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Abstract
In this paper, we analyze the criteria for the stability of a method suited to the
ordinary differential equations models. The relevant proof that the method satisfies
the condition of stiff stability is also provided. The aim of this paper is therefore to
construct an efficient two-point block method based on backward differentiation
formula which is A-stable and converged. The new diagonally implicit scheme is
formulated to approximate the solution of the pharmacokinetics models. By
implementing the algorithm, the numerical solution to the models is compared with
a few existing methods and established stiff solvers. It yields significant advantages
when the diagonally implicit method with a lower triangular matrix and identical
diagonal elements is considered. The formula is designed in such a way that it
permits a maximum of one LU decomposition for each integration stage.

Keywords: Stiff ODEs; Block backward differentiation formula; Diagonally implicit;
Stability; Pharmacokinetics models

1 Introduction
Initial value problems (IVPs) governed by the system of ordinary differential equations
(ODEs) often arise in the modeling of physical, chemical, and biological systems. It has
emerged widely in the areas of medical sciences such as epidemiology, cell physiology,
and pharmacology. According to Gear in [1], due to the existence of greatly differing time
constants in these systems, a phenomenon known as stiffness is exhibited. Such systems
of equations are typically very stable, but often the conventional numerical methods are
inefficient due to the severe step length restriction imposed by the numerical stability
requirements (see [2]).

In this article, we consider the model of stiff ODEs system in the form of

ỹ′ = Ãy + ˜φ(x), ỹ(a) = ˜β , a ≤ x ≤ b, (1)

where

ỹT = (y1, y2, . . . , ys), ˜βT = (β1,β2, . . . ,βs) and A is an s × s matrix.
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The eigenvalues λi of the Jacobian matrix J = ∂f
∂ ỹ of the system in (1), evaluated at (x, ỹ), will

be used in the most widely heuristic definition of stiffness by Lambert in [3] as follows:
The system in (1) is said to be stiff if

(i) Re(λi) < 0, i = 1, 2, . . . , s, and
(ii) maxi |Re(λi)| � mini |Re(λi)| where the ratio [maxi |Re(λi)|] : [mini |Re(λi)|] is

called the stiffness ratio.
As stated in [4], a stiff ODEs system is characterized by the property that the ratio of the
largest to the smallest eigenvalue is greater than one.

The general solution of (1) takes the form

ỹ(x) =
s

∑

i=0

κieλix̃ci + ˜ψ(x),

where κi are the arbitrary constants, c̃i are the eigenvectors of corresponding eigenvalues
λi, and ˜ψ(x) is a particular integral. Interpreting x to be time, we denote the first term
∑s

i=0 κieλix̃ci as the transient solution and the remaining ˜ψ(x) as the steady-state solution.
Now, let us assume condition (i) is satisfied, which implies that the term

∑s
i=0 κieλix̃ci → 0

as x → ∞. Let |Re(λμ)| and |Re(λυ )| be defined by

∣

∣Re(λμ)
∣

∣ ≥ ∣

∣Re(λi)
∣

∣ ≥ ∣

∣Re(λυ)
∣

∣, i = 1, 2, . . . , s,

so that κieλμ x̃ci and κieλυ x̃ci are the fastest and slowest transient, respectively. If the system
in (1) is solved numerically and aimed at achieving a steady-state phase, continuing inte-
gration is needed until the slowest transient is negligible. Therefore, the smaller |Re(λυ )|
is, the longer the integration period will be. However, for the larger |Re(λμ)|, a sufficiently
small step length is required so that h will lie within the region of absolute stability of the
method (refer to [2, 3, 5]).

According to [6], due to their relative ease of execution, the subclass of diagonally im-
plicit Runge–Kutta (DIRK) methods has become the most commonly used in solving stiff
first order ODEs. The fully implicit Runge–Kutta (FIRK) and DIRK methods on Butcher
array have the forms as tabulated in Table 1.

The coefficients of aij in Table 1 constitute a matrix denoted as A. The method with a
full coefficient matrix, i.e., FIRK requires to solve a system of (n-dimensional × r-stages)
nonlinear equations in each of its integration stages [8]. To reduce the computational cost
of evaluating the stages in the FIRK method, [7–11] opted for the DIRK method. As stated
in [6], this method is characterized by a lower triangular A-matrix with aij = 0 for i <
j and is sometimes referred to as semi-implicit or semi-explicit Runge–Kutta methods.
According to [8], Newton-type iteration is required when the problem is stiff in order
to solve the linear systems at each stage with the coefficient matrix written in the form of

Table 1 Butcher array for FIRK and DIRK subclasses of the three-stage IRK methods (see [7])

(a) FIRK (b) DIRK

c1 a11 a12 a13
c2 a21 a22 a23
c3 a31 a32 a33

b1 b2 b3

c1 a11 0 0
c2 a21 a22 0
c3 a31 a32 a33

b1 b2 b3
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I – haii
∂f
∂y . It was reported in [8] that if all aii are equal, the stored LU factorization of such a

single matrix can be used repeatedly. This motivates a maximum of one LU decomposition
in which the matrix A is written as a product of a lower triangular matrix L and an upper
triangular matrix U . It means A is decomposed as A = LU .

Drugs are administered into the body through several routes. The criteria for the se-
lection of a delivery route are the patient’s suitability, solubility of the drug, access to the
disease’s location, and the effectiveness in dealing with the specific disease. According to
[12], intravenous, intramuscular, intranasal, intradermal/transdermal, and oral adminis-
tration are the main drug delivery routes. Among the various delivery routes, oral delivery
is the most widely used and commonly employed route of drug administration [12–16].
This is due to the potential advantages of high patient compliance [12, 14], ease of admin-
istration [12, 15], and pain avoidance [16].

