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Abstract
This paper is related to some dynamical aspects of a class of predator–prey
interactions incorporating cannibalism and Allee effects for non-overlapping
generations. Cannibalism has been frequently observed in natural populations, and it
has an ability to alter the functional response concerning prey–predator interactions.
On the other hand, from dynamical point of view cannibalism is considered as a
procedure of stabilization or destabilization within predator–prey models. Taking into
account the cannibalism in prey population and with addition of Allee effects, a new
discrete-time system is proposed and studied in this paper. Moreover, existence of
fixed points and their local dynamics are carried out. It is verified that the proposed
model undergoes transcritical bifurcation about its trivial fixed point and
period-doubling bifurcation around its boundary fixed point. Furthermore, it is also
proved that the proposed system undergoes both period-doubling and
Neimark–Sacker bifurcations (NSB) around its interior fixed point. Our study
demonstrates that outbreaks of periodic nature may appear due to implementation
of cannibalism in prey population, and these periodic oscillations are limited to prey
density only without leaving an influence on predation. To restrain this periodic
disturbance in prey population density, and other fluctuating and bifurcating
behaviors of the model, various chaos control methods are applied. At the end,
numerical simulations are presented to illustrate the effectiveness of our theoretical
findings.
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1 Introduction
The most interesting and fascinating topic of current research in mathematical biology is
the inclusion of Allee effect as well as cannibalism in prey and predator population. The
occurrence of Allee effect is the most essential phenomenon in the biological world, and it
has been treated as the crucial and extremely significant factor in ecology and population
dynamics [1]. Initially, in 1930, the famous ecologist Allee illustrated the Allee effect at low
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population densities, which has been acknowledged as a prominent factor of positive den-
sity dependence in low-density population [2, 3]. The existence of Allee effect represents
that it is mandatory for a population to sustain at least a minimum size of population itself
in the natural world. There exist numerous populations in the universe, in which Allee ef-
fect has been extensively investigated, including insects [4], birds and mammals [5], plants
[6], and marine invertebrates [7]. Attention to the interaction among small size popula-
tions such as the Allee effect has developed quickly in recent decades [8–12], including
predator–prey interaction models. Recently, the development in this era has proved that
the inclusion of Allee effect factor in a predator–prey model affects the dynamics of the
system and may be the cause of destabilization, but it depends upon where Allee effects
are attached [13]. For more interesting dynamical results related to Allee effects, we refer
to [14–18] and the references therein.

On the other hand, cannibalism is also an important and intriguing topic in the case
of predator–prey interaction, and it plays a key role in the dynamics of such interaction.
Among humans, the motivations for cannibalism factor can vary as in human populations
it has been documented all around the world. It has been practiced as a social norm in var-
ious indigenous South American, African, and New Guinean tribes [19]. It has also been
practiced in Northern India among a sect of ascetics or witch doctors “Aghoris” in the hope
of achieving immortality. The emphasizing behavior of cannibalism has been observed in a
substantial diversity of animals organized as noncarnivorous insects, flour beetles, spider,
fish, and locusts [13, 20–23]. Generally, the cannibals and their sufferers are in various
maturation stages of life such as adult and teenage, immature and mature, and diverse
sorts of categories. This occurrence throws back a predator–prey interaction within the
identical species, and the equivalent mathematical models are dissimilar structurally from
the predator–prey models only for different species [24, 25]. Polis [25] has tremendous
contribution related to cannibalism and has mentioned around thirteen hundred differ-
ent species involving this factor. In the case of predator–prey interaction, the inclusion of
cannibalism is considered as a mechanics of natural selection which is in fact a familiar
phenomenon [26]. According to many ecologists and biologists, the behavior of popula-
tion dynamics has been extremely affected in response to the impact of cannibalism, and
these incorporate the lifeboat instrument, where the affected role of cannibalism precedes
to perseverance in population destruction [27]. It can also be helpful to get stability in
cycling populations [28]. In numerous species, cannibalism factor appears when minimal
resources are available corresponding to high level population densities of the species [29].
In the beginning, cannibalism was stimulated as an impact of obstruction in the predator
population only, and accordingly it is occasionally competition mediated [28, 30, 31]. De-
spite ecological support in experimental work as well as in field work, this phenomenon is
often observable in prey population [32–34]. However, the experimental work immensely
encourages researchers to formulate some innovative ideas in the present scenario. These
experimental findings greatly inspire to develop new ideas in current research. A com-
prehensive study of the present and previous mathematical surveys related to cannibal-
ism indicates that the appearance of cannibalism in population models has many applica-
tions. These models comprise ODE, PDE, and discrete models representing two and three
species population models, where cannibalism is involved in both prey and predator popu-
lations, a ratio-dependent type functional response, and some recent emerging developed
models incorporating diseased predators associated with cannibalism [27, 28, 35–39]. In
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[40] the authors studied a well-known Lotka–Volterra model involving cannibalism in a
predator population and discussed the stability analysis of the proposed model. Addition-
ally, these investigations reveal how stability has been affected by cannibalism. Zhang et al.
[41] proposed a new method based on non-dimensionalization and applied it on a stage-
structure model involving the predator cannibalism factor. The authors also studied the
dynamics of the predator–prey model of stage structure including global stability analysis,
subcritical and supercritical Hopf bifurcation along with biological meaning of parameters
involved in the system.

For the purpose of investigating a class of population models related to non-overlapping
generation, Danca et al. [42] discussed the following system:

⎧
⎨

⎩

xn+1 := rxn(1 – xn) – αxnyn,

yn+1 := dxnyn,
(1)

where xn and yn represent prey and predator population respectively with nth generation.
Furthermore,

• r represents intrinsic growth rate of prey;
• α indicates per capita searching efficiency;
• d is the conversion rate of predator.

Taking into account the rate of natural death c for predator, system (1) takes the form [43]

⎧
⎨

⎩

xn+1 := rxn(1 – xn) – αxnyn,

yn+1 := dxnyn – cyn.
(2)

Recently, Shabbir et al. [44] discussed the dynamical complexity of model (2) along with
prey cannibalism. Moreover, Seval Işık [45] further modified (2) with addition of Allee
effect in prey equation and stated it as follows:

⎧
⎨

⎩

xn+1 := rxn(1 – xn) – αxnyn( xn
xn+m ),

yn+1 := dxnyn – cyn,
(3)

where constant term m imposed on the prey equation is known as Allee constant.
At present, some remarkable continued work related to the modification of system (3)

including asymptotic stability, bifurcation analysis, and chaos control study has been car-
ried out. Liu [46] examined the existence of periodic solutions for a discrete semi-ratio-
dependent predator–prey system. Moreover, the permanence and existence of unique uni-
formly asymptotic stability of positive almost periodic solutions in a discrete predator–
prey system with time delays were determined in [47]. Din [48] considered a Leslie–Gower
predator–prey model and studied bifurcation along with feedback control methodologies
to control chaos and bifurcation. For further similar fascinating results related to discrete-
time predator–prey models, we refer to [49–54] and the references therein.

In this article, our aim is to discuss the dynamics of our proposed model developed from
the inclusion of cannibalism in prey population of discrete-time predator–prey model (3)
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and is expressed by
⎧
⎨

⎩

xn+1 := rxn(1 – xn) + bxn – αx2
nyn

xn+m – βx2
n

xn+γ
,

yn+1 := dxnyn – cyn.
(4)

Clearly, the addition of the term β ×x × x
x+γ

is known as a generic cannibalism factor. The
cannibalism rate is denoted by β , whereas prey cannibalism has Holling-II type functional
response. The term bx represents the birth rate of prey, and the condition β > b is imposed
because it takes depredation of prey. Note that the x(t) population is depredating on its
own species.

The rest of this manuscript can be summarized as follows: Sect. 2 deals with the ex-
istence of biologically possible equilibria and the conditions of asymptotic stability. Sec-
tion 3 is associated with the study of bifurcation analysis for system (4). OGY and hybrid
control methods are utilized in Sect. 4. Finally, extensive numerical simulations are im-
posed in Sect. 5 to justify our analytical results.

2 Stability analysis of steady-states
This section is dedicated for the exploration of local stability analysis of system (4). To
investigate the solution of system (4), we consider the following algebraic system:

x = rx(1 – x) + bx –
αx2y
x + m

–
βx2

x + γ
,

y = dxy – cy.

Simple computations yield the following equilibria for system (4):

E0 = (0, 0), E1 = (k, 0), E� =
(
x�, y�

)
,

where

k :=
r(1 – β) – (1 + α) + c +

√
4r(c + r – 1)β + (r(1 – β) – (1 + α) + c)2

2r
, x� :=

1 + c
d

,

y� :=
(1 + c + dm)(d2(b + r – 1)γ + (1 + c)d(b + r – β – rγ – 1) – (1 + c)2r)

(1 + c)dα(1 + c + dγ )
.

Moreover, trivial equilibrium E0 always exists, the boundary equilibrium E1 exists only for
k > 0, that is, k is the solution of rx2 + (1 + β + rγ – b – r)x + γ – rγ – bγ = 0 with b + r > 1,
and unique positive equilibrium E� exists only for γ d2 + (1 + c)(1 + β + γ r)d + (1 + c)2r <
(b + r)(1 + c +γ d)d. The variational matrix at any arbitrary point (x, y) of system (4) is given
by

V(x, y) =

[
b + r – 2rx + x( xβ

(x+γ )2 – (2m+x)yα
(m+x)2 – 2β

x+γ
) –αx2

x+m

dy dx – c

]

.

