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Abstract
In this article, we purpose existence results for a fractional delta–nabla difference
equations with mixed boundary conditions by using Banach contraction principle
and Schauder’s fixed point theorem. Our problem contains a nonlinear function
involving fractional delta and nabla differences. Moreover, our problem contains
different orders in four fractional delta differences, four fractional nabla differences,
one fractional delta sum, and one fractional nabla sum. Finally, we present some
illustrative examples.
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1 Introduction
Simultaneously with the development of the theory and application of differential calculus,
difference calculus has also received more intense attention. In this article, we study the
evolution of fractional difference calculus. Recently, fractional difference calculus became
an attractive field to researchers since it can be used in ecology, biology, and other applied
sciences [1–4].

In general, difference calculus is divided into two types, namely delta and nabla differ-
ence calculus. The fractional delta and nabla difference calculus has been studied in many
research works such as [5–25] and [26–37], respectively. However, there are a few pa-
pers studying delta–nabla calculus, such as the delta–nabla calculus of variations [38–40],
systems of delta–nabla fractional difference inclusions [41], and the discrete delta–nabla
fractional boundary value problems with p-Laplacian [42].

The results mentioned above are the motivation for this research. In this paper, we study
the existence of solutions of a fractional delta–nabla difference equation with mixed frac-
tional delta–nabla difference–sum boundary conditions given by

�αu(t) = F
[
t + α – 1, u(t + α – 1),�θ u(t + α – θ + 1),∇γ u(t + α + 1)

]
,
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�β–ku(α – β – 1) = ηk∇ω–ku(α – 1 – k), k = 0, 1, (1.1)

�–βu(T + α + β) = λ∇–ωu(T + α),

where t ∈ N0,T := {0, 1, . . . , T}; α ∈ (2, 3]; θ ,γ ,β ,ω ∈ (1, 2]; T ∈ N; η0, η1, λ are given con-
stants; and F ∈ C(Nα–3,T+α ×R

3,R).
In Sect. 2, we provide some basic knowledge about delta and nabla difference calcu-

lus and investigate results for a linear variant of the boundary value problem (1.1). In
Sect. 3, we present the existence results of (1.1) by using Banach contraction principle
and Schauder’s theorem. Then, we give some examples to illustrate our results.

2 Preliminaries
This section is divided into two parts. The first contains the notations, definitions, and
lemmas which are used in the main results. In the second part, we provide a lemma pre-
senting a linear variant of problem (1.1).

The forward jump operator is defined by σ (t) := t + 1, and the backward jump operator
is defined by ρ(t) := t – 1.

For t,α ∈R, the generalized falling function is defined by

tα :=
Γ (t + 1)

Γ (t + 1 – α)
,

where t + 1 – α is not a pole of the Gamma function. If t + 1 – α is a pole and t + 1 is not a
pole, then tα = 0.

The generalized rising function is defined by

tα :=
Γ (t + α)

Γ (t)
,

where t and t + α are not poles of the Gamma function. If t is a pole and t + α is not a pole,
then tα = 0.

Definition 2.1 ([10]) For α > 0 and f defined on Na := {a, a + 1, . . .}, the α-order fractional
delta sum of f is defined by

�–α
a f (t) :=

1
Γ (α)

t–α∑

s=a

(
t – σ (s)

)α–1f (s), t ∈Na+α ,

and the α-order Riemann–Liouville fractional delta difference of f is defined by

�α
a f (t) := �N�–(N–α)f (t) =

1
Γ (–α)

t+α∑

s=a

(
t – σ (s)

)–α–1f (s), t ∈Na+N–α ,

where N ∈N is such that 0 ≤ N – 1 < α < N .

For convenience, the notations �–αf (t) and �αf (t) are used instead of �–α
a f (t) and

�α
a f (t), respectively.
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Definition 2.2 ([29]) For α > 0 and f defined on Na, the α-order fractional nabla sum of
f is defined by

∇–αf (t) :=
1

Γ (α)

t∑

s=a

(
t – ρ(s)

)α–1f (s), t ∈Na,

and the α-order Riemann–Liouville fractional nabla difference of f is defined by

∇αf (t) := ∇N∇–(N–α)f (t) =
1

Γ (–α)

t∑

s=a

(
t – ρ(s)

)–α–1f (s), t ∈ Na+N ,

where N ∈N is such that 0 ≤ N – 1 < α < N .

Lemma 2.1 ([11]) Let 0 ≤ N – 1 < α ≤ N , N ∈N and y : Na →R. Then,

�–α�αy(t) = y(t) + C1(t – a)α–1 + C2(t – a)α–2 + · · · + CN (t – a)α–N ,

for some Ci ∈R, with 1 ≤ i ≤ N .

Lemma 2.2 ([29]) Let 0 ≤ N – 1 < α ≤ N , N ∈N and y : Na+1 →R. Then,

∇–α∇αy(t) =

⎧
⎨

⎩
y(t), α /∈N,

y(t) –
∑N–1

k=0
(t–a)k

k! ∇kf (a), α = N ,

for all t ∈Na+N .