To facilitate a meaningful contribution to the pharmacokinetics field, numerous mathe-
matical models for drug delivery systems have been developed, which can be found in [17–
23]. In [21], the established model described the mechanisms of how the human body han-
dles nicardipine (NC)-cyclodextrin complexes injection in the gastrointestinal (GI) tract,
distribution in plasma, and metabolism in the liver. Recently, [22] proposed a differential
equation model to investigate the dynamic behavior drug resistance incorporating a delay
in the process with conditions under which a Hopf bifurcation takes place, which leads to
a periodic solution. The models in [23] outline the mechanisms of drug administration in
the human body via oral and intravenous routes. To calculate the exact drug concentra-
tion in different compartments of blood and tissue medium, the Laplace transformation
and eigenvalue method were applied. In this article, we solve the mathematical models of
drug diffusion formulated by [20, 21, 23] numerically. The models were formulated based
on the diffusion process by applying Fick’s principle and the law of mass action.

The stiffness phenomenon exhibited in the drug diffusion models needed to be treated
using a suitable implicit numerical method. Backward differentiation formula (BDF) is the
most popular class of implicit linear k-step methods for solving stiff IVPs. To overcome the
drawback of the classical BDF method which approximates yn+1 at xn+1 one step at a time,
seminal contributions have been made by [24]. The authors employed the block backward
differentiation formula (BBDF) to accelerate the integration process. The BBDF produces a
block of yn+1, yn+2, . . . , yn+k approximations concurrently at each of the algorithms by using
earlier blocks with each block containing k points. Some authors have driven the further
development of BBDF that proven to improve the performance in efficiency and accuracy
upon solving stiff problems (refer to [25–28]). Although this approach is well established
for stiff ODEs, the proof of stability properties has not been extensively studied. Therefore,
it is sensible to contribute the relevant proof and modify existing BBDF methods to better
accuracy in realizing the newly established scheme’s full potential in approximating the
solution of stiff pharmacokinetics models.

Dahlquist in [29] introduced the concept of A-stability to address the impact of stiff-
ness on numerically solving IVPs (see [30]). The need for this desirable property, how-
ever, imposes a severe constraint on the option of suitable methods for stiff ODEs. This
has, therefore, motivated us to design an efficient two-point block method based on BDF
in a diagonally implicit manner that holds an A-stable property.

The rest of the paper is outlined as follows. In Sect. 2, we briefly illustrate the deriva-
tion of the proposed method. Section 3 provides the stability analysis and some relevant
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proofs. The mathematical models in which the method is applied are presented in Sect. 4.
Section 5 is devoted to the discussion of the numerical results. Finally, Sect. 6 concludes
this paper.

2 ρ-Diagonally implicit block backward differentiation formula
In this section, we derive the two-point ρ-diagonally implicit block backward differentia-
tion formula (ρ-DIBBDF) for the solution of the pharmacokinetics models developed by
[20, 21, 23]. The general form of our method is based on the definition of linear multistep
method (LMM) of BBDF as given by Ibrahim et al. in [24] in the form of

k+m–1
∑

j=0

αj–1,kyn+j–1 = hn+mβk+m–2,k(fn+k – ρfn+k–1), (2)

where m = 2 is order of the method; k = 1, 2 for yn+1 and yn+2, respectively; ρ is a free
parameter; hn+m is step length; αk,k = 1; fn+k = f (xn+k , yn+k) and βk–1,k = –ρβk,k .

In the case of the LMM in (2), we associate the linear difference operator L, defined by

L
[

y(xn); h
]

=
k+m–1
∑

j=0

αj–1,kyn+j–1 – hn+mβk+m–2,k
(

y′
n+k – ρy′

n+k–1
)

. (3)

Expanding yn+j–1, y′
n+k and y′

n+k–1 as Taylor series about x and collecting the terms in (3)
gives

L
[

y(xn); h
]

= C0y(x) + C1hn+my′(x) + · · · + Cphp
n+my(p)(x). (4)

The constants Cp are defined as

C0 =
k+m–1
∑

j=0

αj–1,k ,

C1 =
(–s)p

p!
α–1,k +

k+m–1
∑

j=2

(j – 1)p

p!
αj–1,k –

k(p–1)

(p – 1)!
βk+m–2,k + ρβk+m–2,k ,

...

Cp =
(–s)p

p!
α–1,k +

k+m–1
∑

j=2

(j – 1)p

p!
αj–1,k –

k(p–1)

(p – 1)!
βk+m–2,k

+
(k – 1)(p–1)

(p – 1)!
ρβk+m–2,k , p ≥ 2,

(5)

where s is the step length ratio s = hn+m
hn+m–1

. The values of k = 1, 2 in (5) indicate the first and
second point, respectively. Without losing the generality, it will be assumed from here on
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that α1,1 = 1, α2,2 = 1, and α0,2 = 0. Equating the results term by term with (4) yields

α–1,k =

[

– (ρ+1)
s(sρ–s–2)

– ρ+1
(s+1)[(s+1)ρ–(s+3)]

]

, α0,k =

[

– (s+1)[(s–1)ρ–(s+1)]
s(sρ–s–2)

0

]

,

α1,k =

[

1
– (s+2)(sρ–s–2)

(s+1)[(s+1)ρ–(s+3)]

]

, α2,k =

[

0
1

]

, β–1,k =

[

0
0

]

,

β0,k =

[

– s+1
s(sρ–s–2)

0

]

, β1,k =

[

s+1
s(sρ–s–2)

s+2
(s+1)ρ–(s+3)

]

, β2,k =

[

0
– s+2

(s+1)ρ–(s+3)

]

.

(6)

Next, the coefficients of αj–1,k and βk+m–2,k obtained in (6) are substituted into (2), and by
considering hn+m = hn+m–1 for all n, we have s = 1 in (5), which gives the following corrector
formula for the two-point ρ-DIBBDF in constant step length:

[

1 0
– 3

4 ( ρ–3
ρ–2 ) 1

][

yn+1

yn+2

]

=

[

ρ+1
ρ–3 – 4

ρ–3
1
4 ( ρ+1

ρ–2 ) 0

][

yn–1

yn

]

+ h

[

0 2ρ

ρ–3
0 0

][

fn–1

fn

]

+ h

[

– 2
ρ–3 0
3ρ

2ρ–4 – 3
2ρ–4

][

fn+1

fn+2

]

. (7)

3 Stability analysis
In this section, the stability properties of ρ-DIBBDF will be discussed for ρ ∈ (–1, 1). The
parameter ρ is restricted to (–1, 1) so that the underlying formula in (2) satisfies the nec-
essary condition for stiff stability. The relevant proof for k = 1 provided in this section is
referred to the theorem by [31] (see [32]). The approach adopted to prove some stability
properties for k = 2 is similar to that of k = 1.

