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1 Introduction
It’s been about 80 years since professor Ulam posed the stability problem before the Math-
ematics Club of the University of Wisconsin [1]. When concerning a proposition, Ulam
asked whether its assertion still holds, or approximately holds, if we change the hypothesis
“a little”. This is a very interesting and meaningful question in various science fields and
stimulated lots of people to study it. We now call it Hyers–Ulam stability problem.

At first, the stability was concerned with group homomorphisms. Only one year later,
D.H. Hyers [2] worked out the question related to the additive mappings between Ba-
nach spaces by an application of the “contraction mapping theorem”. He proved that cor-
responding to any ε > 0, there is a δ > 0 such that if ‖f (x + y) – f (x) – f (y)‖ < δ, then there
is an additive mapping l(x) with ‖f (x) – l(x)‖ ≤ ε. It was the first important breakthrough
which led to various studies on Ulam’s problem in different forms and by different meth-
ods. In 1978, Rassias [3] generalized the results of Hyers. He used a dominant function
to control the estimate instead of a positive constant, and this case this is usually called
Hyers–Ulam–Rassias stability problem, or generalized Hyers–Ulam stability problem.

Over the past decades, numerous papers on Hyers–Ulam stability have been published,
especially in ordinary differential equations (ODEs) [4–8]. There are fruitful results in
ODEs, including linear and nonlinear equations.

On the other hand, fractional calculus has achieved great success owing to its applica-
tions in biology, dynamics, engineering, signal processing, and many other fields [9–13].
The history of fractional calculus is approximately as old as classical calculus. The concept
was mentioned in L’Hospital’s letter written to Leibniz in 1695. Since then, many mathe-
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maticians began to study it, and many definitions of fractional derivatives have been posed
[14–18], including those published in recent years [19–21].

There are also more and more papers studying the Hyers–Ulam stability relevant to
fractional differential equations (FDEs) recently. The theories of existence, uniqueness,
and Hyers–Ulam stability(EUH) in many types of FDEs have been established. For exam-
ple, in 2017, Arshad Ali et al. [22] investigated the EUH of a kind of implicit impulsive
FDEs with certain boundary conditions. In 2018, Kamal Shah et al. [23] established the
existence theory to a kind of boundary value problem of FDEs and analyzed the Hyers–
Ulam stability for numerical solutions. In [24], Hasib Khan et al. analyzed the existence
of a positive solution and the Hyers–Ulam stability of the nonlinear singular FDEs with
p-Laplacian. In [25], Wang et al. studied the EUH of some fractional evolution equations.
In [26], Hasib Khan et al. established the stability of the fractional order nonlinear Klein–
Gordon equations. There are also many other relevant results, see [27–33].

Among all definitions of fractional derivatives, two types of them have a prominent posi-
tion: Riemann–Liouville and Caputo. In the study of FDEs, many theorems in connection
with Hyers–Ulam stability have been proved in Caputo sense. Wang JinRong et al. [34–
37] obtained many good results, after studying the Hyers–Ulam stability of different FDEs
with Caputo derivatives, such as the following equations:

CDαx(t) = f
(
t, x(t)

)
, t ∈ [a, b), b = +∞,

CDαx(t) = f
(
t, x(t)

)
, t ∈ [a, b), b < +∞,

CDαx(t) = –Ax(t) + f
(
t, x(t)

)
, α ∈ (0, 1), t ∈ I : [0, b] ⊂R,

CDβ
(CDα + λ

)
x(t) = f

(
t, x(t)

)
, t ∈ J := [0, 1],

where CDα , CDβ denote the Caputo derivatives (see Definition 2.1).
In 2016, Shen and Chen [38] solved the stability problem of the following linear frac-

tional differential equations with constant coefficients by using Laplace transform method:

(
Dαy

)
(t) – λy(t) = f (t),

where Dα denotes the Riemann–Liouville derivative (see Definition 2.1).
In this paper, we will establish the Hyers–Ulam stability of the following linear fractional

differential equations with variable coefficients under certain restrictions on p(t):

⎧
⎨

⎩
(Dαx)(t) + p(t)x(t) = h(t), t ∈ J ,

((Dn–jIn–αx)(0) = xj, j = 1, . . . , n
(1)

and
⎧
⎨

⎩
(CDαx)(t) + p(t)x(t) = h(t), t ∈ J ,

x(k)(0) = xk , k = 0, 1, . . . , n – 1,
(2)

where Dα , CDα , Iα denote the fractional Riemann–Liouville and Caputo derivatives, as
well as Riemann–Liouville fractional integral, respectively, where n – 1 < α < n, n ∈ N,
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J = [0, b] is a finite interval, p(t), h(t) are given continuous functions, x(t) is an unknown
function on J and xj, j = 1, . . . , n, are the given initial values. This is a kind of Cauchy prob-
lem [14, 15]. According to the theorems of linear FDEs [14–16], there are unique contin-
uous solutions for both equations (1) and (2).

