized impedance coefficients on the boundary Γc are given as
λ = 1

1–0.1 sin 2t and μ = 1
1+0.3 cos t , t ∈ [π , 2π ]. Using the exact Cauchy data with 12 iteration

steps and the noisy data with δ = 2% and 15 iteration steps, we establish the reconstruction
of the lower part of the peanut-shaped boundary in Fig. 8.

6 Concluding remarks
The numerical examples indicate that our proposed Newton method provides good stable
reconstructions of the corrosion boundary. More analysis is needed to reconstruct two
generalized impedance coefficients on the corrosion boundary, and also more research is
needed to consider the uniqueness of the inverse Wentzell-type GIBC problem.
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