As the first consideration, let us define �(ξ ) and σ (ξ ) as the first and second character-
istic polynomials, respectively, in the following terms:

�(ξ ) =
m

∑

j=0

αj–1,kξ
j,

σ (ξ ) =
m

∑

j=0

βj–1,kξ
j,

(8)

which are equivalent to �(ξ ) = α1,1ξ
2 + α0,1ξ + α–1,1 and σ (ξ ) = β1,1(ξ 2 – ρξ ). For this study,

it is of interest to investigate the stability features of the method by using the Möbius
transformation ξ = 1+z

1–z . It maps the unit disc {ξ ∈ C||ξ | < 1} and the unit circle onto the
negative half-plane and the imaginary axis, respectively. Given that

a(z) =
(

1 – z
2

)2

�

(

1 + z
1 – z

)

,

b(z) =
(

1 – z
2

)2

σ

(

1 + z
1 – z

)

,
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are the two polynomials in z to define Q(z,μ) = a(z) – μb(z) where μ = hλ, these polyno-
mials can be expressed as

4a(z) = 2(1 + α–1,1)z2 – 2(–1 + α–1,1)z,

4b(z) = β1,1
[

(1 + ρ)z2 + 2z + (1 – ρ)
]

,

which imply that 4Q(z,μ) = q2z2 + q1z + q0. The coefficients of 4Q(z,μ) are given by

q2 = 2(1 + α–1,1) – β1,1(1 + ρ)μ,

q1 = 2(1 – α–1,1) – 2μ,

q0 = β1,1(1 – ρ)μ.

From (8), the polynomial π (ξ ,μ) = �(ξ ) – μσ (ξ ) is formed. It leads to some definitions,
as described below.

Definition 1 The region of absolute stability for (7) is given by Ã = {μ ∈ C||ξi(μ)| < 1, i =
1, 2, . . . , m}.

Definition 2 The method in (7) is A0-stable if {μ ∈ C| Im(μ) = 0, –∞ < μ < 0} ⊂ Ã.

The following lemma will be used in the next theorem.

Lemma 1 Assume q(x) = q2x2 + q1x + q0, where q2, q1, q0 are real values and q2 
= 0, then
q(x) is a Hurwitz polynomial if and only if all ais are either positive or negative.

Proof See [33]. �

As outlined in [32], a method is said to be A0-stable if and only if its corresponding
Q(z,μ) is a Hurwitz polynomial for all μ < 0.

Theorem 1 The method is A0-stable for all ρ ∈ (–1, 1).

Proof Since α–1,1,β1,1 > 0 for all ρ in the interval (–1, 1), then we have q0, q2 > 0. Now, q1

will be greater than 0 if and only if (1 – α–1,1) ≥ 0. Thus, by Lemma 1, Q(z,μ) is a Hurwitz
polynomial for all μ < 0 if and only if (1 – α–1,1) ≥ 0. �

Definition 3 The formula in (7) is said to be A-stable if {μ ∈ C|Re(μ) < 0} ⊂ Ã (refer to
[34]).

Lemma 2 Let g(x) = ax2 + bx + c, where a, b, c are real values and a > 0. Assume also
g(–1) > 0 and g(1) = 0. Then g(x) ≥ 0 for –1 ≤ x ≤ 1 if and only if 2a + b ≤ 0.

Proof Given that a > 0, then the graph of g(x) will concave upward and the vertex is x0 =
–b
2a . Since g(1) = 0, it means that 1 is the x-intercept of g(x) and g(–1) > 0, and we need to
have x0 > –1. Now, suppose 2a + b ≤ 0; if x ≤ 1, then x0 ≥ –1 implies that g(x) ≥ 0. Next,
we assume g(x) ≥ 0 for –1 ≤ x ≤ 1. If –1 < x0 < 1, then g(x0) < g(1). However, we have
g(1) = 0; thus, x0 ≥ 1. �
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Theorem 2 Suppose all the roots of σ (ξ ) in (8) have the modulus of less than 1. Then the
method in (2) is A-stable if and only if

Pm(ξ ) =
m

∑

j=0

γjTj(ξ ) ≥ 0 for – 1 ≤ ξ ≤ 1,

where

γ0 =
m

∑

i=0

αi–1,kβi–1,k ,

γj =
m–j
∑

i=0

(αi+j–1,kβi–1,k + αi–1,kβi+j–1,k), 1 ≤ j ≤ m,

and Tj(ξ ) is the jth Chebyshev polynomial.

Proof By expanding γ0 and γj, taking β0,1 = –ρβ1,1 and α–1,1 + α0,1 + 1 = 0 as in (5), we have

γ0 = α–1,1β–1,1 + α0,1β0,1 + α1,1β1,1

= β1,1(1 – ρα0,1),

γ1 = (α0,1β–1,1 + α–1,1β0,1) + (α1,1β0,1 + α0,1β1,1)

= β1,1α0,1(1 + ρ),

γ2 = α1,1β–1,1 + α–1,1β1,1

= –β1,1(1 + α0,1).

Let T0(ξ ) = 1, T1(ξ ) = ξ , and T2(ξ ) = 2ξ 2 – 1 be the Chebyshev polynomial of degree 0, 1,
and 2, respectively; then we define Pm(ξ ) =

∑m
j=0 γjTj(ξ ) which is equivalent to

P2(ξ ) = γ0T0(ξ ) + γ1T1(ξ ) + γ2T2(ξ )

= β1,1(1 – ρα0,1) + β1,1α0,1(1 + ρ)ξ – β1,1(1 + α0,1)
(

2ξ 2 – 1
)

= β1,1
[

1 – ρα0,1 + α0,1(1 + ρ)ξ – (α0,1 + 1)
(

2ξ 2 – 1
)]

= β1,1
[

2α–1,1ξ
2 + α0,1(1 + ρ)ξ + 1 – ρα0,1 – α–1,1

]

= β1,1
[

2α–1,1ξ
2 + α0,1(1 + ρ)ξ + 2 + α0,1(1 – ρ)

]

.

