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Abstract
Recently, some mathematicians have been studying a lot of degenerate versions of
special polynomials and numbers in some arithmetic and combinatorial aspects. Our
research is also interested in this field. In this paper, we introduce a new type of the
degenerate poly-Genocchi polynomials and numbers, based on Kim and Kim’s
(J. Math. Anal. Appl. 487(2):124017, 2020) modified polyexponential function. The
paper is divided into two parts. In Sect. 2, we consider a new type of the degenerate
poly-Genocchi polynomials and numbers constructed from the modified
polyexponential function. We also show several combinatorial identities related to the
degenerate poly-Genocchi polynomials and numbers. Some of them include the
degenerate and other special polynomials and numbers such as the Stirling numbers
of the first kind, the degenerate Stirling numbers of the second kind, degenerate
Euler polynomials, degenerate Bernoulli polynomials and Bernoulli numbers of order
α, etc. In Sect. 3, we also introduce the degenerate unipoly Genocchi polynomials
attached to an arithmetic function by using the degenerate polylogarithm function.
We give some new explicit expressions and identities related to degenerate unipoly
Genocchi polynomials and special numbers and polynomials.
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1 Introduction
The study of degenerate versions of some special polynomials and numbers, namely de-
generate Bernoulli and Euler polynomials and numbers, was initiated by Carlitz [2]. Since
then, many mathematicians have been studying degenerate versions of special polynomi-
als and numbers such as Bernoulli, Euler, and Genocchi polynomials and numbers [1, 3–
14]. Recently, Kim et al. studied polynomials and numbers mentioned above in terms of
Jindalrae and Gaenari numbers and polynomials, discrete harmonic numbers and poly-
nomials [15, 16]. In particular, Genocchi numbers have been extensively studied in many
different contexts in such branches of mathematics as, for instance, elementary num-
ber theory, complex analytic number theory, differential topology (differential structures
on spheres), theory of modular forms (Eisenstein series), p-adic analytic number theory
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(p-adic L-functions), and quantum physics (quantum groups). The works of Genocchi
numbers and their combinatorial relations have received much attention [13, 17–20]. In
the paper, we focus on a new type of degenerate poly-Genocchi polynomial and numbers.

As is well known, the Bernoulli polynomials of order α ∈R are defined by means of the
following generating function:

(
t

et – 1

)α

ext =
∞∑

n=0

B(α)
n (x)

tn

n!
(
see [3, 4, 6, 21]

)
. (1)

We note that, for α = 1, Bn(x) = B(1)
n (x) are the ordinary Bernoulli polynomials.

When x = 0, B(α)
n = B(α)

n (0) are called the Bernoulli numbers of order α.
The Euler polynomials are defined by

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(
see [2, 5]

)
. (2)

When x = 0, En = En(0) are called the Euler numbers.
The Genocchi polynomials Gn(x) are defined by

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
(
see [13, 14, 17]

)
. (3)

When x = 0, Gn = Gn(0) are called the Genocchi numbers.
The degenerate poly-Bernoulli polynomials are defined by using the polyexponential

functions (see [11]) and they are reduced to the degenerate Bernoulli polynomials if k = 1.
The poly-exponential functions were first studied by Hardy [22] and reconsidered by Kim
and Kim [1, 9, 10] in the view of an inverse to the polylogarithm functions which were
studied by Jaonquière [23], Lewis [24], and Zagier [25]. In 1997, Kaneko [21] introduced
poly-Bernoulli numbers which are defined by the polylogarithm function.

Recently, Kim and Kim [1] introduced the modified polyexponential function as follows:

Eik(x) =
∞∑

n=1

xn

(n – 1)!nk (k ∈ Z). (4)

By using these functions, they also defined type 2 poly-Bernoulli and type 2 unipoly-
Bernoulli polynomials and obtained several interesting properties of them (see [9]).