Assume that R� is any arbitrary solution of system (4) with Jacobian

V
(
R�

)
=

[
α11 α12

α21 α22

]
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and the characteristic polynomial

P(λ) = λ2 – Iλ + ℘,

where I = α11 + α22 and ℘ = α11α22 – α12α21, then Lemma 1 gives insight about the explo-
ration of local stability analysis of system (4).

Lemma 1 ([55]) Let P(λ) = λ2 – Iλ+℘ and P(1) > 0. Moreover, λ1, λ2 are roots of equation
P(λ) = 0, then:

(i) |λ1| < 1 and |λ2| < 1 if and only if P(–1) > 0 and ℘ < 1;
(ii) |λ1| > 1 and |λ2| > 1 if and only if P(–1) > 0 and ℘ > 1;

(iii) |λ1| < 1 and |λ2| > 1 or (|λ1| > 1 and |λ2| < 1) if and only if P(–1) < 0;
(iv) λ1 = –1 and |λ2| �= 1 if and only if P(–1) = 0 and I �= 0, 2;
(v) λ1, λ2 are complex conjugates with |λ1| = 1 = |λ2| if and only if I2 – 4℘ < 0 and ℘ = 1.

Since λ1 and λ2 are eigenvalues of system (4), we have elaborated the following topologi-
cal findings interconnected to the stability of R�. R� is known as sink if |λ1| < 1 and |λ2| < 1,
as sink is the point of suction which is stable. The equilibrium point R� is recognized as
source if |λ1| > 1 and |λ2| > 1, as it always remains unstable. The equilibrium R� is saddle
if |λ1| > 1 and |λ2| < 1 or vice versa (|λ1| < 1 and |λ2| > 1), whereas it is non-hyperbolic if
conditions (iv) and (v) from Lemma 1 are fulfilled.

It can be easily observed that the trivial equilibrium E0 = (0, 0) of system (4) has eigen-
values b + r and –c, then the following assumptions hold:

• (0, 0) is a sink if and only if b + r ∈ (0, 1) and c ∈ (0, 1);
• (0, 0) is a source if and only if b + r > 1 and c > 1;
• (0, 0) represents a saddle point if and only if b + r > 1 and c < 1 and vice versa;
• (0, 0) is non-hyperbolic for b + r = 1 or c = 1.

Also, for r = 0.1, the topological classification of trivial equilibrium in bc-plane is plotted
in Fig. 1(a).

Furthermore, at boundary equilibrium point E1 = (k, 0), V(k, 0) is computed as follows:

V(k, 0) :=

[
b + r – 2kr – kβ(k+2γ )

(k+γ )2 – k2α
k+m

0 dk – c

]

.

Furthermore, the following topological results for boundary equilibrium are satisfied.

Theorem 1 Suppose that b + r > 1 and Ψ = kβ(k+2γ )
(k+γ )2 , then the following results hold:

• E1 is a sink ⇔ 2kr + Ψ < b + r + 1 < 2(1 + kr) + Ψ & 0 < dk < 1 + c.
• E1 is a source ⇔ 1 + b + r > 2(1 + kr) + Ψ & dk > 1 + c.
• E1 is a saddle point ⇔ 2kr + Ψ < b + r + 1 < 2(1 + kr) + Ψ & dk > 1 + c.
• E1 is non-hyperbolic ⇔ b + r = 1 + 2kr + Ψ or dk = 1 + c.

Taking (β , r, c, d) = (1.27, 0.5, 0.82, 1.27), the topological classification for boundary equi-
librium is depicted in Fig. 1(b) in bγ -plane.

Moreover, V(x, y) about interior equilibrium E� is expressed by

V
(
E�

)
:=

[
u11 u12

u21 u22

]

,
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Figure 1 (a) Topological classification for trivial equilibrium for r = 0.1. (b) Topological classification of E1.
(c) Topological classification for E�

where

u11 := –
(1 + c)4r + (1 + c)d3(2m(–2 + b + r) – γ )γ + d4m(–2 + b + r)γ 2

d(1 + c + dm)(1 + c + dγ )2

–
(1 + c)3d(–1 + 2rγ ) + (1 + c)2d2(m(–2 + b + r – β) + γ (–2 + β + rγ ))

d(1 + c + dm)(1 + c + dγ )2 ,

u21 :=
(1 + c + dm)(–(1 + c)2r + d2(–1 + b + r)γ + (1 + c)d(–1 + b + r – β – rγ ))

(1 + c)α(1 + c + dγ )
,

u12 := –
(1 + c)2α

d(1 + c + dm)
; u22 := 1.

The characteristic equation of Jacobian V(E�) is given by

F(λ) := λ2 – (u11 + u22)λ + u11u22 – u12u21. (5)
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By performing simple algebraic calculations and letting b + r > 1 and d(b + r) > (1 + c)r +
d(1 + β + rγ ), we get

F(1) :=
(1 + c)(d2(b + r – 1)γ + d(1 + c)(b + r – β – rγ – 1) – (1 + c)2r)

d(1 + c + dγ )
,

F(–1) :=
d2m(5 + (c – 1)(b + r) – c) – (1 + c)2(3 + c)r

d(1 + c + dm)
+

2(1 + c)2β

(1 + c + dγ )2

–
(1 + c)2(3 + c + dm)β

(1 + c + dm)(1 + c + dγ )
+

(1 + c)(3 + (1 + c)(b – (m – 1)r) – c)
1 + c + dm

.

(6)

From (6), we see that F(1) > 0. Therefore, the following topological classification can be
made by applying Lemma 1.

Theorem 2 Assume that (1 + c)(d(1 + β + rγ ) + (1 + c)r) + d2γ < d(b + r)(1 + c + dγ ) and
put 1 + c + dm = η, 1 + c + dγ = ξ , and 1 + c = Ω such that the equilibrium point E� = (x�, y�)
of map (4) exists, then the following findings remain accurate:

(a) E� is asymptotically stable ⇔

dΩ2(1 + mr + ξβ(2 + η)) + d2m(1 + 2(b + r)) + ξ 2Ω2r(Ω + 2)
< 2dΩ2βη + ξ 2{d2m(Ω(1 + b + r) + 5) + dΩ(Ω(b + r) + 4)};

}

and

d[βηΩ2 + ξ 2{Ω(1 + bΩ) + (2 + (b + r)Ω)md}]
< r(d2m + Ω2(1 + d + Ω)) + dξ{ξ (η + dm(b + Ω)) + Ω2(1 + ξ + ηβ)}.

}

(b) E� is an unstable equilibrium point ⇔

dΩ2(1 + mr + ξβ(2 + η)) + d2m(1 + 2(b + r)) + ξ 2Ω2r(Ω + 2)
< 2dΩ2βη + ξ 2{d2m(Ω(1 + b + r) + 5) + dΩ(Ω(b + r) + 4)}

}

and

dξ{ξ (η + dm(b + Ω)) + Ω2(1 + ξ + ηβ)} + r(d2m + Ω2(1 + d + Ω))
< d[βηΩ2 + ξ 2{Ω(1 + bΩ) + (2 + (b + r)Ω)md}].

}

(c) E� is a saddle point if and only if

2dΩ2βη + ξ 2{d2m(Ω(1 + b + r) + 5) + dΩ(Ω(b + r) + 4)}
< dΩ2(1 + mr + ξβ(2 + η)) + d2m(1 + 2(b + r)) + ξ 2Ω2r(Ω + 2).

}

(d) E� is non-hyperbolic ⇔ u11 + u22 �= 0, 2 and

r := –
dη(–5 + c + 2Ω

η
+ b(1 – c – 2Ω

η
) – 2Ω2β

ξ2 + Ω2(2+η)β
ηξ

)
(1 + c)2(3 + c – d) + d(1 + c(2 + c – d) + d)m
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or

|u11 + u22| ≤ 2, and

β := –
(Ω2(2 + c)r – cd2m(b + r – 1) – Ω2d(b + r – mr – 1))ξ 2

Ω2d(1 + (1 + η)(c + dγ ))
.

Furthermore, taking (β , b, c, d, m) = (4.47, 3.07, 0.5, 3.15, 4.4) topological classification
for positive equilibrium is depicted in Fig. 1(c).

3 Bifurcation analysis
This section is devoted to the study of bifurcation in which three different types of bifurca-
tions are investigated. We explore transcritical bifurcation, periodic-doubling bifurcation,
and Neimark–Sacker bifurcation of system (4) at E0, E1, and E�.

3.1 Transcritical bifurcation at E0

In this section, our claim is that fixed point E0 undergoes transcritical bifurcation. Hence
we assume that

r ≡ r0 := 1 – b

and consider the set

BT :=
{(

r0, b, c, d, m,α,β ,γ
) ∈ R8

+ : r0 := 1 – b
}

.

As (r0, b, c, d, m,α,β ,γ ) ∈ BT, then (4) is alternatively described by the map

(
x
y

)

→
((r0 + r̂)x(1 – x) + bx – αx2y

x+m – βx2

x+γ

dxy – cy

)

,

where parameter r̂ represents a very small purturbation in r0. Therefore, an application of
the Taylor series expansion about (x, y, r̂) = (0, 0, 0) yields

(
x
y

)

→
(

b + r̂ 0
0 –c

)(
x
y

)

+
(

f0(x, y, r̂)
g0(x, y)

)

, (7)

where
⎧
⎨

⎩

f0(x, y, r̂) := –(r̂ + β

γ
)x2 – α

m x2y + β

γ 2 x3 + xř + O((|x| + |y| + |r̂|)4),

g0(x, y, r̂) := dxy.