2 Definitions, notations, and auxiliary propositions
In this section, we will introduce some definitions, notations, and auxiliary propositions.
Most of the results in this section can be found in [14, 15, 17, 18, 39, 40] and you can refer
to these sources for more details. Throughout this paper, t, u always denote the variables
and n – 1 < α < n (n ∈N) is a positive, noninteger real number (unless otherwise specified).

Motivated by [38, 41], we want to invoke the following Gronwall’s inequality to solve the
Hyers–Ulam stability of equations (1) and (2).

Lemma 2.1 (Gronwall’s inequality, [39]) Let ξ (t) be a nonnegative, summable function on
[0, T] which satisfies the following integral inequality:

ξ (t) ≤ C1

∫ t

0
ξ (s) ds + C2,

for a.e. t ∈ [0, T] and constants C1, C2 ≥ 0. Then

ξ (t) ≤ C2
(
1 + C1teC1t),

for a.e. 0 ≤ t ≤ T .

Next, let’s recall the definitions of Riemann–Liouville fractional integral, fractional
derivatives of Riemann–Liouville type and that of Caputo type.

Definition 2.1 ([14, 15]) Assume that α > 0, Γ (α) is Gamma function, and f (t) is a func-
tion defined on an interval J = [a, b]. Then the following formula is called the α-order
Riemann–Liouville fractional integral (or α-order integral) of f (t):

(
Iα

a+f
)
(t) :=

1
Γ (α)

∫ t

a

f (u) du
(t – u)1–α

(a < t ≤ b).

Suppose n – 1 < α < n, then the Riemann–Liouville derivative and Caputo derivative of
order α of f (t) are

(
Dα

a+f
)
(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

a

f (u) du
(t – u)α–n+1 (a < t ≤ b)

and

(CDα
a+f

)
(t) =

1
Γ (n – α)

∫ t

a

f (n)(u) du
(t – u)α–n+1 (a < t ≤ b),

respectively.
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The above two formulas are also called left-handed Riemann–Liouville and Caputo
derivatives, respectively. The right-handed definitions are similar, and we shall only study
the left-handed derivatives for convenience.

In this paper, we use the following notations when a = 0:

Iα = Iα
0+, Dα = Dα

0+, CDα = CDα
0+.

Next we will list some useful propositions [14, 15] for fractional derivatives and frac-
tional integral. We use the notation

ACn[a, b] :=
{

f : [a, b] →R and
(
Dn–1f

)
(t) ∈ AC[a, b]

(
D =

d
dt

)}
,

where AC[a, b] is the collection of all absolutely continuous functions on [a, b] and Cn[a, b]
is the collection of all n times continuously differentiable functions on [a, b].

Proposition 2.1 ([14, 15]) If α = k ∈ N, then

Dk
a+ = CDk

a+ =
(

d
dt

)k

.

That’s to say, if α is an integer, then both Riemann–Liouville and Caputo derivatives are
equivalent to the classical integer order derivatives.

Proposition 2.2 ([14, 15]) Let α,β > 0, then

(
Iα

a+(t – a)β–1)(x) =
Γ (β)

Γ (β + α)
(x – a)β+α–1 (α > 0) (3)

and

(
Dα

a+(t – a)β–1)(x) =
Γ (β)

Γ (β – α)
(x – a)β–α–1 (β > α ≥ 0). (4)

Proposition 2.3 ([14, 15]) Suppose n = [α] + 1 ([α] is the maximum integer not greater
than α), then the following two relations hold (for Riemann–Liouville and Caputo type,
respectively):

(
Dα

a+(u – a)α–j)(t) = 0, j = 1, . . . , n, (5)
(CDα

a+(u – a)k)(t) = 0, k = 0, 1, . . . , n – 1. (6)

Proposition 2.4 ([14, 15]) Assume that n = [α] + 1, f (t) ∈ L1(a, b), and fn–α(t) :=
(In–α

a+ f )(t) ∈ ACn[a, b]. Then

(
Iα

a+Dα
a+f

)
(t) = f (t) –

n∑

j=1

f (n–j)
n–α (a)

Γ (α – j + 1)
(t – a)α–j, (7)

for a.e. x ∈ [a, b].
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Proposition 2.5 ([14, 15]) Assume that n = [α] + 1, f ∈ ACn[a, b] or f ∈ Cn[a, b], then

(
Iα

a+
CDα

a+f
)
(t) = f (t) –

n–1∑

k=0

f (k)(a)
k!