Kim et al. [10] introduced poly-Genocchi polynomials arising from the modified poly-
exponential function as follows:

2 Eik(log(1 + t))
et + 1

ext =
∞∑

n=0

G(k)
n (x)

tn

n!
. (5)

When x = 0, G(k)
n = G(k)

n (0) are called the poly-Genocchi numbers. Note that Gn(x) = G(1)
n (x)

(n ≥ 0) are the Genocchi polynomials.
The degenerate exponential functions are defined as follows:

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t) = (1 + λt)
1
λ

(
see [1, 8–12]

)
. (6)
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Here, we note that

ex
λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
(
see [10, 12]

)
, (7)

where (x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ) (n ≥ 1).
In [2], Carlitz introduced the degenerate Bernoulli polynomials and the degenerate Euler

polynomials respectively given by

t
eλ(t) – 1

ex
λ(t) =

∞∑
n=0

Bn,λ(x)
tn

n!
,

2
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

En,λ(x)
tn

n!
. (8)

When x = 0, then Bn,λ = Bn,λ(0) and En,λ = En,λ(0) are called the degenerate Bernoulli num-
bers and the degenerate Euler numbers, respectively.

Kim et al. [10] considered the degenerate poly-Bernoulli polynomials as follows:

Eik(log(1 + t))
eλ(t) – 1

ex
λ(t) =

∞∑
n=0

β
(k)
n,λ(x)

tn

n!
. (9)

When x = 0, β (k)
n,λ = β

(k)
n,λ(0) are called the degenerate poly-Bernoulli numbers.

Note that limλ→0 β
(1)
n,λ(x) = Bn(x) (n ≥ 0), where Bn(x) are the ordinary Bernoulli polyno-

mials given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
(
see [2–4, 26]

)
. (10)

In [5], Kim et al. considered the degenerate Genocchi polynomials given by

2t
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

Gn,λ(x)
tn

n!
. (11)

When x = 0, Gn,λ = Gn,λ(0) are called the degenerate Genocchi numbers.
For n ≥ 0, the Stirling numbers of the first kind are defined by

(x)n =
n∑

l=0

S1(n, l)xl (
see [9, 10, 24]

)
, (12)

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1).
From (12), it is easy to see that

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
. (13)

In the inverse expression to (12), for n ≥ 0, the Stirling numbers of the second kind are
defined by

xn =
n∑

l=0

S2(n, l)(x)l. (14)
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From (14), it is easy to see that

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
. (15)

Recently, Kim and Kim [6] introduced the degenerate Stirling numbers of the second
kind as follows:

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0). (16)

As an inversion formula of (16), the degenerate Stirling numbers of the first kind are de-
fined by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0)
(
see [6]

)
. (17)

From (16) and (17), Kim and Kim observed that

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(
see [6]

)
. (18)

The paper is divided into two parts. In Sect. 2, we define a new type of the degener-
ate poly-Genocchi polynomials and numbers constructed from the modified polyexpo-
nential function. We also show several combinatorial identities related to the degenerate
poly-Genocchi polynomials and numbers. Some of them include the degenerate and other
special polynomials and numbers such as the Stirling numbers of the first kind, the de-
generate Stirling numbers of the second kind, degenerate Euler polynomials, degenerate
Bernoulli polynomials and Bernoulli numbers of order α, etc. In Sect. 3, we also introduce
the degenerate unipoly Genocchi polynomials attached to an arithmetic function, by us-
ing the degenerate polylogarithm function. We give some new explicit expressions and
identities related to degenerate unipoly Genocchi polynomials and special numbers and
polynomials.

2 Degenerate poly-Genocchi numbers and polynomials
In this section, we consider the poly-Genocchi polynomials and the degenerate poly-
Genocchi polynomials respectively as follows:

Eik(log(1 + 2t))
et + 1

ext =
∞∑

n=0

G(k)
n (x)

tn

n!
, (19)

and

Eik(log(1 + 2t))
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

G(k)
n,λ(x)

tn

n!
. (20)

When x = 0, G(k)
n = G(k)

n (0) are called the poly-Genocchi numbers.
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It is easy to show that Gn(x) = G(1)
n (x) (n ≥ 0) are the Genocchi polynomials because of

Ei1
(
log(1 + 2t)

)
= 2t.

When x = 0, G(k)
n,λ = G(k)

n,λ(0) are called the degenerate poly-Genocchi numbers.
It is easy to show that Gn,λ(x) = G(1)

n,λ(x) (n ≥ 0) are the degenerate Genocchi polynomials.