The linear portion of map (7) is in a canonical form as r0 := 1 – b. Consequently, the im-
plementation of center manifold Wc(0, 0, 0) for map (7) is approximated by

Wc(0, 0, 0) :=
{

u, v, r̂ ∈R
3 : v = h1u2 + h2ur̂ + h3r̂2 + O

((|u| + |r̂|)3)},

where h1 = h2 = h3 = 0.
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Additionally, we introduce the map restricted to the center manifold Wc(0, 0, 0):

F : u → u + r̂ + k1u2 + k2ur̂ + k3r̂2 + O
((|u| + |r̂|)4),

where k1 = a – 1 – β

γ
, k2 = 1, k3 = 0.

Now, here we establish L1 �= 0 and L2 �= 0 as follows:
⎧
⎨

⎩

L1 := ( ∂2F
∂u2 )(0,0) = 2(b – 1 – β

γ
) �= 0,

L2 := ( ∂2F
∂u∂ r̂ )(0,0) = 1 �= 0.

Thus, we can state the following theorem related to transcritical bifurcation.

Theorem 3 Suppose that r = 1 – b and b – 1 – β

γ
�= 0, then (4) undergoes transcritical

bifurcation at its trivial equilibrium E0.

3.2 Period-doubling bifurcation at E1

In the present section, we study period-doubling bifurcation about E1 = (k, 0). Therefore
the Jacobian matrix of corresponding system (4) with respect to E1 is given by

J
(
E1) :=

(
b + r – 2kr – kβ(k+2γ )

(k+γ )2 – k2α
k+m

0 dk – c

)

.

Using Lemma 1 for the case of non-hyperbolic steady-state, when one eigenvalue λ1 = –1
implies that

β :=
(1 + b + r – 2kr)(k + γ )2

k(k + 2γ )
,

we consider the set

BPB :=
{

(r, b, c, d, m,α,β ,γ ) ∈ R8
+ : β :=

(1 + b + r – 2kr)(k + γ )2

k(k + 2γ )

}

.

Moreover, suppose that (r, b, c, d, m,α,β ,γ ) ∈ BPB . Then the boundary fixed point E1 of
system (4) sustains period-doubling bifurcation whenever β is chosen as a bifurcation pa-
rameter and it varies in a small neighborhood of β1 := (1+b+r–2kr)(k+γ )2

k(k+2γ ) . Therefore, in terms
of parameters (β1, r, b, c, d, m,α,γ ), system (4) can be demonstrated as follows:

(
H
Z

)

→
(rH(1 – H) + bH – αH2Z

H+m – β1H2

H+γ

dHZ – cZ

)

. (8)

After a small perturbation β̃ in β1, map (8) can be rearranged as

(
H
Z

)

→
(rH(1 – H) + bH – αH2Z

H+m – (β1+β̃)H2

H+γ

dHZ – cZ

)

, (9)

where |β̃| � 1. Suppose that x = H – k and y = Z, then map (9) is reshaped as follows:

(
x
y

)

→
(

c11 c12

c21 c22

)(
x
y

)

+
(

f1(x, y, β̃)
g1(x, y)

)

, (10)
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x, y, β̃) := c13x2 + c14xy + c15x3 + c16x2y + c17xβ̃ + c18x2β̃ + O((|x| + |y| + |β̃|)4),

g1(x, y) := c23xy;

c11 := b + r – 2kr – kβ̃(k+2γ )
(k+γ )2 ; c12 := – k2α

k+m ; c21 := 0; c22 := dk – c;

c13 := –r – β̃

γ
+ 4kβ̃

γ 2 – 4k2β̃

γ 3 ; a14 := αk(k+2m)
(k+m)2 ; a15 := 2β̃(γ 2–4kγ +4k2)

γ 4 ;

a16 := –αm2

(k+m)3 ; a17 := – 2k(γ –k)
γ 2 ; a18 := – γ 2+4k2–4kγ

γ 3 ; c23 := d.

Additionally, we establish the following translation map:

(
x
y

)

→ T
(

u
v

)

, (11)

where T :=
( c12 c12

–c11–1 λ2–c11

)
is a nonsingular matrix. Map (11) under translation (10) can be

prepared as follows:

(
u
v

)

→
(

–1 0
0 λ2

)(
u
v

)

+
(

f2(u, v, β̃)
g2(u, v, β̃)

)

, (12)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f2(u, v, β̃) := ( (λ2–a11)c15
(λ2+1)c12

)x3 + ( (λ2–c11)c16
(λ2+1)c12

)x2y + ( (λ2–c11)(β̃c18+c13)
c12(λ2+1) )x2

+ ( (λ2–c11)c14
c12(λ2+1) – c23

λ2+1 )xy + ( (λ2–c11)β̃c17
c12(λ2+1) )x + O((|u| + |v| + |β̃|)4);

g2(u, v, β̃) := ( (1+c11)c15
(1+λ2)c12

)x3 + ( (1+c11)c16
(1+λ2)c12

)x2y + ( (1+c11)(β̃c18+c13)
(λ2+1)c12

)x2

+ ( (1+c11)c14
(1+λ2)c12

+ c23
λ2+1 )xy + ( (1+c11)β̃c17

(1+λ2)c12
)x + O((|u| + |v| + |β̃|)4)

and x := c12(u + v); y := (λ2 – c11)v – (1 + c11)u.
In addition, we execute the center manifold wc(0, 0, 0) for map (12) computed at (0, 0)

and within a small neighborhood of β̃ = 0, then we have

wc(0, 0, 0) :=
{

u, v, β̃ ∈ R3 : v = h1u2 + h2uβ̃ + h3β̃
2 + O

((|u| + |β̃|)3)}, where

h1 :=
(1 + c11)(c11c14 – c12c13 + c12c23 + c14)

λ2
2 – 1

, h2 := –
(1 + c11)c17

λ2
2 – 1

, h3 := 0.

Consequently, the restricted map to the center manifold wc(0, 0, 0) is given by

F : u → –u + s1u2 + s2uβ̃ + s3u2β̃ + s4uβ̃2 + s5u3 + O
((|u| + |β̃|)4), where

⎧
⎪⎪⎨

⎪⎪⎩

s1 := ( c12c23
λ2+1 – (λ2–c11)c14

λ2+1 )(1 + c11) + ( λ2–c11
λ2+1 )c12c13; s2 := ( λ2–c11

λ2+1 )c17;

s3 := ( (λ2–c11)c14
λ2+1 – c12c23

λ2+1 )(λ2 – c11)h2 + λ2–c11
λ2+1 2c12c13h2 + λ2–c11

λ2+1 c12c18

+ ( c12c23
λ2+1 – (λ2–c11)c14

λ2+1 )(1 + c11)h2 + λ2–c11
λ2+1 c17h1;
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and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s4 := ( (λ2–c11)c14
λ2+1 – c12c23

λ2+1 )(λ2 – c11)h3 + λ2–c11
λ2+1 2c12c13h3 + λ2–c11

λ2+1 c16h2

+ ( c12c23
λ2+1 – (λ2–c11)c14

λ2+1 )(1 + c11)h3;

s5 := ( (λ2–c11)c14
λ2+1 – c12c23

λ2+1 )(λ2 – c11)h1 + λ2–c11
λ2+1 c2

12c15 + λ2–c11
λ2+1 2c12c13h1

+ ( c12c23
λ2+1 – (λ2–c11)c14

λ2+1 )(1 + c11)h1 + (c11–λ2)(1+c11)c12c16
λ2+1 .

Now, here we establish once more that L1 and L2 both are nonzero:

⎧
⎨

⎩

L1 := ( ∂2f
∂u∂β̃

+ 1
2

∂F
∂β̃

∂2F
∂u2 )(0,0) = (λ2–c11)c17

λ2+1 �= 0;

L2 := ( 1
6

∂3F
∂u3 + ( 1

2
∂2F
∂u2 )2)(0,0) = s5 + s2

1 �= 0.

The aforementioned analysis yields the following conclusion.

Theorem 4 If L1&L2 �= 0, then system (4) undergoes period-doubling bifurcation at E1

whenever β varies in a small neighborhood of β1 := (1+b+r–2kr)(k+γ )2

k(k+2γ ) . Moreover, in the case of
L2 > 0, there exist period-two orbits which bifurcate from equilibrium E1, which are stable
orbits, whereas for L2 < 0 unstable orbits are generated.

3.3 Period-doubling bifurcation at E�

In this section, we discuss the existence of period-doubling bifurcation in (4) at equilib-
rium E�. In addition, the characteristic equation of the Jacobian matrix about E� = (x�, y�)
is expressed by

F(λ) := λ2 – p
(
x�, y�

)
λ + q

(
x�, y�

)
, where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(x�, y�) := (1+c)2β

(1+c+dγ )2 – (1+c)2r+d2m(b+r–3)–2(1+c)d
d(1+c+dm)

– (1+c)2β

(1+c+dm)(1+c+dγ ) ;

q(x�, y�) := (1+c)(b+(–1+b)c)+(1+(–1+b)c)dm
(1+c+dm) + (1+c)2β

(1+c+dγ )2

+ ((1+c)2(2+c–d)+d((1+c)2–cd)m)r
d(1+c+dm) – (1+c)2(2+c+dm)β

(1+c+dm)(1+c+dγ ) .

(13)

Suppose that

p2(x�, y�
)

> 4q
(
x�, y�

)
, (14)

and F(–1) = 0, then it follows that

r := –
d(1 + c + dm)(–5 + c + 2(1+c)

1+c+dm + b(1 – c – 2(1+c)
1+c+dm ) – 2(1+c)2β

(1+c+dγ )2 + (1+c)2(3+c+dm)β
(1+c+dm)(1+c+dγ ) )

(1 + c)2(3 + c – d) + d(1 + c(2 + c – d) + d)m
.