Now, by computing P2(1) and P2(–1), we obtain

P2(1) = β1,1[2α–1,1 + 2α0,1 + 2]

= 0,

P2(–1) = β1,1
[

2α–1,1 – α0,1(1 + ρ) + 2 + α0,1(1 – ρ)
]

= –2β1,1α0,1(1 + ρ).

Since β1,1 > 0 and α0,1 < 0 for all ρ ∈ (–1, 1), then we have P2(–1) > 0. Thus, by Lemma 2,
P2(ξ ) ≥ 0 for –1 ≤ ξ ≤ 1 if and only if 2a + b ≤ 0. By substituting the coefficients of ξ 2 and
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ξ in P2(ξ ), we obtain 2a + b = 4α–1,1 + α0,1(1 + ρ), which can be simplified as

4α–1,1 + α0,1(1 + ρ) =
(s – 1)(1 + ρ)[(3 – ρ)s + (1 – ρ)]

1 – ρ + 2s
,

where 1 + ρ > 0, 1 – ρ + 2s > 0, and (3 – ρ)s + (1 – ρ) > 0 for all s > 0 and ρ ∈ (–1, 1). Thus,
4α–1,1 + α0,1(1 + ρ) ≤ 0 if and only if s – 1 ≤ 0, implying that s ≤ 1. �

Corollary 1 The method is A-stable for all ρ ∈ (–1, 1).

Proof Since this theorem satisfies s = 1, i.e., the constant step length formula, then the
underlying formula in (7) is A-stable for all ρ in the interval (–1, 1). �

To determine whether the numerical method with the chosen ρ is capable of delivering
acceptable results, the stability of the method needs to be investigated. Some desirable
stability criteria for a numerical method are discussed here, namely zero stability, abso-
lute stability, and convergence. Later, the restrictive requirement on the step length will be
studied. For absolute stability purposes, the free parameter ρ is chosen in which it is re-
stricted to (–1, 1) (see [25]). Here, we select ρ = – 3

4 . A detailed discussion for this selection
of ρ can be found in [35].

3.1 Zero and absolute stability
Denoting hλ by ĥ, we have the following definitions pertinent to stiffness.

Definition 4 The method in (7) is zero stable if its characteristic polynomial has a simple
root at +1 and all the remaining roots lie strictly within the unit circle (refer to [34]).

Definition 5 The method in (7) is A-stable if �A ⊇ {ĥ|Re(ĥ) < 0}, where �A is the region
of absolute stability for the method (refer to [5]).

Applying the Dahlquist test equation y′ = f (x, y) = λy and hλ = ĥ into (7) yields

[

1 + 2
ρ–3 ĥ 0

– 3
4 ( ρ–3

ρ–2 ) – 3ρ

2ρ–4 ĥ 1 + 3
2ρ–4 ĥ

][

yn+1

yn+2

]

=

[

ρ+1
ρ–3 – 4

ρ–3 + 2ρ

ρ–3 ĥ
1
4 ( ρ+1

ρ–2 ) 0

][

yn–1

yn

]

, (9)

which may be written as AYm = BYm–1. The first characteristic polynomial of our method
can be constructed in terms of its roots r by evaluating det(Ar–B). The stability polynomial
is given as follows:

SP(ĥ) =
[

–1
2(ρ – 3)(ρ – 2)

]

6ĥ2ρ2r – 6ĥ2r2 + 3ĥρ2r – 7ĥρr2 – 2ρ2r2 + ĥρ2

– 18ĥρr + 17ĥr2 + 2ρ2r + 10ρr2 + ĥρ + 3ĥr – 8ρr – 12r2 – 2ρ + 14r – 2

= 0. (10)

By setting ρ = – 3
4 , ĥ = 0 and solving (10) with respect to r, it yields the roots, r = 0.01122

and r = 1. Thus, by Definition 4, we conclude that the method is zero stable.
Next, the boundary of the stability region is determined. The boundary locus technique

is the most convenient method for finding the region of absolute stability. The region of
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Figure 1 Stability region of ρ-DIBBDF for ρ = – 3
4

absolute stability for a range of θ ∈ [0, 2π ] is obtained by setting r = eiθ for which |r| ≤ 1.
As depicted in Fig. 1, the stable region lies outside the closed contour of the graph. Thus,
by Definition 5, the method is considered A-stable.

3.2 Error constant
Definition 6 LMM (2) and the associated difference operator L defined by (3) are said to
be of order p if in (5), C0 = C1 = · · · = Cp = 0, Cp+1 
= 0, where Cp+1 is the error constant (see
[3]).

For ρ = – 3
4 , by substituting the coefficients of αj–1,k and βk+m–2,k into (5), we obtained

C0 = C1 = C2 = 0 and C3 = [– 1
9 – 3

22 ]T . Thus, the method is of order 2 with C3 being the
error constant.

3.3 Convergence
The basic feature that requires an acceptable LMM is that the numerical solution con-
verges to the exact solution y(x) as h approaches zero. The following theorem, the proof
of which can be found in [36], sets out the conditions on f (x, y) which guarantee the exis-
tence of a unique solution of the IVP in (1) (as in [3]).

Theorem 3 Let f (x, y) be defined and continuous for all points (x, y) in the region D defined
by a ≤ x ≤ b, –∞ < y < ∞, a and b finite, and let there exist a constant L as a Lipschitz
constant such that, for every x, y, y∗ such that (x, y) and (x, y∗) are both in D,

∣

∣f (x, y) – f
(

x, y∗)∣
∣ ≤ L

∣

∣y – y∗∣
∣. (11)

Then, if y(a) = β is any given number, there exists a unique solution y(x) of the IVP in (1),
where y(x) is continuous and differentiable for all (x, y) in D (refer to [3]).

Consequently, this leads to the definition of convergence as given below.