Theorem 1 For n ≥ 0, k ∈ Z, we have

G(k)
n,λ(x) =

n–1∑
l=0

(
n – 1

l

)
2l(1)n–l,λβ

(k)
l, λ2

(
x
2

)
,

G(k)
0,λ(x) = 0.

(21)

Proof From (6) and (9), we observe that

∞∑
n=0

G(k)
n,λ(x)

tn

n!
=

Eik(log(1 + 2t))
eλ(t) + 1

ex
λ(t)

=
Eik(log(1 + 2t))

(eλ(t) + 1)(eλ(t) – 1)
(
eλ(t) – 1

)
ex
λ(t)

=
Eik(log(1 + 2t))

(e λ
2

(2t) – 1)
ex
λ(t)

( ∞∑
m=1

(1)m,λ
tm

m!

)

=

( ∞∑
l=0

β
(k)
l, λ2

(
x
2

)
2ltl

l!

)( ∞∑
m=1

(1)m,λ
tm

m!

)

=
∞∑

n=1

( n–1∑
l=0

(
n – 1

l

)
2l(1)n–l,λβ

(k)
l, λ2

(
x
2

))
tn

n!
. (22)

Therefore, by comparing the coefficients on both sides of (22), we get the desired result. �

When x = 0, we have

G(k)
n,λ =

n–1∑
l=0

(
n – 1

l

)
2l(1)n–l,λβ

(k)
l, λ2

. (23)

Theorem 2 For n ≥ 0, we get

G(k)
n,λ(x) =

n∑
j=1

j∑
m=1

(
n
j

)
2j–1

mk–1 S1(j, m)En–m,λ(x),

G(k)
0,λ = 0.

(24)

Proof By using (4) and (8), we get

∞∑
n=0

G(k)
n,λ(x)

tn

n!
=

1
(eλ(t) + 1)

Eik
(
log(1 + 2t)

)
ex
λ(t)
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=
1
2

( ∞∑
l=0

El,λ(x)
tl

l!

)( ∞∑
m=1

(log(1 + 2t))m

(m – 1)!mk

)

=
1
2

( ∞∑
l=0

El,λ(x)
tl

l!

)( ∞∑
m=1

1
mk–1

∞∑
j=m

S1(j, m)
2jtj

j!

)

=
1
2

( ∞∑
l=0

El,λ(x)
tl

l!

)( ∞∑
j=1

j∑
m=1

2j 1
mk–1 S1(j, m)

tj

j!

)

=
∞∑

n=1

( n∑
j=1

j∑
m=1

(
n
j

)
2j–1 1

mk–1 S1(j, m)En–m,λ(x)

)
tn

n!
. (25)

Therefore, by comparing the coefficients on both sides of (25), we get the result that we
wanted. �

Theorem 3 For n ≥ 0, we have

G(k)
n,λ(x) =

n∑
l=0

l+1∑
m=1

(
n
l

)
2l 1

(l + 1)mk–1 S1(l + 1, m)Gn–l,λ(x). (26)

Proof From (13) and (19), we observe that

∞∑
n=0

G(k)
n,λ(x)

tn

n!
=

Eik(log(1 + 2t))
eλ(t) + 1

ex
λ(t)

=
2t

eλ(t) + 1
ex
λ(t) · 1

2t
Eik

(
log(1 + 2t)

)

=
2t

eλ(t) + 1
ex
λ(t) · 1

2t

( ∞∑
l=1

l∑
m=1

2l 1
mk–1 S1(l, m)

tl

l!

)

=
∞∑
j=0

Gj,λ(x)
tj

j!
1
2t

( ∞∑
l=0

l+1∑
m=1

2l+1 1
mk–1 S1(l + 1, m)

tl+1

(l + 1)!

)

=
∞∑
j=0

Gj,λ(x)
tj

j!

( ∞∑
l=0

l+1∑
m=1

2l 1
(l + 1)mk–1 S1(l + 1, m)

tl

l!