(15)

From Eq. (13), assume that F(λ) = 0. Then one root is λ1 = –1 and the condition |λ2| �= 1
implies that

q
(
x�, y�

) �= ±1. (16)
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Again we consider the following set:

BPU :=
{

(r, b, c, d, m,α,β ,γ ) ∈ R8
+ : (14), (15), and (16) are fulfilled

}
.

The fixed point E� of map (4) undergoes period-doubling bifurcation whenever the pa-
rameter r varies in a small neighborhood of the set BPU .

Let

r1 := –
d(1 + c + dm)(–5 + c + 2(1+c)

1+c+dm + b(1 – c – 2(1+c)
1+c+dm ) – 2(1+c)2β

(1+c+dγ )2 + (1+c)2(3+c+dm)β
(1+c+dm)(1+c+dγ ) )

(1 + c)2(3 + c – d) + d(1 + c(2 + c – d) + d)m
,

and take the arbitrary parameters (r1, b, c, d, m,α,β ,γ ) ∈ BPU , then map (4) can be ex-
pressed by

(
P
Q

)

→
(r1P(1 – P) + bP – αP2Q

P+m – βP2

P+γ

dPQ – cQ

)

. (17)

Assume a small perturbation r̃ bifurcation parameter. Then map (17) can be examined by

(
P
Q

)

→
((r1 + r̃)P(1 – P) + bP – αP2Q

P+m – βP2

P+γ

dPQ – cQ

)

, (18)

where |r̃| � 1 is a small perturbation parameter.
Putting x = P – x∗ and y = Q – y∗, then system (18) is tranformed into the following form:

(
x
y

)

→
(

a11 a12

a21 a22

)(
x
y

)

+
(

f3(x, y, r̃)
g3(x, y, r̃)

)

, (19)

where
⎧
⎨

⎩

f3(x, y, r̃) := a13x2 + a14xy + a15x3 + a16x2y + a17xr̃ + a18x2r̃ + O((|x| + |y| + |r̃|)4),

g3(x, y, r̃) := a23xy + a24xr̃ + O((|x| + |y| + |r̃|)4),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 := – (1+c)4 r̃+(1+c)d3(2m(–2+b+r̃)–γ )γ +d4m(–2+b+r̃)γ 2

d(1+c+dm)(1+c+dγ )2

– (1+c)3d(–1+2r̃γ )+(1+c)2d2(m(–2+b+r̃–β)+γ (–2+β+r̃γ ))
d(1+c+dm)(1+c+dγ )2 ;

a21 := (1+c+dm)(–(1+c)2 r̃+d2(–1+b+r̃)γ +(1+c)d(–1+b+r̃–β–r̃γ ))
(1+c)α(1+c+dγ ) ,

a13 := 2(d2γ (b+r̃–1)+d(1+c)(b+r̃–β–r̃γ –1)–(1+c)2 r̃)
(1+c+dm)(1+c+dγ ) + 2βd(1+c)

(1+c+dγ )2

– (1+c)(d2γ (b+r̃–1)+d(1+c)(b+r̃–β–r̃γ –1)–(1+c)2 r̃)
(1+c+dm)2(1+c+dγ ) – βd

1+c+dγ

– d2γ (b+r̃–1)+d(1+c)(b+r̃–β–r̃γ –1)–(1+c)2 r̃
(1+c)(1+c+dγ ) – βd(1+c)2

(1+c+dγ )3 – r̃;

a15 := d(1+c)(d2γ (b+r̃–1)+d(1+c)(b+r̃–β–r̃γ –1)–(1+c)2 r̃)
(1+c+dm)2(1+c+dγ )

+ (d2γ (b+r̃–1)+d(1+c)(b+r̃–β–r̃γ –1)–(1+c)2 r̃)d
(1+c+dm)(1+c+dγ )(1+c) + βd2(1+c)2

(1+c+dγ )4

– 2d(d2γ (b+r̃–1)+d(1+c)(b+r̃–β–r̃γ –1)–(1+c)2 r̃)
(1+c+dm)2(1+c+dγ ) + βd2

(1+c+dγ )2

– 2βd2(1+c)
(1+c+dγ )3 ; a14 := – α(1+c)(1+c+2dm)

(1+c+dm)2 ; a16 := – αm2d3

(1+c+dm)3 ;

a18 := – 1+3c+2dm+4cdm+3c2+c3+2c2dm+d3m2

(1+c+dm)2(1+c) ; a22 := 1; a23 := d;

a24 := – (1+c+dm)(d2γ +d(1+c)(1–γ )–(1+c)2)
α(1+c+dγ )(1+c) ; a12 := – (1+c)2α

d(1+c+dm) ;

a17 := – 1+2c+c2+md2

d(1+c+dm) .
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Now, we develop the following map:

(
x
y

)

→ T
(

u
v

)

, (20)

where T :=
( a12 a12

–a11–1 λ2–a11

)
is an invertible matrix. Translation (20) under (19) can be writ-

ten as follows:

(
u
v

)

→
(

–1 0
0 λ2

)(
u
v

)

+
(

f4(u, v, r̃)
g4(u, v, r̃)

)

, (21)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f4(u, v, r̃) := ( (λ2–a11)a15
(λ2+1)a12

)x3 + ( (λ2–a11)(r̃a18+a13)
a12(λ2+1) )x2 + ( (λ2–a11)a16

a12(λ2+1) )x2y

+ ( (λ2–a11)a14
a12(λ2+1) – a24

λ2+1 )xy + ( (λ2–a11)r̃a17
a12(λ2+1) – r̃a25

λ2+1 )x + O((|u| + |v| + |r̃|)4);

g4(u, v, r̃) := ( (1+a11)a15
a12(λ2+1) )x3 + ( (1+a11)(r̃a18+a13)

a12(λ2+1) )x2 + ( (1+a11)a16
a12(λ2+1) )x2y

+ ( (1+a11)a14
a12(λ2+1) + a24

λ2+1 )xy + ( (1+a11)r̃a17
a12(λ2+1) + r̃a25

λ2+1 )x + O((|u| + |v| + |r̃|)4)

and x := a12(u + v); y := –(1 + a11)u + (λ2 – a11)v.
Now, considering the center manifoldW

c(0, 0, 0) of (21) in a small neighborhood of r̃ = 0,
then W

c(0, 0, 0) can be embellished by

W
c(0, 0, 0) :=

{
u, v, r̃ ∈R

3 : v = h1u2 + h2ur̃ + h3r̃2 + O
((|u| + |r̃|)3)},

in which

h1 :=
(1 + a11)(a11a14 – a12a13 + a12a24 + a14)

λ2
2 – 1

;

h2 := –
a11a17 + a12a25 + a17

λ2
2 – 1

; h3 = 0.

Thus, the map restricted to W
c(0, 0, 0) is prescribed as follows:

F : u → –u + s1u2 + s2ur̃ + s3u2r̃ + s4ur̃2 + s5u3 + O
((|u| + |r̃|)4),

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 := ( a12a24
λ2+1 – (λ2–a11)a14

λ2+1 )(1 + a11) + (λ2–a11)a12a13
λ2+1 ; s2 := λ2a17–a11a17–a12a25

λ2+1 ;

s3 := ( (λ2–a11)a14
λ2+1 – a12a24

λ2+1 )(λ2 – a11)h2 + 2(λ2–a11)a12a13h2
λ2+1 + (λ2–a11)a12a18

λ2+1

+ ( a12a24
λ2+1 – (λ2–a11)a14

λ2+1 )(1 + a11)h2 + ( (λ2–a11)a17
λ2+1 – a12a25

λ2+1 )h1;

s4 := ( (λ2–a11)a14
λ2+1 – a12a24

λ2+1 )(λ2 – a11)h3 + ( a12a24
λ2+1 – (λ2–a11)a14

λ2+1 )(1 + a11)h3

+ ( (λ2–a11)a17
λ2+1 – a12a25

λ2+1 )h2 + 2(λ2–a11)a12a13h3
λ2+1 ;

s5 := ( (λ2–a11)a14
λ2+1 – a12a24

λ2+1 )(λ2 – a11)h1 + (λ2–a11)a2
12a15

λ2+1 + 2(λ2–a11)a12a13h1
λ2+1

+ ( a12a24
λ2+1 – (λ2–a11)a14

λ2+1 )(1 + a11)h1 + (λ2–a11)a12a16(–1–a11)
λ2+1 .
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Now, here we define two nonzero real numbers as follows:
⎧
⎨

⎩

L1 := ( ∂2f
∂u∂ r̃ + 1

2
∂F
∂ r̃

∂2F
∂u2 )(0,0) = λ2a17–a12a25–a11a17

λ2+1 �= 0,

L2 := ( 1
6

∂3F
∂u3 + ( 1

2
∂2F
∂u2 )2)(0,0) = s5 + s2

1 �= 0.

Due to the aforementioned investigations, we state the following theorem related to
period-doubling bifurcation.

Theorem 5 System (4) undergoes period-doubling bifurcation at E� when the parameter
r changes its values around a neighboring point of r1 whenever L1 �= 0 and L2 �= 0. Further-
more, the period-two orbits that bifurcate from interior equilibrium E� are stable whenever
L2 > 0 and unstable when L2 < 0.