(t – a)k . (8)

3 Main results
3.1 Hyers–Ulam stability of Riemann–Liouville FDEs
In this section, we will establish the Hyers–Ulam stability of the Riemann–Liouville FDEs
(1) under some conditions. Before we give this general result, let’s investigate the following
simple case first:

⎧
⎨

⎩
(Dαx)(t) + p(t)x(t) = h(t), t ∈ J ,

(I1–αx)(0) = x0,
(9)

where 0 < α < 1 and p(t), h(t), J are as aforesaid. Then the following theorem holds:

Theorem 3.1 Suppose that the solution of equation (9) is x(t) ∈ L1(0, b) and that
(I1–αx)(t) ∈ AC[0, b]. Let y(t) ∈ AC[0, b], (I1–αy)(t) ∈ AC[0, b], (I1–αy)(0) = x0 and

∣
∣(Dαy

)
(t) + p(t)y(t) – h(t)

∣
∣ ≤ ε, t ∈ J , (10)

where ε > 0. Assume also that there exists a constant M > 0 such that

∣
∣(t – u)α–1p(u)

∣
∣ ≤ M, ∀0 ≤ u ≤ t, (11)

for every 0 < t < b. Then there exists a constant K > 0 such that

∣∣y(t) – x(t)
∣∣ ≤ Kε, ∀t ∈ J . (12)

Proof Consider the case of x0 = 0 first. Since

–ε ≤ (
Dαy

)
(t) + p(t)y(t) – h(t) ≤ ε, (13)

calculating the α-order integrals of the above inequality, we obtain

–ε
tα

Γ (1 + α)
≤ y(t) +

(
Iα(py)

)
(t) –

(
Iαh

)
(t) ≤ ε

tα

Γ (1 + α)
, (14)

where we use formula (7) in Proposition 2.4.
Doing the same for the equation

(
Dαx

)
(t) + p(t)x(t) = h(t), (15)

we get

x(t) +
(
Iα(px)

)
(t) –

(
Iαh

)
(t) = 0. (16)
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Therefore

∣∣y(t) – x(t)
∣∣ =

∣∣y(t) + (Iα(py)(t) –
(
Iαh

)
(t) –

(
Iα

(
p(y – x)

))
(t)

∣∣

≤ ε
tα

Γ (1 + α)
+

∣∣(Iα
(
p(y – x)

))
(t)

∣∣

= ε
tα

Γ (1 + α)
+

1
Γ (α)

∫ t

0

∣∣(t – u)α–1p(u)
[
y(u) – x(u)

]∣∣du

≤ ε
bα

Γ (1 + α)
+

M
Γ (α)

∫ t

0

∣
∣y(u) – x(u)

∣
∣du. (17)

According to Gronwall’s inequality, we have the following estimate:

∣∣y(t) – x(t)
∣∣ ≤ εC2

(
1 + C1teC1t), (18)

where C2 = bα

Γ (1+α) , C1 = M
Γ (α) . Set K = C2(1 + C1beC1b), then the proof is complete in the

case of x0 = 0.
Now we abandon the condition x0 = 0. Setting x̃(t) = x(t) – x0tα–1

Γ (α) and ỹ(t) = y(t) – x0tα–1

Γ (α)
and invoking relation (5), we can convert the equation to:

⎧
⎨

⎩
(Dα x̃)(t) + p(t)x̃(t) = h(t) – x0tα–1p(t)

Γ (α) , t ∈ J ,

(I1–α x̃)(0) = 0.
(19)

Notice that inequality (10) is equivalent to

∣∣
∣∣
(
Dα ỹ

)
(t) + p(t)ỹ(t) – h(t) +

x0tα–1p(t)
Γ (α)

∣∣
∣∣ ≤ ε, t ∈ J . (20)

Thus the assertion is also true since x̃(t), ỹ(t) still satisfy the hypothesis of Proposi-
tion 2.4, and the proof is complete. �

Now we can deal with a more general case: n – 1 < α < n, n ∈N. Compared with the pre-
vious situation, the only difficulty is converting equation (1) into the case of zero-initial-
value. Here we should be very careful, since the Riemann–Liouville fractional derivative
of a constant is not equal to 0 (unless the constant is 0). In fact,

(
Dα1

)
(t) =

t–α

Γ (1 – α)
(0 < α < 1). (21)

However, by using Propositions 2.2 and 2.3, we obtain that

(
Dn–iIn–α

(
uα–j))(t) =

⎧
⎪⎪⎨

⎪⎪⎩

Γ (α–j+1)
Γ (i–j+1) ti–j, j = 1, . . . , i – 1,

Γ (α – i + 1), j = i,

0, j = i + 1, . . . , n,

(22)

for i = 1, . . . , n. Therefore, we have:
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Theorem 3.2 Consider equation (1) as above. Let the solution of equation (1) be x(t)
and x(t) ∈ L1(0, b), (In–αx)(t) ∈ ACn[0, b]. Suppose y(t) ∈ L1(0, b), (In–αy)(t) ∈ ACn[0, b],
(Dn–jIn–αy)(0) = xj, j = 1, . . . , n, and let inequality (10) hold for ε > 0. Suppose also that there
exists a constant M > 0 such that