Definition 7 The LMM in (2) is said to be convergent if, for all IVPs in (1) subject to the
hypotheses of Theorem 3, we have that

lim
h→0

yn = y(xn), (12)

holds for all x ∈ [a, b] and for all solutions {yn}, where nh = x – a (refer to [3]).
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From (7), we have the formula for the two-point ρ-DIBBDF written for the approximate
solutions as follows:

yn+1 = –
1

15
yn–1 +

16
15

yn +
2
5

hf (xn, yn) +
8

15
hf (xn+1, yn+1),

yn+2 = –
1

44
yn–1 +

45
44

yn+1 +
9

22
hf (xn+1, yn+1) +

6
11

hf (xn+2, yn+2),
(13)

and for the exact solutions as follows:

Yn+1 = –
1

15
Yn–1 +

16
15

Yn +
2
5

hf (xn, Yn) +
8

15
hf (xn+1, Yn+1) –

1
9

h3Y (3)(ξn),

Yn+2 = –
1

44
Yn–1 +

45
44

Yn+1 +
9

22
hf (xn+1, Yn+1) +

6
11

hf (xn+2, Yn+2)

–
3

22
h3Y (3)(ξn).

(14)

Given that

lim
h→0

yn+1 = Yn+1, lim
h→0

yn+2 = Yn+2 (15)

are the conditions for the convergence of the approximate solutions. Subtracting (13) from
(14) yields

Yn+1 – yn+1 = –
1

15
[Yn–1 – yn–1] +

16
15

[Yn – yn]

+
2
5

h
[

f (xn, Yn) – f (xn, yn)
]

+
8

15
h
[

f (xn+1, Yn+1) – f (xn+1, yn+1)
]

–
1
9

h3Y (3)(ξn),

Yn+2 – yn+2 = –
1

44
[Yn–1 – yn–1] +

45
44

[Yn+1 – yn+1]

+
9

22
h
[

f (xn+1, Yn+1) – f (xn+1, yn+1)
]

+
6

11
h
[

f (xn+2, Yn+2) – f (xn+2, yn+2)
]

–
3

22
h3Y (3)(ξn).

(16)

By denoting Yn+r – yn+r = dn+r , where r = –1, 0, 1, 2, then (16) becomes

|dn+1| ≤ –
1

15
|dn–1| +

(

16
15

+
2
5

hL
)

|dn| +
8

15
hL|dn+1| –

1
9

h3Q,

|dn+2| ≤ –
1

44
|dn–1| +

(

45
44

+
9

22
hL

)

|dn+1| +
6

11
hL|dn+2| –

3
22

h3Q,
(17)

where Q = max
︸︷︷︸

a≤x≤b

|Y (3)(x)|. As h approaches zero, then |dn+k| ≤ |dn| which implies that

Yn+k – Yn ≤ yn+k – yn for k = 1, 2. Since the condition in (15) is satisfied, we conclude that
the proposed method converges.
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3.4 Step length restriction
To deal with the stability phenomenon as mentioned previously in Sect. 1, we discuss the
following definitions given by [5]. The step length restriction is discussed in a similar way
as in [37].

Definition 8 The LMM in (2) is said to be absolutely stable for a given ĥ if all roots of
π (r, ĥ) satisfy |rt| < 1, t = 1, 2, . . . , k; otherwise, the method is said to be absolutely unstable.

Definition 9 The LMM in (2) is said to have a region of absolute stability �A, where �A

is a region of the complex ĥ-plane, if it is absolutely stable for all ĥ ∈ �A. The intersection
of �A with the real axis is called the interval of absolute stability.

From Fig. 1, one could observe that ρ-DIBBDF is absolutely stable except when ĥ ∈
(0, 15.333). This interval is known as the interval of unstable region. As described in Def-
initions 8 and 9, the �A region is defined by the requirement that all the roots of SP(ĥ)
have a module of less than 1 for all ĥ ∈ �A. For the method to be stable, h must lie within a
certain range. Thus, we are motivated to find the value of hλ so that |r| < 1. By substituting
the endpoint of the interval into SP(ĥ) in (10), we obtain

ϕ = 52.85193134ĥ2 – 53.01621516ĥ + 0.1636333333. (18)

On solving (18), we choose the value of |ĥ| < 1. Therefore, the step length is restricted to
|H| < 0.003096032803 which is equivalent to

h <
∣

∣

∣

∣

0.003096032803
λ

∣

∣

∣

∣

. (19)

Let us consider a stiff problem with λ = –100, then we will have

h <
∣

∣

∣

∣

0.003096032803
–100

∣

∣

∣

∣

,

which indicates that absolute stability is achieved if the step length chosen is h <
3.096032803 × 10–5.

4 Mathematical model
In this section, we approximate the numerical solutions for five examples of pharmacoki-
netics models from various literature. A principle based on the law of conservation of mass
is applied in the formulation of the mathematical models. It is known as balance law and
can be discovered in [38]. Let c(t) denote the concentration of drug in the compartment
at time t (hour), hence the balance law applied is

dc
dt

= input rate of drug – output rate of drug,

where dc
dt is the rate of change for c(t).
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4.1 Model A
In 1970, in the works of [17], a linear, two-compartment, and open model for drug distri-
bution was presented. Then, a two-compartment pharmacokinetic model was developed
by [19] to model the flow of drugs through the body compartments: the GI tract and the
circulatory system. The drug is taken orally on a regular basis, resulting in a dosage pulse
delivered to one compartment (GI tract). From that point, the drug moves into another
compartment (bloodstream) at a rate relative to its concentration in the first compart-
ment. Finally, the drug is metabolized and removed from the blood at a rate corresponding
to its concentration there (refer to [20]).

Consider the following model consisting of the concentration of drug in the GI tract
c1(t) and its concentration in the bloodstream c2(t) as a function of time t:

dc1(t)
dt

= –ac1(t) + D; c1(0) = 1,

dc2(t)
dt

= ac1(t) – bc2(t); c2(0) = 0,
(20)

where D is the drug intake regimen. Noting that a = 2 ln(2) and b = ln(2)
5 , the solution of

differential equations in (20) for 0 ≤ t ≤ 6 are given by

c1(t) = e–at ,

c2(t) = –
a

a – b
(

e–at – e–bt), a 
= b.
(21)

4.2 Model B
The formulation of drugs with different drug carrier materials is applied widely in the
pharmaceutical sciences field to control drug delivery and improve drug release. The au-
thors in [21] had formulated the NC delivery with cyclodextrin (CD) complexes as excip-
ients. The formulation of the NC with hydroxypropyl-β-cyclodextrin (NC/HPβCD) and
triacetyl-β-cyclodextrin (NC/TAβCD) modeled in Fig. 2, where kGI and kPlasma are the rate
constants in the GI tract and plasma, respectively.