3.4 Neimark–Sacker bifurcation at E�

This section consists of the existence criteria for Neimark–Sacker bifurcation around an
interior fixed point by considering the rate of cannibalism β as a bifurcation parameter.
For detailed analysis, we refer to the work done by the authors [56–59]. On the other hand,
when Neimark–Sacker bifurcation exists, then as a result, dynamically closed curves ap-
pear and attracting steady-states are unstable as varied parameters move towards β . In re-
turn, we can discover some isolated orbits along with trajectories and with periodic behav-
ior that thickly overlay these immutable closed curves [60]. In the case of non-hyperbolic
fixed points, we have studied the conditions associated with system (4) and a pair of com-
plex eigenvalues having unit modulus. For this, consider (13) and assume that F(λ) = 0
has two roots which are complex conjugate and fulfill the following conditions:

β := –
((1 + c)2(2 + c)r – cd2m(–1 + b + r) – (1 + c)2d(–1 + b + r – mr))(1 + c + dγ )2

(1 + c)2d(1 + (2 + c + dm)(c + dγ ))
(22)

and

∣
∣
∣
∣–

(1 + c)2r + d2m(b + r – 3) – 2(1 + c)d
d(1 + c + dm)

–
(1 + c)2β

(1 + c + dm)(1 + c + dγ )
+

(1 + c)2β

(1 + c + dγ )2

∣
∣
∣
∣ < 2.

(23)

Further, suppose that

Bℵ :=
〈
(α,β ,γ , b, c, d, m, r) : (22) and (23) holds

〉
.

Then equilibrium E� of (4) undergoes NSB for different parametric values belonging to
the small neighborhood of the set Bℵ.

Let us replace β1 = β in (22) and (r, b, c, d,α,β1,γ , m) ∈ Bℵ. Then the following modifi-
cation in system (4) can be ensured:

(
P
Q

)

→
(rP(1 – P) + bP – αP2Q

P+m – β1P2

P+γ

dPQ – cQ

)

. (24)
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Consider the perturbation of map (24) by selecting β̂ as a minimal perturbation parameter,
then we have the following map:

(
P
Q

)

→
(rP(1 – P) + bP – αP2Q

P+m – (β1+β̂)P2

P+γ

dPQ – cQ

)

,

where |β̂| � 1.
Now, we introduce the transformation and put x = P – x� and y = Q – y�, where E� =

(x�, y�), then (24) can be rearranged as follows:

(
x
y

)

→
(

m11 m12

m21 m22

)(
x
y

)

+
(

f5(x, y)
g5(x, y)

)

, (25)

where
⎧
⎨

⎩

f5(x, y) := m13x2 + m14xy + m15x3 + m16x2y + O((|x| + |y| + |β̂|)4),

g5(x, y) := m23xy + O((|x| + |y| + |β̂|)4),

and m11, m12, m21, m22, m13, m14, m15, m16, and m23 are given in (19) by replacing mij = aij,
i = 1, 2; j = 1, 2, 3, 4, 5, 6 and r1 by r, β by (β1 + β̂). The characteristic equation correspond-
ing to the system of (25) evaluated at (0, 0) is expressed by

λ2 – p(β̂)λ + q(β̂) = 0, (26)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p(β̂) := – (1+c)2(β1+β̂)
(1+c+dm)(1+c+dγ ) – (1+c)2r+d2m(b+r–3)–2(1+c)d

d(1+c+dm)

+ (1+c)2(β1+β̂)
(1+c+dγ )2 ;

q(β̂) := ((1+c)2(2+c–d)+d((1+c)2–cd)m)r
d(1+c+dm) + (1+c)2(β1+β̂)

(1+c+dγ )2

+ (1+c)(b+(–1+b)c)+(1+(–1+b)c)dm
(1+c+dm) – (1+c)2(2+c+dm)(β1+β̂)

(1+c+dm)(1+c+dγ ) .

Since (r, b, c, d,α,β1,γ , m) ∈ Bℵ, the solutions of (26) are λ1 and λ2 along with |λ1| = |λ2| =
1; consequently one has

λ1,λ2 :=
p(β̂)

2
± i

2

√

4q(β̂) – p2(β̂)

and

|λ1| = |λ2| =
√

q(β̂),
(

d|λ1|
dβ̂

)

(β̂=0)

:=
(

d|λ2|
dβ̂

)

(β̂=0)

:= –
Ω2(1 + (1 + η)(Ω + dγ – 1))

2ηξ 2
√

d(Ω(b+(b–1)(Ω–1))+(1+(b–1)(Ω–1))dm)–(Ω2(1+Ω–d)+d(Ω2–(–1)d)m)r
dη

+ Ω2β1
ξ2 – Ω2β1(1+η)

ξη

,
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where 1 + c + dm = η, 1 + c + dγ = ξ , and 1 + c = Ω .
Further, we assume that

p(0) :=
Ω2β1

ξ 2 –
Ω2r – 2Ωd + d2m(b + r – 3)

dη
–

Ω2β1

ξη
�= 0, –1.

Moreover, (β1, r, b, c, d,α,γ , m) ∈ Bℵ implies that –2 < p(0) < 2. Thus p(0) �= ±2, 0, –1 gives
λn

1,λn
2 �= 1 for all n = 1, 2, 3, 4 at β̂ = 0. Consequently, the roots of (26) do not occur in the

intersection of the unit circle with the coordinate axes when β̂ = 0 and if the following
conditions hold:

Ω2β1
ξη

+ Ω2r–2Ωd+d2m(b+r–3)
dη

�= Ω2β1
ξ2 ,

Ω2β1
ξη

+ Ω2r–2Ωd+d2m(b+r–3)
dη

�= 1 + Ω2β1
ξ2 .

}

(27)

Now we study the normal form of (26) at β̂ = 0. In order to acquire the normal form, we
choose μ = p(0)

2 , ζ = 1
2

√
4q(0) – p2(0) is attained only if we elaborate the following trans-

formation:

(
x
y

)

:=

(
m12 0

μ – m11 –ζ

)(
u
v

)

. (28)

The desired form of (25) under conversion (28) can be reorganized as follows:

(
u
v

)

→
(

μ –ζ

ζ μ

)(
u
v

)

+
(

f̃ (u, v)
g̃(u, v)

)

, where

⎧
⎪⎪⎨

⎪⎪⎩

f̃ (u, v) := m15
m12

x3 + m16
m12

x2y + m13
m12

x2 + m14
m12

xy + O((|u| + |v|)4);

g̃(u, v) := (η–m11)m15
ζm12

x3 + (η–m11)m16
ζm12

x2y + (η–m11)m13
ζm12

x2

+ ( (η–m11)m14
ζm12

– m23
ζ

)xy + O((|u| + |v|)4),

x = m12u and y = (η – m11)u – ζv. Now, we define nonzero L ∈ R(set of real numbers) as
follows:

L :=
([

– Re

(
(1 – 2λ1)λ2

2
1 – λ1

Υ20Υ11

)

–
1
2
|Υ11|2 + |Υ02|2 + Re(λ2Υ21)

])

β̂=0
,

where

Υ20 :=
1
8
[
f̃uu – f̃vv + 2g̃uv + i(g̃uu – g̃vv – 2f̃uv)

]
,

Υ11 :=
1
4
[
f̃uu + f̃vv + i(g̃uu + g̃vv)

]
,

Υ02 :=
1
8
[
f̃uu – f̃vv – 2g̃uv + i(g̃uu – g̃vv + 2f̃uv)

]
,

and

Υ21 :=
1

16
[
f̃uuu + f̃uvv + g̃uuv + g̃vvv + i(g̃uuu + g̃uvv – f̃uuv – f̃vvv)

]
.
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Due to our aforementioned mathematical study, one can state the following theorem cf.
[61–65].

Theorem 6 Assume that (27) holds and L �= 0, then (4) undergoes NSB at E�, when β

changes its values in a small neighborhood of β1. Additionally, if L < 0, then an attracting
invariant closed curve bifurcates from E� for β1 < β , and for the case of L > 0, a repelling
invariant closed curve bifurcates from E� for β1 > β .

4 Chaos control
The chaos control and theory of bifurcation is one of the most vital and developed areas
of the current research. It has significant characteristics in population models especially
models associated with biological species. Furthermore, discrete-time population models
are more chaotic and complex as compared to their continuous counterparts. Hence, it is
obvious to execute chaos control techniques to evade any uncertainty. The current section
consists of the following two feedback control techniques:

(i) OGY feedback control strategy;
(ii) Hybrid feedback control strategy.

First, we apply the OGY method on system (4).

4.1 OGY control method
In this section, we execute the OGY method which was proposed by Ott et al., for details
see also [66, 67]. Now, we implement the OGY method on system (4), then we have the
following modified form of system (4):

⎧
⎨

⎩

xn+1 := rxn(1 – xn) + bxn – αx2
nyn

x+m – βx2
n

xn+γ
= f (xn, yn, r),

yn+1 := dxnyn – cyn = g(xn, yn, r),
(29)

where r is taken as a control parameter. Here, we restrict r to a small interval r ∈ (r0 –ς , r0 +
ς ) to achieve the desired control by implementing small perturbations. Also r0 indicates
any value from the chaotic region. Moreover, suppose that (x�, y�) is unstable equilibrium
of system (4) in the chaotic region under the influence of period-doubling bifurcation.
Then, by applying the following linear map, system (29) can be estimated in the neighbor-
hood of (x�, y�) as follows:

[(
xn+1 – x�

yn+1 – y�

)]

≈ J
(
x�, y�, r0

)
[(

xn – x�

yn – y�

)]

+ B[r – r0], (30)

where

J
(
x�, y�, r0

)
:=

[
∂f (x� ,y� ,r0)

∂x
∂f (x� ,y� ,r0)

∂y
∂g(x� ,y� ,r0)

∂x
∂g(x� ,y� ,r0)

∂y

]

and

B :=
[( ∂f (x� ,y� ,r0)

∂r
∂g(x� ,y� ,r0)

∂r

)]

=
[(

– (1+c)(1+c–d)
d2

0

)]

.
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Moreover, controllable system (29) yields that the following matrix

C := [B : JB] =

[
– (1+c)(1+c–d)

d2 ( ∂f (x� ,y� ,r0)
∂x )(– (1+c)(1+c–d)

d2 )
0 ( ∂g(x� ,y� ,r0)

∂x )(– (1+c)(1+c–d)
d2 )

]

is of rank 2.
Moreover, taking [r–r0] = –K[

(xn–x�

yn–y�

)
], where K = [k1 k2], then system (30) can be written

as

[(
xn+1 – x�

yn+1 – y�

)]

≈ [J – BK]
[(

xn – x�

yn – y�

)]

.