)

=
∞∑

n=0

( n∑
l=0

l+1∑
m=1

(
n
l

)
2l 1

(l + 1)mk–1 S1(l + 1, m)Gn–l,λ(x)

)
tn

n!
. (27)

Therefore, by comparing the coefficients on both sides of (27), we get the desired result. �

For the next theorem, we need the following well-known identity:

(
t

log(1 + t)

)r

(1 + t)x–1 =
∞∑

α=0

B(α–r+1)
α (x)

tα

α!
, (28)

where B(α)
α (x) is the Bernoulli polynomials of order α in (1).
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Theorem 4 For n ≥ 0, k ∈ Z, we get

G(k)
n,λ =

n∑
m=0

(
n
m

)
2m

∑
m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk–1)

mk–1

m1 + · · · + mk–1 + 1
Gn–l,λ

xn

n!
, (29)

where B(m)
m is the Bernoulli numbers of order m at x = o.

Proof First, we note that

d
dx

Eik
(
log(1 + 2x)

)
=

d
dx

∞∑
n=1

(log(1 + 2x))n

(n – 1)!nk

=
2

1 + 2x

∞∑
n=1

n(log(1 + 2x))n–1

(n – 1)!nk

=
2

(1 + 2x) log(1 + 2x)

∞∑
n=1

(log(1 + 2x))n

(n – 1)!nk–1

=
2

(1 + 2x) log(1 + 2x)
Eik–1

(
log(1 + 2x)

)
dt. (30)

From (28) and (30), we obtain the following equation:

Eik
(
log(1 + 2x)

)

=
∫ x

0

2
(1 + 2t) log(1 + 2t)

×
∫ t

0

2
(1 + 2t) log(1 + 2t)

· · ·
∫ t

0

2
(1 + 2t) log(1 + 2t)

∫ 2t

0︸ ︷︷ ︸
(k–2)-times

2 Ei1(log(1 + 2t))
(1 + 2t) log(1 + 2t)

dt · · ·dt

=
∫ x

0

2
(1 + 2t) log(1 + 2t)

×
∫ t

0

2
(1 + 2t) log(1 + 2t)

· · ·
∫ t

0

2
(1 + 2t) log(1 + 2t)

∫ 2t

0︸ ︷︷ ︸
(k–2)-times

4t
(1 + 2t) log(1 + 2t)

dt · · ·dt

= 2x
∞∑

m=0

2m
∑

m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk–1)

mk–1

m1 + · · · + mk–1 + 1
xm

m!
. (31)

From equation (31), we observe that

∞∑
n=0

G(k)
n,λ

tn

n!
=

1
eλ(t) + 1

Eik
(
log(1 + 2t)

)

=
2t

eλ(t) + 1

∞∑
m=0

2m
∑

m1+···+mk–1=m

(
m

m1, . . . , mk–1

)
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× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk–1)

mk–1

m1 + · · · + mk–1 + 1
tm

m!

=

( ∞∑
l=0

Gl,λ
tl

l!

) ∞∑
m=0

2m
∑

m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk–1)

mk–1

m1 + · · · + mk–1 + 1
tm

m!

=
∞∑

n=0

n∑
m=0

(
n
m

)
2m

∑
m1+···+mk–1=m

(
m

m1, . . . , mk–1

)

× B(m1)
m1

m1 + 1
B(m2)

m2

m1 + m2 + 1
· · · B(mk–1)

mk–1

m1 + · · · + mk–1 + 1
Gn–l,λ

tn

n!
. (32)

Therefore, by comparing the coefficients on both sides of (32), we get the desired result. �

Corollary 5 For k = 2, we have

G(2)
n,λ =

n∑
l=0

(
n
l

)
2l B(l)

l+1
l + 1

Gn–l,λ. (33)

Theorem 6 For n ≥ 0, k ∈ Z, we get

G(k)
n,λ(x) =

n∑
l=0

(
n
l

)
(x)n–l,λG(k)

l,λ . (34)

Proof From (7) and (19), we note that

∞∑
n=0

G(k)
n,λ(x)

tn

n!
=

Eik(log(1 + 2t))
eλ(t) + 1

ex
λ(t)

=
∞∑
l=0

G(k)
l,λ

tl

l!

∞∑
m=0

(x)m,λ
tm

m!