∣∣(t – u)α–1p(u)
∣∣ ≤ M, ∀0 ≤ u ≤ t, (23)

for every 0 < t < b. Then there exists a constant K > 0 such that

∣∣y(t) – x(t)
∣∣ ≤ Kε, ∀t ∈ J . (24)

Proof If xj = 0, j = 1, . . . , n, then the proof is totally the same as the proof of Theorem 3.1.
In the general case, set

x̃(t) = x(t) –
n∑

j=1

xjtα–j

Γ (α – j + 1)
. (25)

Then we get the following equation:

⎧
⎨

⎩
(Dα x̃)(t) + p(t)x̃(t) = h(t) –

∑n
j=1

xjtα–jp(t)
Γ (α–j+1) , t ∈ J ,

((Dn–jIn–α x̃)(0) = 0, j = 1, . . . , n,
(26)

where we use the relation in (22).
Set

ỹ(t) = y(t) –
n∑

j=1

xjtα–j

	(α – j + 1)
. (27)

Note that inequality (10) is equivalent to

∣∣
∣∣
∣
(
Dα ỹ

)
(t) + p(t)ỹ(t) – h(t) +

n∑

j=1

xjtα–jp(t)
Γ (α – j + 1)

∣∣
∣∣
∣
≤ ε (28)

and that x̃(t), ỹ(t) still satisfy the hypotheses of the Proposition 2.4, thus the assertion of
the theorem is true. �

3.2 Hyers–Ulam stability of Caputo FDEs
In this section, we investigate the Hyers–Ulam stability of equations with Caputo deriva-
tives (2). Compared with the previous theorems, here we can utilize (8) in Proposition 2.5.
Virtually by the same method, we can establish the stability as for Riemann–Liouville
FDEs. Note that the Caputo derivative of a constant is 0.

Theorem 3.3 Let x(t) be the solution of equation (2) and x(t) ∈ ACn[0, b] or x(t) ∈ Cn[0, b].
Suppose y(t) ∈ ACn[0, b] or y(t) ∈ Cn[0, b], y(k)(0) = xk , k = 0, 1, . . . , n – 1 and that

∣∣(CDαy
)
(t) + p(t)y(t) – h(t)

∣∣ ≤ ε, t ∈ J , (29)
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for ε > 0. Suppose also that there exists a constant M > 0 such that

∣∣(t – u)α–1p(u)
∣∣ ≤ M, ∀0 ≤ u ≤ t, (30)

for every 0 < t < b. Then there exists a constant K > 0 such that

∣∣y(t) – x(t)
∣∣ ≤ Kε, ∀t ∈ J . (31)

Proof If xk = 0, j = 0, 1, . . . , n – 1, then we can invoke the Gronwall’s inequality and Propo-
sition 2.5 to prove the theorem in just the same way as Theorem 3.1.

In the general case, set

x̃(t) = x(t) –
n–1∑

k=0

xktk

k!
. (32)

Then convert equation (2) to

⎧
⎨

⎩
(CDα x̃)(t) + p(t)x̃(t) = h(t) –

∑n–1
k=0

xk tk p(t)
k! , t ∈ J ,

x̃(k)(0) = 0, k = 0, 1, . . . , n – 1,
(33)

where we use formula (8) and relation (6). Again, set

ỹ(t) = y(t) –
n–1∑

k=0

xktk

k!
. (34)

Notice that inequality (29) is equivalent to

∣
∣∣
∣∣
(CDα ỹ

)
(t) + p(t)ỹ(t) – h(t) +

n–1∑

k=0

xktkp(t)
k!

∣
∣∣
∣∣
≤ ε (35)

and x̃(t), ỹ(t) still satisfy the hypotheses of Proposition 2.5, so the assertion of the theorem
is true. �

4 Conclusion
In this paper, we deal with the Hyers–Ulam stability of linear fractional differential equa-
tions with variable coefficients under certain conditions. Moreover, our results can be es-
tablished for both Riemann–Liouville and Caputo type derivatives. In [38], Shen et al.
established the Hyers–Ulam stability of similar equations but with constant coefficients.
They used the Laplace method to solve the problem, but it’s difficult to deal with it by the
same way when the equations have variable coefficients. Fortunately, we find another way
(by invoking Gronwall’s inequality) to overcome the problem. Besides, when α > 1 and
p(t) ≡ λ (λ is a constant) in Theorem 3.2 or Theorem 3.3, obviously the restrictions on
p(t) in these two theorems will be satisfied, therefore we obtain more general results in
this case.
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