Furthermore, the equivalent controlled system of (4) is stated as follows:

⎧
⎨

⎩

xn+1 := xn(1 – xn)[r0 – k1(xn – x�) – k2(yn – y�)] + bxn – αx2
nyn

x+m – βx2
n

xn+γ
,

yn+1 := dxnyn – cyn.
(31)

Moreover, the equilibrium point (x�, y�) is asymptotically stable when both eigenvalues of
‘J – BK ’ belong to an open unit disk. The variational matrix ‘J – BK ’ of system (31) can be
written as follows:

J – BK =

[
ω11 ω12

ω21 ω22

]

,

and the characteristic equation of ‘J – BK ’ is given by

P(λ) := λ2 – (ω11 + ω22)λ + D = 0,

where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω11 := (1+c)(–(1+c)2r+d2(–1+b+r)γ +(1+c)d(–1+b+r–β–rγ ))
d(1+c+dm)(1+c+dγ ) – b

+ (1 – 1+c
d )r – (1+c)r

d + 2(1+c–d)r
d + (1+c)2β

(1+c+dγ )2 + (1+c)(1+c–d)ρ
d2 + 2;

ω21 := (1+c+dm)(–(1+c)2r+d2(–1+b+r)γ +(1+c)d(–1+b+r–β–rγ ))
(1+c)α(1+c+dγ ) ;

ω12 := (1+c)(– (1+c)dα
1+c+dm +(1+c–d)σ )

d2 ; ω22 = 1; D = ω11ω22 – ω12ω21,
⎧
⎪⎪⎨

⎪⎪⎩

L1 : P(1) = 0 ⇒ D – ω11 = 0 ⇒ ω12ω21 = 0;

L2 : P(–1) = 0 ⇒ 2(1 + ω11) – ω12ω21 = 0;

L3 : P(0) = 1 ⇒ D = ω11ω22 – ω12ω21 = 1.

4.2 Hybrid control method
To control the chaos which develops due to appearance of bifurcation in system (4), we
implement a hybrid control strategy [68]. This strategy was primarily developed for con-
trolling the chaos which developed because of period-doubling bifurcation, but in [69]
similar methodology is applied for Neimark–Sacker bifurcation. Moreover, assuming that
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(4) substantiates bifurcation at E�, we get the modified controlled system as follows:
⎧
⎨

⎩

un+1 := ρ[rxn(1 – xn) + bxn – αx2
nyn

x+m – βx2
n

xn+γ
] + (1 – ρ)xn,

vn+1 := ρ[dxnyn – cyn] + (1 – ρ)yn,
(32)

where ρ ∈ (0, 1) is a controlled parameter. For some applications of the method defined in
(32), we refer to the following references [64, 65, 68–71].

Consider the Jacobian of (32) estimated at E� and prescribed as follows:

[
Γ11 Γ12

Γ21 Γ22

]

,

also the characteristic equation is λ2 – (Γ22 + Γ11)λ + D = 0, where

Γ11 := 1 –
(r(1 + c)4 + 2(1 + c)3drγ + 2(1 + c)d3m(b + r – 1)γ + d4m(b + r – 1)γ 2)ρ

d(1 + c + dm)(1 + c + dγ )2

–
ρ(1 + c)2d2((b + r – β – 1)m + (β + rγ )γ )

d(1 + c + dm)(1 + c + dγ )2 ; Γ12 := –
(1 + c)2αρ

d(1 + c + dm)
,

Γ21 :=
(1 + c + dm)(–(1 + c)2r + d2(–1 + b + r)γ + (1 + c)d(–1 + b + r – β – rγ ))ρ

(1 + c)α(1 + c + dγ )
,

Γ22 := 1; D := Γ11Γ22 – Γ12Γ21.

Analogous to the above mathematical computation, we demonstrate the following lemma
related to the stability of controlled system.

Lemma 2 The interior equilibrium E� of (32) is locally asymptotically stable whenever

|Γ22 + Γ11| < 1 + D < 2.

5 Numerical simulation and discussion
Example 1 Choosing parameters α = 1.02, β = 0.2, γ = 0.1, m = 2.2, b = 2.5, c = 0.01,
d = 0.5, r ∈ [0.9, 1.4] and with initial condition (x0, y0) = (2.01, 0.6), system (4) un-
dergoes period-doubling bifurcation when r ≈ 0.9831708806347621. Bifurcation dia-
grams and maximum Lyapunov exponents (MLE) of the corresponding system are de-
picted in Fig. 2(a), (b), (c). Moreover, system (4) has the unique fixed point (x�, y�) =
(2.02, 0.6279609), and the characteristic equation of the variational matrix calculated at
this equilibrium is written as follows:

λ2 + 0.1548328303284311λ – 0.8451671696715704 = 0. (33)

Furthermore, the roots of (33) are λ1 = –1 and λ2 = 0.8451671696715698 with |λ2| �= 1.
Hence the parameters

(r, b, c, d, m,α,β ,γ ) = (0.9831708806347621, 2.5, 0.01, 0.5, 2.2, 1.02, 0.2, 0.1) ∈ BPU .

Next, we implement the OGY control strategy to control chaos which appears due to
period-doubling bifurcation. For this, taking r = 0.9832, β = 0.2, b = 2.5, c = 0.01, d = 0.5,
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Figure 2 Bifurcation and MLE diagrams for system (4) along with parameters α = 1.02, β = 0.2, γ = 0.1,
m = 2.2, b = 2.5, c = 0.01, d = 0.5, r ∈ [0.9, 1.4], and (x0, y0) = (2.01, 0.6): (a) Bifurcation diagram for xn
(b) Bifurcation diagram for yn (c) MLE (d) Region of stability for system (34)

α = 1.02, γ = 0.1, m = 2.2, and (x�, y�) = (2.02, 0.6279609), the equivalent controlled system
is given by

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 := xn(1 – xn)[0.9832 – k1(xn – 2.02) – k2(yn – 0.628)] + 2.5xn

– 1.02x2
nyn

x+2.2 – 0.2x2
n

xn+0.1 ,

yn+1 := 0.5xnyn – 0.01yn.

(34)

Then the Jacobian ‘J – BK ’ of (34) can be evaluated by

J – BK :=

[
–1.1548328 + 2.0604k1 –0.9862578199 + 2.0604k2

0.313980436 1

]

.

Moreover, L1, L2, and L3 represent the marginal stability lines, which are given by

⎧
⎪⎪⎨

⎪⎪⎩

L1 : k2 = 0.47867298578199047;

L2 : k2 = 6.369823620824943k1 + –6.864613518385784 × 10–16;

L3 : k2 = 3.1849118104124714k1 – 2.8522105954534736.

Region bounded by L1, L2, and L3 represents the stability region and is shown in Fig. 2(d).
Further, assume that α = 1.02, β = 0.2, γ = 0.1, m = 2.2, b = 2.5, c = 0.01, d = 0.5, r ∈

[0.9, 1.4] and with initial conditions (x0, y0) = (2.01, 0.6), then system (4) undergoes period-
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Table 1 Controllable interval for system (35) with various values of r in the chaotic region

Values of bifurcation parameter r
from the chaotic region

Stability interval ρ

0.99 0 < ρ < 0.9926582978517923
1.0 0 < ρ < 0.9821630969476676
1.1 0 < ρ < 0.8911247422163916
1.2 0 < ρ < 0.8189351789209777
1.25 0 < ρ < 0.7879479974702013
1.27 0 < ρ < 0.776336265914807
1.28 0 < ρ < 0.7706845320467284

doubling bifurcation. To control bifurcation, we stated the corresponding hybrid control
system as follows:

⎧
⎨

⎩

un+1 := ρ[0.9832xn(1 – xn) + 2.5xn – 1.02x2
nyn

x+2.2 – 0.2x2
n

xn+0.1 ] + (1 – ρ)xn

vn+1 := ρ[0.5xnyn – 0.01yn] + (1 – ρ)yn.
(35)

The control interval of stability can be seen in Table 1 whenever 0.9 ≤ r ≤ 1.4.
Furthermore, for system (35), the bifurcation diagrams are shown in Fig. 4(a) and (b).

Example 2 Let r = 0.2, b = 2.5, c = 0.01, d = 0.5, α = 1.02, γ = 0.1, β ∈ [0.2, 0.5] and with
initial conditions (x0, y0) = (2.01, 1.7), then in system (4) Neimark–Sacker bifurcation ap-
pears when β ≈ 0.4491479133565015. On the other hand, the parallel bifurcation dia-
grams and MLE are dispatched in Fig. 3(a), (b), and (c). Furthermore, system (4) has an
interior equilibrium point (x�, y�) = (2.02, 1.7778691826151725) with characteristic equa-
tion calculated at (2.02, 1.7778691826151725) and given by

λ2 – 1.123281307938648λ + 0.9999999999999999 = 0. (36)

Furthermore, the roots of (36) are λ1 = 0.561640653969324 – 0.8273812759598261i and
λ2 = 0.561640653969324 + 0.8273812759598261i with |λ1,2| = 1. Thus the parameters
(β , r, b, c, d, m,α,γ ) = (0.4491479133565015, 0.2, 2.5, 0.01, 0.5, 2.2, 1.02, 0.1) ∈ Bℵ.