=
∞∑

n=0

( n∑
l=0

(
n
l

)
(x)n–l,λG(k)

l,λ

)
tn

n!
. (35)

Therefore, by comparing the coefficients on both sides of (35), we obtain the desired re-
sult. �

Theorem 7 For n ≥ 1, k ∈ Z, we have

G(k)
n–1,λ(1) + G(k)

n–1,λ =
n∑

m=1

2nS1(n, m)
mk–1 . (36)

Moreover, when k = 1,

Gn–1,λ(1) + Gn–1,λ =
n∑

m=1

2nS1(n, m). (37)
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Proof By using (6) and Theorem 6,

Eik
(
log(1 + 2t)

)
=

(
eλ(t) + 1

)Eik(log(1 + 2t))
eλ(t) + 1

=

( ∞∑
l=0

(1)m,λ
tm

m!

∞∑
l=0

G(k)
l,λ

tl

l!

)
+

∞∑
n=0

G(k)
n,λ

tn

n!

=
∞∑

n=0

( n∑
m=0

(
n
m

)
(1)n–m,λG(k)

m,λ + G(k)
n,λ

)
tn

n!

=
∞∑

n=1

(
G(k)

n–1,λ(1) + G(k)
n–1,λ

) tn

n!
. (38)

On the other hand,

Eik
(
log(1 + 2t)

)
=

∞∑
m=1

(log(1 + 2t))m

(m – 1)!mk

=
∞∑

m=1

∞∑
n=m

1
mk–1 S1(n, m)

2ntn

n!
=

∞∑
n=1

n∑
m=1

2n

mk–1 S1(n, m)
tn

n!
. (39)

Now, by comparing the coefficients of (38) and (39), we get what we wanted. �

Theorem 8 For n ≥ 1, k = 1, we have

n∑
m=1

2nS1(n, m) = 2δn,1, (40)

where δn,k is the Kronecker delta.

Proof From (39), we obtain

Ei1
(
log(1 + 2t)

)
= 2t =

∞∑
n=1

n∑
m=1

2nS1(n, m)
tn

n!
. (41)

Hence, by comparing the coefficients of (41), we get the desired result. �

Corollary 9 For n ≥ 1, k = 1, we have

Gn–1,λ(1) + Gn–1,λ =

{
2, if n = 1,
0, otherwise.

(42)

Theorem 10 For n ≥ 0, k ∈ Z, we get

G(k)
n,λ(x) =

n∑
l=0

l∑
m=0

(
n
l

)
(x)mS2,λ(m, l)G(k)

n–l,λ. (43)
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Proof By using (21), we get

∞∑
n=0

G(k)
n,λ(x)

tn

n!
=

Eik(log(1 + 2t))
eλ(t) + 1

ex
λ(t)

=
Eik(log(1 + 2t))

eλ(t) + 1
(eλ – 1 + 1)x

=
Eik(log(1 + 2t))

eλ(t) + 1

( ∞∑
m=0

(
x
m

)(
eλ(t) – 1

)m
)

=
Eik(log(1 + 2t))

eλ(t) + 1

( ∞∑
m=0

(x)m
(eλ(t) – 1)m

m!

)

=

( ∞∑
i=0

G(k)
i,λ

xi

i!

)( ∞∑
l=0

l∑
m=0

(x)mS2,λ(m, l)
tm

m!

)

=
∞∑

n=0

( n∑
l=0

l∑
m=0

(
n
l

)
(x)mS2,λ(m, l)G(k)

n–l,λ

)
tn

n!
. (44)

Now, by comparing the coefficients of (44), we get what we wanted. �

3 The unipoly Genocchi polynomials and numbers
Let p be any arithmetic function which is real- or complex-valued function defined on the
set of positive integers N. Then Kim and Kim [27] defined the unipoly function attached
to polynomials p(x) by

uk(x|p) =
∞∑

n=1

p(n)xn

nk (k ∈ Z). (45)

Moreover,

uk(x|1) =
∞∑

n=1

xn

nk = Lik(x) (46)

is the ordinary polylogarithm function, and for k ≥ 2,

d
dx

uk(x|p) =
1
x

uk–1(x|p) (47)

and

uk(x|p) =
∫ x

0

1
t

∫ t

0

1
t

· · ·
∫ t

0︸ ︷︷ ︸
(k–2)-times

1
t

u1(t|p) dt dt · · ·dt. (48)