The rate equations corresponding to the scheme in Fig. 2 are

dCA(t)
dt

= –kGICA(t); CA(0) = 1.0 ng/mL,

dCB(t)
dt

= kGICA(t) – kPlasmaCB(t); CB(0) = 0,
(22)

Figure 2 Mechanism of irreversible series of the NC delivery in Model B (see [21])
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where CA and CB are the concentrations in the GI tract and plasma, respectively, and
t ∈ [0, 25]. On solving (22), we have

CA(t) = e–kGI t ,

CB(t) = –
kGI

kGI – kPlasma

(

e–kGI t – e–kPlasmat), kGI 
= kPlasma.
(23)

The refined rate constants calculated from the predicted (GI) and experimental (Plasma)
are listed in Table 2 as follows.

4.3 Model C
In this subsection, three mathematical models for drug administration through oral and
intravenous routes in the human body are presented. The models have been formulated
in the form of IVPs by [23]. The values of the rate constants for the diffusion models are
taken from [23] and the eigenvalues λ computed on Maple are listed in Table 3.

4.3.1 Model C(i)
The first model included two compartments of the GI tract and bloodstream, which illus-
trated the oral drug administration shown in Fig. 3.

Table 2 Model parameter values in Model B (see [21])

Compound kGI (mL/min) kPlasma (mL/min)

(i) NC 3.18 0.99
(ii) NC/HPβCD 0.59 0.43
(iii) NC/TAβCD 1.00 0.29

Table 3 Model parameter values in Models C(i), (ii), and (iii) for t ∈ [0, 6]

Model Parameter Description Value

Model C(i) c0 Initial concentration of drug dosage 500 units
k1 Rate constant of drug in GI tract 0.9776 hour–1

kc Clearance constant 0.2213 hour–1

λ Eigenvalues –0.7448, –0.9776

Model C(ii) c0 Initial concentration of drug dosage 500 units
kb Rate constant of drug in bloodstream 0.9776 hour–1

kt Rate constant of drug in tissue medium 0.3293 hour–1

kc Clearance constant 0.2213 hour–1

λ Eigenvalues –0.0492, –1.4789

Model C(iii) c0 Initial concentration of drug dosage 500 units
kab Rate constant of drug in arterial blood 0.9776 hour–1

kt Rate constant of drug in tissue medium 0.3293 hour–1

kc Clearance constant 0.2213 hour–1

λ Eigenvalues –0.2213, –0.3293, –0.9776

Figure 3 Mechanism of oral drug administration in
Model C(i) (refer to [23])
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The two-compartment mathematical model in Fig. 3 is presented in a linear ODEs ap-
proach as follows:

dcg(t)
dt

= –k1cg(t); cg(0) = c0,

dcb(t)
dt

= k1cg(t) – kccb(t); cb(0) = 0.
(24)

The drug delivery model in (1) is presented in terms of its concentration in two com-
partments: the first compartment in the GI tract cg(t) and the second compartment in
blood cb(t). c0 denotes the initial concentration of drug dosage, while k1 and kc indicate
the inter-compartment rate constant and clearance constant, respectively, where k1, kc > 0.
By solving equation (24), we have

cg(t) = c0e–k1t ,

cb(t) =
c0k1

k1 – kc

(

e–kct – e–k1t), k1 
= kc.
(25)

4.3.2 Model C(ii)
For this intravenous drug model, two compartments are involved viz. blood and tissue
as the main exchangers. The drug is injected into the bloodstream and transmitted to the
tissue where the drug has a therapeutic effect. A schematic presentation of the intravenous
drug administration based on reversible and irreversible rate constants is shown in Fig. 4.

The mathematical formulation of this two-compartment model can be expressed by the
following ODEs:

dcb(t)
dt

= –(kb + kc)cb(t) + ktct(t); cb(0) = c0,

dct(t)
dt

= kbcb(t) – ktct(t); ct(0) = 0,
(26)

in which kb and kt are the rate constants for the blood and tissue, respectively, with c0

referring to the initial drug dosage and kc denoting the clearance rate. By applying Laplace
transformation (see [23]), the resulting differential equations of (26) are solved, yielding

cb(t) =
c0

ξ2 – ξ1

[

(–ξ1 + kt)e–ξ1t – (–ξ2 + kt)e–ξ2t],

ct(t) =
c0kb

ξ1 – ξ2

[

e–ξ1t – e–ξ2t],
(27)

Figure 4 Mechanism of intravenous drug
administration in Model C(ii) (refer to [23])
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Figure 5 Mechanism of intravenous drug administration in Model C(iii) (refer to [23])

where –ξi are real eigenvalues and are given by

ξi =
1
2
[

–(kb + kt + kc) ±
√

(kb + kt + kc)2 – 4kckt
]

, i = 1, 2.

4.3.3 Model C(iii)
The delivery mechanism of Model C(iii) is a one-directional model which is presented in
terms of drug concentrations in the following compartments: arterial blood cab(t); tissue
ct(t); and venous blood cvb(t). The drug administration through the three compartments
has the schematic view as illustrated in Fig. 5.

The scheme modeled in Fig. 5 is a pictorial presentation of the following system of ODEs:

dcab(t)
dt

= –kabcab(t); cab(0) = c0,

dct(t)
dt

= kabcab(t) – ktct(t); ct(0) = 0,

dcvb(t)
dt

= ktct(t) – kccvb(t); cvb(0) = 0.

(28)

The flow rate of the drug from the arterial blood to the tissue compartment is represented
by kab and from the tissue compartment to the venous blood by kt , while the rate of elim-
ination is denoted by kc. As presented in [23], the analytical solution of (28) is obtained as
follows:

cab(t) = c0e–kabt ,

ct(t) =
c0kab

kab – kt

[

e–ktt – e–kabt],

cvb(t) = c0ktkab

[

e–ktt

(kab – kt)(kc – kt)
–

e–kabt

(kab – kt)(kc – kab)
–

e–kct

(kc – kt)(kc – kab)

]

.