Next, we implement the OGY control strategy to control chaos due to appearance of
NSB. For this, taking r = 0.2, β = 0.4491, b = 2.5, c = 0.01, d = 0.5, m = 2.2, α = 1.02γ = 0.1
and the unique positive equilibrium (x�, y�) = (2.02, 1.7779), a modified controlled system
is given by

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 := 0.2xn(1 – xn) – [0.4491–k1(xn–2.02)–k2(yn–1.7779)]x2
n

xn+0.1 + 2.5xn

– 1.02x2
nyn

x+2.2 ,

yn+1 := 0.5xnyn – 0.01yn.

(37)

Then, the Jacobian matrix ‘J – BK ’ of updated controlled system (37) reduces to

J – BK =

[
0.123281308 + 1.92471698k1 –0.9862578 + 1.92471698k2

0.8889345913075862 1

]

.

Moreover, the marginal stability lines L1, L2, and L3 are given as follows:

L1 : k2 = 0.5124170616113745,
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Figure 3 Bifurcation and MLE diagrams of system (4) with parametric values r = 0.2, b = 2.5, c = 0.01, d = 0.5,
α = 1.02, γ = 0.1, β ∈ [0.2, 0.5], and (x0, y0) = (2.01, 1.7). (a) Bifurcation diagram for xn (b) Bifurcation diagram
for yn (c) MLE (d) Stability region for controlled system (37)

L2 : k2 = 2.2498843217002977k1 + 1.8254688133051193,

L3 : k2 = 1.1249421608501489k1 – 2.59557472727822 × 10–16.

In addition, the triangular region of stability bounded by L1, L2, and L3 is plotted in
Fig. 3(d).

Furthermore, we again take r = 0.2, b = 2.5, c = 0.01, d = 0.5, α = 1.02, γ = 0.1, β ∈
[0.2, 0.5] with initial conditions (x0, y0) = (2.01, 1.7). For these values of parameters, system
(4) exhibits Neimark–Sacker bifurcation. Now we perform the hybrid control strategy for
the purpose of controlling chaos. For the above numeric values, controlled map (32) takes
the form

⎧
⎨

⎩

un+1 := ρ[0.2xn(1 – xn) + 2.5xn – 1.02x2
nyn

x+2.2 – 0.4491x2
n

xn+0.1 ] + (1 – ρ)xn,

vn+1 := ρ[0.5xnyn – 0.01yn] + (1 – ρ)yn.
(38)

It can be viewed from Table 2 that there exists the control interval of stability when 0.2 ≤
β ≤ 0.5.

Figure 4(c) and (d) illustrates the bifurcation for controlled system (38).
Some phase portraits of system (4) confirm the chaotic behavior of a system where pa-

rameter β takes different values from the chaotic region with initial conditions (x0, y0) =
(2.01, 1.7), while parameters (r, b, c, d, m,α,γ ) = (0.2, 2.5, 0.01, 0.5, 2.2, 1.02, 0.1) remain the
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Table 2 Controllable interval for system (38) with various values of r in the chaotic region

Values of bifurcation parameter β
from the chaotic region

Stability interval ρ

0.20 0 < ρ < 0.8860653079254625
0.25 0 < ρ < 0.9048285188715174
0.30 0 < ρ < 0.9253615795556566
0.35 0 < ρ < 0.9479272977281787
0.40 0 < ρ < 0.9728432237205998
0.42 0 < ρ < 0.9835516455804203

Figure 4 Bifurcation diagrams for controlled systems (35) and (38). (a) Bifurcation diagrams of prey for
controlled system (35) when ρ = 0.77. (b) Bifurcation diagrams of predator for controlled system (35) when
ρ = 0.77. (c) Bifurcation diagrams of prey for controlled system (38) when ρ = 0.8860653. (d) Bifurcation
diagrams of predator for controlled system (38) when ρ = 0.8860653

same for each case. Finally, interesing local implication diagrams and the plot of the con-
trolled system are plotted in Fig. 6.

6 Concluding remarks
Intra-specific predation or cannibalism is a significant natural process that controls popu-
lation dynamics. It has immense complex consequences on population dynamics [24, 72].
Considering the Allee effect and cannibalism on prey population, a discrete-time system
for predator–prey interaction is proposed and investigated. It is analyzed that model (4)
has three steady-states E0, E1, E�. The linearization technique is utilized to achieve the
local stability of the steady-states. Furthermore, if γ d2 + (1 + c)(1 + β + γ r)d + (1 + c)2r <
(b + r)(1 + c + γ d)d, then system (4) has a unique positive steady-state E�. The topological
classification of E0, E1, and E� is shown in Fig. 1(a), (b), and (c). It is proved that sys-



Shabbir et al. Advances in Difference Equations        (2020) 2020:379 Page 24 of 28

Figure 5 Phase portraits of system (4) for different values of bifurcation parameter β

tem (4) undergoes transcritical bifurcation at E0, period-doubling bifurcation at E1, and
around E� there exist both period-doubling bifurcation and Neimark–Sacker bifurcation
by using bifurcation theory. Also, our theoretical results are supported by some figures. In
Fig. 2(a), a bifurcation diagram of system (4) is depicted for various parametric values of
α = 1.02, β = 0.2, γ = 0.1, m = 2.2, b = 2.5, c = 0.01, d = 0.5, r ∈ [0.9, 1.4] and the initial con-
dition (x0, y0) = (2.01, 0.6). We observe that E� is stable for r < 0.9831708806347621 and
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Figure 6 Local amplification of system (4) and the plot for controlled map (35) when β = 0.2112 and
ρ = 0.89: (a) Local amplification of prey population (b) Local amplification of predator population (c) MLE for
local amplification (d) Plot of xn (e) Plot of yn (f) Phase portrait for map (35)

loses its stability at r = 0.9831708806347621, and the system undergoes period-doubling
bifurcation when the growth rate of prey r exceeds the value 0.9831708806347621. In
Figs. 3(a) and (b), the bifurcation diagrams of system (4) are shown. Now, by taking β

(cannibalism rate of prey) as a bifurcation parameter with different values of parameters
r = 0.2, b = 2.5, c = 0.01, d = 0.5, α = 1.02, γ = 0.1, β ∈ [0.2, 0.5] and the initial condition
(x0, y0) = (2.01, 1.7), the unique steady-state E� = (2.02, 1.7778691826151725) of system (4)
is stable for β > 0.4491479133565015 and loses its stability at β = 0.4491479133565015,
also an attracting invariant closed curves appear when β < 0.4491479133565015. In Fig. 5,
some phase portraits are plotted for different values of β , which shows the chaotic and
complex behavior of the system. Moreover, Figs. 2(d), 3(d), and 4 ensure that our pro-
posed control strategies successfully control the bifurcation. Ultimately, we can say that for
predator–prey interaction, the growth rate of prey and the cannibalism rate of prey both
have remarkable consequences for the stability of system (4) and for population models.



Shabbir et al. Advances in Difference Equations        (2020) 2020:379 Page 26 of 28

Acknowledgements
We would appreciate the editors and referees for their valuable comments and suggestions to improve our paper.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
It is declared that none of the authors have any competing interests in this manuscript.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Air University, Islamabad, Pakistan. 2Department of Mathematics, University of Poonch
Rawalakot, Azad Kashmir, Pakistan. 3College of Computer and Information Sciences, Majmaah University, Al Majmaah
11952, Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 March 2020 Accepted: 14 July 2020

References
1. Dennis, B.: Allee effects, population growth, critical density, and the chance of extinction. Nat. Resour. Model. 3(4),

481–538 (1989)
2. Allee, W.C.: Cooperation Among Animals. Henry Shuman, New York (1951)
3. Allee, W.C., Bowen, E.: Studies in animal aggregations mass protection against colloidal silver among goldfishes. J.

Exp. Zool. 61(2), 185–207 (1932)
4. Kuussaari, M., Saccheri, I., Hanski, I.: Allee effect and population dynamics in the glanville fritillary butterfly. Oikos

82(2), 384–392 (1998)
5. Courchamp, F., Grenfell, B., Clutton-Brock, T.: Impact of natural enemies on obligately cooperatively breeders. Oikos

91(2), 311–322 (2000)
6. Ferdy, J.B., Austerlitz, F., Moret, J., Gouyon, P.H., Godelle, B.: Pollinator-induced density dependence in deceptive

species. Oikos 87(3), 549–560 (1999)
7. Stoner, A., Ray-Culp, M.: Evidence for Allee effects in an over-harvested marine gastropod, density dependent mating

and egg production. Mar. Ecol. Prog. Ser. 202, 297–302 (2000)
8. Allen, L., Fagan, J., Fagerholm, H.: Population extinction in discrete-time stochastic population models with an Allee

effect. J. Differ. Equ. Appl. 11(4–5), 273–293 (2005)
9. Dennis, B.: Allee effects in stochastic populations. Oikos 96(3), 389–401 (2002)
10. Jang, S.R.J.: Allee effects in a discrete-time host–parasitoid model. J. Differ. Equ. Appl. 12(2), 165–181 (2006)
11. Morozov, A., Petrovskii, S., Li, B.L.: Bifurcations and chaos in a predator–prey system with the Allee effect. Proc. R. Soc.

Lond. B 271(1546), 1407–1414 (2004)
12. Zhou, S., Liu, Y., Wang, G.: The stability of predator–prey systems subject to the Allee effects. Theor. Popul. Biol. 67(1),

23–31 (2005)
13. Wise, D.H.: Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu.

Rev. Entomol. 51, 441–465 (2006)
14. Berec, L., Angulo, E., Multiple, C.F.: Allee effects and population management. Trends Ecol. Evol. 22(4), 185–191 (2007)
15. Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse density dependence and the Allee effect. Trends Ecol. Evol.