In [28], Dolgy and Jang introduced the unipoly Genocchi polynomials as follows:

2
et + 1

uk
(
log(1 + t)|p)

ext =
∞∑

n=0

G(k)
n,p(x)

tn

n!
. (49)
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In this section, we define the degenerate unipoly Genocchi polynomial by

uk(log(1 + 2t)|p)
eλ(t) + 1

ex
λ(t) =

∞∑
n=0

G(k)
n,λ,p(x)

tn

n!
. (50)

When x = 0, G(k)
n,λ,p = G(k)

n,λ,p(0) is the degenerate unipoly Genocchi number.
When p = 1, G(k)

n,λ,1(x) = G(k)
n,λ(x) is the degenerate poly-Genocchi polynomial of (19).

Theorem 11 Let p(n) = 1
Γ (n) for n ∈N∪ {0} and k ∈ Z, then we have

G(k)
n,λ, 1

Γ

(x) = G(k)
n,λ(x). (51)

Proof Let p(n) = 1
Γ (n) = 1

(n–1)! . Then we have

∞∑
n=0

G(k)
n,λ, 1

Γ

(x)
tn

n!
=

uk(log(1 + 2t)| 1
Γ

)
eλ(t) + 1

ex
λ(t)

=
Eik(log(1 + 2t))

eλ(t) + 1
ex
λ(t) =

∞∑
n=0

G(k)
n,λ(x)

tn

n!
. (52)

Thus, we have what we wanted. �

Theorem 12 For n ∈N∪ {0} and k ∈ Z, we have

G(k)
n,λ,p =

n∑
l=0

l∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
2l

l + 1
S1(l + 1, m + 1)Gn–l,λ. (53)

Proof From (11) and (13), we have

∞∑
n=0

G(k)
n,λ,p

tn

n!
=

1
eλ(t) + 1

∞∑
m=1

p(m)
mk

(
log(1 + 2t)

)m

=
1

eλ(t) + 1

∞∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞∑
l=m+1

S1(l, m + 1)
2ltl

l!

=
2t

eλ(t) + 1

∞∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞∑
l=m

S1(l + 1, m + 1)
2ltl

(l + 1)!

=

( ∞∑
j=0

Gj,λ
tj

j!

) ∞∑
l=0

( l∑
m=0

p(m + 1)(m + 1)!
(m + 1)k S1(l + 1, m + 1)

2l

(l + 1)

)
tl

l!

=
∞∑

n=0

( n∑
l=0

l∑
m=0

(
n
l

)
p(m + 1)(m + 1)!

(m + 1)k
2l

l + 1
S1(l + 1, m + 1)Gn–l,λ

)
tn

n!
. (54)

Therefore, by comparing the coefficients on both sides of (54), we obtain the result of this
theorem. �
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Theorem 13 For n ∈N∪ {0} and k ∈ Z, we have

G(k)
n,λ,p =

n∑
l=0

l+1∑
m=0

(
n

l + 1

)
p(m + 1)(m + 1)!

(m + 1)k 2l–1S1(l, m + 1)En–l,λ. (55)

Proof From (8) and (13), we have

1
eλ(t) + 1

∞∑
m=1

p(m)(log(1 + 2t))m

mk · m!
m!

=
1

eλ(t) + 1

∞∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

(log(1 + 2t))m+1

(m + 1)!

=
1
2

( ∞∑
j=0

Ej,λ
tj

j!

) ∞∑
m=0

p(m + 1)(m + 1)!
(m + 1)k

∞∑
l=m+1

S1(l, m + 1)
2ltl

l!

=
1
2

( ∞∑
j=0

Ej,λ
tj

j!

) ∞∑
l=0

( l+1∑
m=0

p(m + 1)(m + 1)!
(m + 1)k 2lS1(l, m + 1)

)
tl

l!

=
∞∑

n=0

( n∑
l=0

l+1∑
m=0

(
n

l + 1

)
p(m + 1)(m + 1)!