(29)

5 Numerical simulation
The applicability of our method is then tested on mathematical models established in
Sect. 4 to obtain the approximate values. For the interval of t as given in Sect. 4, the nu-
merical results that present the maximum error MAXE and the execution time in seconds
TIME for all models are given in Tables 4–10 with

MAXE = max
︸︷︷︸

1≤t≤T

(

max
︸︷︷︸

1≤i≤N

∣

∣(yi)t –
(

y(xi)
)

t

∣

∣

)

,
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Table 4 Numerical results for concentration of drug in Model A

h Method MAXE TIME

10–2 ρ-DIBBDF 3.09796 ×10–4 1.48973 ×10–5

NDIBBDF 3.56173 ×10–4 3.97651 ×10–5

BBDF-α 3.39287 ×10–4 7.00533 ×10–5

ode15s 7.75030 ×10–3 3.40630 ×10–2

ode23s 4.16650 ×10–3 5.00000 ×10–2

10–4 ρ-DIBBDF 3.26669 ×10–8 4.80924 ×10–4

NDIBBDF 3.81740 ×10–8 5.65695 ×10–3

BBDF-α 3.61969 ×10–8 8.25088 ×10–3

ode15s 1.53220 ×10–4 6.09380 ×10–2

ode23s 2.40510 ×10–4 9.81250 ×10–2

10–6 ρ-DIBBDF 5.29902 ×10–11 2.34869 ×10–2

NDIBBDF 3.24996 ×10–10 4.97863 ×10–1

BBDF-α 2.56585 ×10–10 9.54964 ×10–1

ode15s 2.44190 ×10–6 9.37500 ×10–1

ode23s 1.16910 ×10–5 5.46880 ×10–1

Figure 6 Graph for log10 MAXE against log10 TIME of Model A

Table 5 Numerical results for concentration of drug in Model B—Compound (i)

h Method MAXE TIME

10–2 ρ-DIBBDF 1.81939 ×10–3 4.34094 ×10–5

NDIBBDF 2.05922 ×10–3 2.06814 ×10–4

BBDF-α 1.98698 ×10–3 9.26115 ×10–4

ode15s 6.71190 ×10–3 1.40630 ×10–2

ode23s 3.73690 ×10–3 4.68750 ×10–2

10–4 ρ-DIBBDF 2.04691 ×10–7 7.38587 ×10–3

NDIBBDF 2.39095 ×10–7 1.27894 ×10–2

BBDF-α 2.26730 ×10–7 4.04615 ×10–2

ode15s 1.31340 ×10–4 5.46880 ×10–2

ode23s 2.10060 ×10–4 8.25000 ×10–2

10–6 ρ-DIBBDF 2.05082 ×10–11 2.49705 ×10–1

NDIBBDF 5.25957 ×10–11 1.58709 ×100

BBDF-α 4.82780 ×10–11 6.19037 ×100

ode15s 1.84520 ×10–6 8.25000 ×10–1

ode23s 1.02030 ×10–5 9.37500 ×10–1
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Figure 7 Graph for log10 MAXE against log10 TIME of Model B(i)

Table 6 Numerical results for concentration of drug in Model B—Compound (ii)

h Method MAXE TIME

10–2 ρ-DIBBDF 9.00892 ×10–5 3.14674 ×10–5

NDIBBDF 1.04368 ×10–4 3.13904 ×10–4

BBDF-α 9.91598 ×10–5 8.81046 ×10–4

ode15s 5.32520 ×10–3 1.09380 ×10–2

ode23s 3.07010 ×10–3 1.12500 ×10–2

10–4 ρ-DIBBDF 9.30291 ×10–9 1.68845 ×10–3

NDIBBDF 1.08726 ×10–8 4.29541 ×10–2

BBDF-α 1.03090 ×10–8 8.75693 ×10–2

ode15s 1.02730 ×10–4 5.12500 ×10–2

ode23s 1.83930 ×10–4 5.25000 ×10–2

10–6 ρ-DIBBDF 3.23822 ×10–11 7.09676 ×10–1

NDIBBDF 1.29477 ×10–10 5.17943 ×100

BBDF-α 1.24770 ×10–10 9.31750 ×100

ode15s 1.21500 ×10–6 6.25000 ×10–1

ode23s 9.15440 ×10–6 7.81250 ×10–1

Figure 8 Graph for log10 MAXE against log10 TIME of Model B(ii)
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Table 7 Numerical results for concentration of drug in Model B—Compound (iii)

h Method MAXE TIME

10–2 ρ-DIBBDF 1.91097 ×10–4 5.01770 ×10–5

NDIBBDF 2.20710 ×10–4 6.30163 ×10–4

BBDF-α 2.09954 ×10–4 8.40108 ×10–4

ode15s 6.80330 ×10–3 3.12500 ×10–2

ode23s 3.77840 ×10–3 3.25000 ×10–2

10–4 ρ-DIBBDF 1.99379 ×10–8 3.45319 ×10–3

NDIBBDF 2.33007 ×10–8 4.05777 ×10–2

BBDF-α 2.20934 ×10–8 8.22307 ×10–2

ode15s 1.33260 ×10–4 1.40630 ×10–1

ode23s 2.12780 ×10–4 3.25000 ×10–1

10–6 ρ-DIBBDF 4.19052 ×10–11 4.28401 ×10–1

NDIBBDF 1.74958 ×10–10 5.91702 ×100

BBDF-α 1.66374 ×10–10 9.10122 ×100

ode15s 1.90470 ×10–6 9.37500 ×10–1

ode23s 1.03310 ×10–5 8.71880 ×10–1

Figure 9 Graph for log10 MAXE against log10 TIME of Model B(iii)

where t is the tth component of the total number of steps; T , i is the ith component of
the number of equations; N and yi and y(xi) are the approximated and exact solutions,
respectively. The abbreviations used in Tables 4–10 are described as follows:

h step length
ρ-DIBBDF ρ-diagonally implicit block backward differentiation formula
NDIBBDF new diagonally implicit block backward differentiation formula of order 2