14(10), 405–410 (1999)
16. Courchamp, F., Berec, L., Gascoigne, J.: Allee Effects in Ecology and Conservation. Oxford University Press, London

(2008)
17. Mooring, M.S., Fitzpatrick, T.A., Nishihira, T.T., Reisig, D.D.: Vigilance, predation risk and the Allee effect in desert

bighorn sheep. J. Wildl. Manag. 68(3), 519–532 (2004)
18. Kangalgil, F.: Neimark–Sacker bifurcation and stability analysis of a discrete-time prey–predator model with Allee

effect in prey. Adv. Differ. Equ. 2019(1), 92, 1–12 (2019)
19. Pennell, C.: Cannibalism in early modern North Africa. Br. J. Middle East. Stud. 18(2), 169–185 (1991)
20. Claessen, D., De Roos, A.M.: Bistability in a size-structured population model of cannibalistic fish a continuation study.

Theor. Popul. Biol. 64(1), 49–65 (2003)
21. Guttal, V., Romanczuk, P., Simpson, S.J., Sword, G.A., Couzin, I.D.: Cannibalism can drive the evolution of behavioral

phase polyphenism in locusts. Ecol. Lett. 15(10), 1158–1166 (2012)
22. Lioyd, M.: Self-regulation of adult numbers by cannibalism in two laboratory strains of flour beetles (Tribolium

castaneum). Ecology 49(2), 245–259 (1968)
23. Richardson, M.L., Mitchell, R.F., Reagel, P.F., Hanks, L.M.: Causes and consequences of cannibalism in noncarnivorous

insects. Annu. Rev. Entomol. 55, 39–53 (2010)
24. Fox, L.R.: Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975)
25. Polis, G.A.: The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981)
26. Claessen, D., De Roos, A.M., Persson, L.: Population dynamic theory of size-dependent cannibalism. Proc. R. Soc. Lond.

B 271(1537), 333–340 (2004)



Shabbir et al. Advances in Difference Equations        (2020) 2020:379 Page 27 of 28

27. Getto, P., Diekmann, O., De Roos, A.: On the (dis)advantages of cannibalism. J. Math. Biol. 51(6), 695–712 (2005)
28. Kohlmeier, C., Ebenhoh, W.: The stabilizing role of cannibalism in a predator–prey system. Bull. Math. Biol. 57(3),

401–411 (1995)
29. Pizzatto, L., Shine, R.: The behavioral ecology of cannibalism in cane toads (Bufo marinus). Behav. Ecol. Sociobiol.

63(1), 123–133 (2008)
30. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey–predator systems.

Nonlinear Dyn. 67(4), 2543–2548 (2012)
31. Sun, G.Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey

system. Nonlinear Dyn. 58, 75–84 (2009)
32. Rudolf, V.H.: Consequences of stage-structured predators: cannibalism, behavioral effects, and trophic cascades.

Ecology 88(12), 2991–3003 (2007)
33. Rudolf, V.H.: The interaction of cannibalism and omnivory: consequences for community dynamics. Ecology 88(11),

2697–2705 (2007)
34. Rudolf, V.H.: The impact of cannibalism in the prey on predator–prey systems. Ecology 89(6), 3116–3127 (2008)
35. Biswas, S., Chatterjee, S., Chattopadhyay, J.: Cannibalism may control disease in predator population: result drawn

from a model based study. Math. Methods Appl. Sci. 38(11), 2272–2290 (2015)
36. Buonomo, B., Lacitignola, D., Rionero, S.: Effect of prey growth and predator cannibalism rate on the stability of a

structured population model. Nonlinear Anal., Real World Appl. 11, 1170–1181 (2010)
37. Buonomo, B., Lacitignola, D.: On the stabilizing effect of cannibalism in stage-structured population models. Math.

Biosci. Eng. 3(4), 717–731 (2006)
38. Basheer, A., Quansah, E., Bhowmick, S., Parshad, R.D.: Prey cannibalism alters the dynamics of Holling–Tanner-type

predator–prey models. Nonlinear Dyn. 85(4), 2549–2567 (2016)
39. Basheer, A., Parshad, R.D., Quansah, E., Yu, S., Upadhyay, R.K.: Exploring the dynamics of a Holling–Tanner model with

cannibalism in both predator and prey population. Int. J. Biomath. 11(1), 1850010 (2018)
40. Deng, H., Chen, F., Zhu, Z., Li, Z.: Dynamic behaviors of Lotka–Volterra predator–prey model incorporating predator

cannibalism. Adv. Differ. Equ. 2019, 359, 1–17 (2019)
41. Zhang, F., Chen, Y., Li, J.: Dynamical analysis of a stage-structured predator–prey model with cannibalism. Math. Biosci.

307, 33–41 (2019)
42. Danca, M., Codreanu, S., Bako, B.: Detailed analysis of a nonlinear prey–predator model. J. Biol. Phys. 23, 11–20 (1997)
43. Rana, S.M.S.: Bifurcation and complex dynamics of a discrete-time predator–prey system. Comput. Ecol. Softw. 5(2),

187–200 (2015)
44. Shabbir, M.S., Din, Q., Alabdan, R., Tassaddiq, A., Ahmad, K.: Dynamical complexity in a class of novel discrete-time

predator–prey interaction with cannibalism. IEEE Access 8, 100226–100240 (2020)
45. Seval, I.: A study of stability and bifurcation analysis in discrete-time predator–prey system involving the Allee effect.

Int. J. Biomath. 12(1), 1950011 (2019)
46. Liu, X.: A note on the existence of periodic solutions in discrete predator–prey models. Appl. Math. Model. 34(9),

2477–2483 (2010)
47. Li, Y., Zhang, T., Ye, Y.: On the existence and stability of a unique almost periodic sequence solution in discrete

predator–prey models with time delays. Appl. Math. Model. 35(11), 5448–5459 (2011)
48. Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer.

Simul. 49, 113–134 (2017)
49. Gámez, M., Lopez, I., Rodrıguez, C., Varga, Z., Garay, J.: Ecological monitoring in a discrete-time prey–predator model.

J. Theor. Biol. 429, 52–60 (2017)
50. Huang, J., Liu, S., Ruan, S., Xiao, D.: Bifurcations in a discrete predator–prey model with nonmonotonic functional

response. J. Math. Anal. Appl. 464, 201–230 (2018)
51. Weide, V., Varriale, M.C., Hilker, F.M.: Hydra effect and paradox of enrichment in discrete-time predator–prey models.

Math. Biosci. 310, 120–127 (2019)
52. Shabbir, M.S., Din, Q., Safeer, M., Khan, M.A., Ahmad, K.: A dynamically consistent nonstandard finite difference

scheme for a predator–prey model. Adv. Differ. Equ. 2019(1), 381, 1–17 (2019)
53. Din, Q., Shabbir, M.S., Khan, M.A., Ahmad, K.: Bifurcation analysis and chaos control for a plant–herbivore model with

weak predator functional response. J. Biol. Dyn. 13(1), 481–501 (2019)
54. Chow, Y., Jang, S.R.: Cannibalism in discrete-time predator–prey systems. J. Biol. Dyn. 6, 38–62 (2012)
55. Liu, X., Xiao, D.: Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Solitons Fractals 32(1),

80–94 (2007)
56. Din, Q.: Qualitative analysis and chaos control in a density-dependent host–parasitoid system. Int. J. Dyn. Control 6(3),

778–798 (2018)
57. Din, D., Hussain, M.: Controlling chaos and Neimark–Sacker bifurcation in a host–parasitoid model. Asian J. Control

21(3), 1202–1215 (2019)
58. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal., Real World

Appl. 12(1), 403–417 (2011)
59. Jing, Z., Yang, J.: Bifurcation and chaos in discrete-time predator–prey system. Chaos Solitons Fractals 27, 259–277

(2006)
60. Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931

(2018)
61. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer,

New York (1983)
62. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press, Boca Raton (1999)
63. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)
64. Wan, Y.H.: Computation of the stability condition for the Hopf bifurcation of diffeomorphism on R2 . SIAM J. Appl.

Math. 34(1), 167–175 (1978)
65. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1997)
66. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)



Shabbir et al. Advances in Difference Equations        (2020) 2020:379 Page 28 of 28

67. Lynch, S.: Dynamical Systems with Applications Using Mathematica. Birkhäuser, Boston (2007)
68. Luo, X.S., Chen, G., Wang, B.H., Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete

nonlinear dynamical systems. Chaos Solitons Fractals 18(4), 775–783 (2003)
69. Yuan, L.G., Yang, Q.G.: Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system. Appl.

Math. Model. 39, 2345–2362 (2015)
70. Khan, M.A., Shabbir, M.S., Din, Q., Ahmad, K.: Chaotic behavior of harvesting Leslie–Gower predator–prey model.

Comput. Ecol. Softw. 9(3), 67–88 (2019)
71. Khan, M.S., Khan, M.A., Shabbir, M.S., Din, Q.: Stability, bifurcation and chaos control in a discrete-time prey–predator

model with Holling type-II response. Netw. Biol. 9(3), 58–77 (2019)
72. Magnusson, K.: Destabilizing effect of cannibalism on a structured predator–prey system. Math. Biosci. 155, 61–75

(1999)


	Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism
	Abstract
	MSC
	Keywords

	Introduction
	Stability analysis of steady-states
	Bifurcation analysis
	Transcritical bifurcation at E0
	Period-doubling bifurcation at E1
	Period-doubling bifurcation at E
	Neimark-Sacker bifurcation at E

	Chaos control
	OGY control method
	Hybrid control method

	Numerical simulation and discussion
	Concluding remarks
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