(m + 1)k 2l–1S1(l, m + 1)En–l,λ

)
tn

n!
. (56)

Thus, by comparing the coefficients on both sides of (56), we obtain the desired theo-
rem. �

Theorem 14 For n ∈N∪ {0} and k ∈ Z, we have

G(k)
n,λ,p(x) =

n∑
α=0

α∑
l=0

l+1∑
m=1

(
n
α

)(
α

l

)
(1)α–1,λ

p(m)m!
mk 2n–α+lS1(l + 1, m)Bn–α, λ2

(
x
2

)
. (57)

Proof From (7), (8), and (13), we get

∞∑
n=0

G(k)
n,λ,p(x)

tn

n!

=
uk(log(1 + 2t)|p)

eλ(t) + 1
ex
λ(t)

=
1

eλ(t) + 1
ex
λ(t)

∞∑
m=1

p(m)(log(1 + 2t))m

mk
m!
m!

=
1

eλ(t) + 1
ex
λ(t)

∞∑
m=1

p(m)m!
mk

∞∑
l=m

S1(l, m)
2ltl

l!

=
ex
λ(t)

eλ(t) + 1
eλ(t) – 1
eλ(t) – 1

∞∑
l=0

l+1∑
m=1

p(m)m!
mk S1(l + 1, m)

2l+1tl+1

l!

=
2tex

λ(t)
e λ

2
(2t) – 1

(
eλ(t) – 1

) ∞∑
l=0

l+1∑
m=1

p(m)m!
mk S1(l + 1, m)

2ltl

l!

=

( ∞∑
i=0

Bi, λ2

(
x
2

)
2iti

i!

)( ∞∑
j=1

(1)j,λ
tj

j!

)( ∞∑
l=0

l+1∑
m=1

p(m)m!
mk 2lS1(l + 1, m) · tl

l!

)
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=

( ∞∑
i=0

Bi, λ2

(
x
2

)
2iti

i!

)( ∞∑
α=1

α∑
l=0

l+1∑
m=1

(
α

l

)
(1)α–l,λ

p(m)m!
mk 2lS1(l + 1, m)

tα

α!

)

=
∞∑

n=0

( n∑
α=0

α∑
l=0

l+1∑
m=1

(
n
α

)(
α

l

)
(1)α–1,λ

p(m)m!
mk 2n–α+lS1(l + 1, m)Bn–α, λ2

(
x
2

))
tn

n!
. (58)

Thus, by comparing the coefficients on both sides of (58), we obtain the desired theo-
rem. �

4 Conclusion
In this paper, we introduced the degenerate poly-Genocchi polynomials by using the mod-
ified degenerate polyexponential function. We expressed those polynomials and numbers
in relation to: the degenerate poly-Bernoulli polynomials in Theorem 1; the degenerate
Euler polynomials and the Stirling numbers of the first kind in Theorem 2; the degenerate
Genocchi numbers and the Stirling numbers of the first kind in Theorem 3; the Stirling
numbers of the first kind in Theorems 7, 8; the degenerate poly-Genocchi numbers and
Bernoulli numbers of order n in Theorem 4; and the degenerate Stirling numbers of the
second kind in Theorem 10. Furthermore, we defined the degenerate unipoly Genocchi
polynomials and obtained some of their properties. Not to mention, we also obtained the
identity for degenerate unipoly Genocchi polynomials and numbers for: the degenerate
Genocchi numbers and the Stirling numbers of the first kind in Theorem 12; the degener-
ate Euler numbers and the Stirling numbers of the first kind in Theorem 13; the degenerate
Bernoulli polynomials and the Stirling numbers of the first kind in Theorems 14.

It is important that the study of the degenerate version is widely applied not only to
numerical theory and combinatorial theory, but also to symmetric identity, differential
equations and probability theory. In particular, many symmetric identities have been stud-
ied for degenerate versions of many special polynomials [1, 5–12]. Genocchi numbers
have been also extensively studied in many different branches of mathematics. The works
of Genocchi numbers and their combinatorial relations have received much attention
[13, 17–20]. With this in mind, as a future project, we would like to continue to study
degenerate versions of certain special polynomials and numbers and their applications to
physics, economics, and engineering as well as mathematics.
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