(see [27])
BBDF-α block backward differentiation formula-α with the same back values as our

method (see [28])
ode15s quasi-constant step size implementation of the numerical differentiation for-

mula
ode23s modified implicit Rosenbrock methods of order 2

The numerical results of ρ-DIBBDF compared to NDIBBDF, BBDF-α, Matlab solvers;
ode15s and ode23s are displayed in Tables 4–10 for Models A, B, and C. Our results
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Table 8 Numerical results for concentration of drug in Model C(i)

h Method MAXE TIME

10–2 ρ-DIBBDF 8.69438 ×10–2 3.51407 ×10–5

NDIBBDF 1.00483 ×10–1 6.10869 ×10–5

BBDF-α 9.55666 ×10–2 6.06108 ×10–5

ode15s 8.62070 ×10–1 1.25000 ×10–2

ode23s 1.18750 ×100 6.25000 ×10–2

10–4 ρ-DIBBDF 9.05767 ×10–6 2.89782 ×10–4

NDIBBDF 1.05854 ×10–5 5.31252 ×10–4

BBDF-α 1.00369 ×10–5 1.12681 ×10–3

ode15s 1.78620 ×10–2 7.12500 ×10–2

ode23s 5.83780 ×10–2 2.56250 ×10–1

10–6 ρ-DIBBDF 2.24617 ×10–8 4.18983 ×10–2

NDIBBDF 1.16015 ×10–7 1.30586 ×10–1

BBDF-α 9.98386 ×10–8 2.20010 ×10–1

ode15s 2.51080 ×10–4 2.18750 ×10–1

ode23s 2.71070 ×10–3 8.65630 ×10–1

Figure 10 Graph for log10 MAXE against log10 TIME of Model C(i)

demonstrate that for step lengths smaller than 10–2 in Tables 8, 9, and 10, our method
gives better performance in terms of efficiency and accuracy compared to other meth-
ods. However, for Model C, the numerical results produced slightly larger MAXE when
h = 10–2. As discussed in Sect. 3, this is because absolute stability will only be achieved if
hλ < 0.003096032803. Since the largest λ for Model C(i) is |λ| = 0.9776, then h is required
to be less than 3.1669×10–3. A similar constraint also happened in Models C(ii) and C(iii),
where h is restricted to 2.0935 × 10–3 and 3.1669 × 10–3, respectively. It is important to
highlight that it is the demand for accuracy and not for linear stability that restricts the
step length.

To observe the performance of our method, graphs of log10 MAXE against log10 TIME
for Models A, B, and C are depicted individually in Figs. 6–12. The performance graphs
indicate that the proposed scheme has a uniform pattern of error scaled, which is a signif-
icant improvement compared with existing numerical methods. In terms of the execution
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Table 9 Numerical results for concentration of drug in Model C(ii)

h Method MAXE TIME

10–2 ρ-DIBBDF 1.28576 ×10–1 2.62771 ×10–5

NDIBBDF 1.47664 ×10–1 5.03962 ×10–5

BBDF-α 1.40710 ×10–1 3.68505 ×10–4

ode15s 8.07060 ×10–1 2.37500 ×10–2

ode23s 1.18000 ×100 3.46880 ×10–2

10–4 ρ-DIBBDF 1.35922 ×10–5 2.71888 ×10–4

NDIBBDF 1.58834 ×10–5 7.83104 ×10–4

BBDF-α 1.50609 ×10–5 1.09721 ×10–3

ode15s 1.91560 ×10–2 9.81250 ×10–2

ode23s 6.17390 ×10–2 8.81250 ×10–2

10–6 ρ-DIBBDF 2.21650 ×10–8 1.89351 ×10–2

NDIBBDF 1.70972 ×10–7 3.69889 ×10–2

BBDF-α 1.38956 ×10–7 4.49960 ×10–2

ode15s 2.94160 ×10–4 7.81250 ×10–1

ode23s 2.91030 ×10–3 2.87500 ×10–1

Figure 11 Graph for log10 MAXE against log10 TIME of Model C(ii)

time, Figs. 6–12 display that the ρ-DIBBDF method is capable of performing faster than
the comparing methods for all models.

6 Conclusion
This study has presented a two-point block method based on BDF in a diagonally im-
plicit structure that holds an A-stable property. Stability analysis showed that the pro-
posed method is zero stable, absolutely stable, and convergent. The relevant proof that
the method satisfies the condition of stiff stability was also provided. The results provide
a basis for the effect of the increase in error due to the step length that operates outside
the stability region. In conclusion, the suggested method appeared to perform better than
the existing methods of NDIBBDF (formulated in a diagonally implicit manner), BBDF-α
(implemented in a fully implicit manner), and the Matlab solvers. Hence, ρ-DIBBDF is
significant to serve as an efficient numerical method and as an alternative solver for the
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Table 10 Numerical results for concentration of drug in Model C(iii)

h Method MAXE TIME

10–2 ρ-DIBBDF 9.46454 ×10–2 1.04955 ×10–5

NDIBBDF 1.09318 ×10–1 8.06114 ×10–5

BBDF-α 1.03989 ×10–1 7.78064 ×10–5

ode15s 2.82090 ×10–1 2.25000 ×10–2

ode23s 8.81200 ×10–1 1.12500 ×10–2

10–4 ρ-DIBBDF 9.87337 ×10–6 4.15497 ×10–4

NDIBBDF 1.15386 ×10–5 1.92512 ×10–3

BBDF-α 1.09407 ×10–5 9.40735 ×10–4

ode15s 8.64250 ×10–3 9.37500 ×10–2

ode23s 4.19090 ×10–2 1.09380 ×10–1

10–6 ρ-DIBBDF 2.01807 ×10–8 8.80850 ×10–2

NDIBBDF 1.36344 ×10–7 1.24745 ×100

BBDF-α 1.09823 ×10–7 1.07228 ×10–1

ode15s 1.59290 ×10–4 3.12500 ×10–1

ode23s 1.93740 ×10–3 5.50000 ×10–1

Figure 12 Graph for log10 MAXE against log10 TIME of Model C(iii)

pharmacokinetics model of ODEs. For future research, ρ-DIBBDF may also be applied to
other models arising in the pharmacokinetics field.
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