The solution of a linear variant of the boundary value problem (1.1) is given in the fol-
lowing lemma.

Lemma 2.3 Let Λ �= 0, α ∈ (2, 3]; β ,ω ∈ (1, 2]; T ∈ N; η0, η1, λ be given constants; and
h ∈ C(Nα–3,T+α ,R). Then,

�αu(t) = h(t + α – 1), t ∈ N0,T , (2.1)

�β–ku(α – β – 1) = ηk∇ω–ku(α – 1 – k), k = 0, 1, (2.2)

�–βu(T + α + β) = λ∇–ωu(T + α) (2.3)

has the unique solution given by

u(t) =
Φ[h]
Λ

[
A1tα–1 + A2tα–2 + A3tα–3]

+
1

Γ (α)

t–α∑

s=0

(
t – σ (s)

)α–1h(s + α – 1), (2.4)
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where the functional Φ[h] and the constants Λ, A1, A2, A3 are defined as

Φ[h] =
1

Γ (α)

T+α∑

s=α

s–α∑

r=0

[
λ

(T + α – ρ(s))ω–1

Γ (ω)
–

(T + α + β – σ (s))β–1

Γ (β)

]

× (
s – σ (r)

)α–1h(r + α – 1), (2.5)

Λ =
[
Γ (α – 2)

(
(1 – β) – η1(1 – ω)

)
+ Γ (α – 1)(1 – η1)

]

×
{

[
Γ (α – 1)(η0ω – β) + Γ (α)(η0 – 1)

] T+α∑

s=α–1

[
(T + α + β – σ (s))β–1

Γ (β)

– λ
(T + α – ρ(s))ω–1

Γ (ω)

]
sα–1 + Γ (α)(η0 – 1)

T+α∑

s=α–2

[
(T + α + β – σ (s))β–1

Γ (β)

– λ
(T + α – ρ(s))ω–1

Γ (ω)

]
sα–2

}

+ Γ (α – 1)(η1 – 1)

{[
Γ (α – 2)

2
(
η0(1 – ω)ω

– (1 – β)β
)

+ Γ (α – 1)(η0ω – β) + Γ (α)(1 – η0)
]

×
T+α∑

s=α–1

[
(T + α + β – σ (s))β–1

Γ (β)
– λ

(T + α – ρ(s))ω–1

Γ (ω)

]
sα–1 + Γ (α)

× (η0 – 1)
T+α∑

s=α–3

[
(T + α + β – σ (s))β–1

Γ (β)
– λ

(T + α – ρ(s))ω–1

Γ (ω)

]
sα–3

}

, (2.6)

A1 =
[
Γ (α – 1)(η0ω – β) + Γ (α)(η0 – 1)

][
Γ (α – 2)

(
(1 – β) – η1(1 – ω)

)

+ Γ (α – 1)(1 – η1)
]

–
[

Γ (α – 2)
2

(
η0(1 – ω)ω – (1 – β)β

)

+ Γ (α – 1)(η0ω – β) + Γ (α)(1 – η0)
]
Γ (α – 1)(1 – η1), (2.7)

A2 = Γ (α)(η0 – 1)
[
Γ (α – 2)

(
(1 – β) – η1(1 – ω)

)
+ Γ (α – 1)(1 – η1)

]
, (2.8)

A3 = Γ (α)Γ (α – 1)(η0 – 1)(1 – η1). (2.9)

Proof By using the fractional delta sum of order α in (2.1), we have

u(t) = C1tα–1 + C2tα–2 + C3tα–3 +
1

Γ (α)

t–α∑

s=0

(
t – σ (s)

)α–1h(s + α – 1), (2.10)

for t ∈ Nα–3,T+α . Then taking the fractional delta difference of order β – k in (2.10) where
k = 0, 1, we get

�β–ku(t) =
1

Γ (k – β)

t+β–k∑

s=α–3

(
t – σ (s)

)–β+k–1[C1sα–1 + C2sα–2 + C3sα–3]

+
1

Γ (k – β)Γ (α)

t+β–k∑

s=α

s–α∑

r=0

(
t – σ (s)

)–β+k–1(s – σ (r)
)α–1h(r + α – 1), (2.11)

for t ∈Nα–β–1,T+α–β+k .
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Taking the fractional nabla difference of order ω – k of (2.10) where k = 0, 1, we obtain

∇ω–ku(t) =
1

Γ (k – ω)

t∑

s=α–3

(
t – ρ(s)

)–ω+k–1[C1sα–1 + C2sα–2 + C3sα–3]

+
1

Γ (k – ω)Γ (α)

t∑

s=α

s–α∑

r=0

(
t – ρ(s)

)–ω+k–1(s – σ (r)
)α–1h(r + α – 1), (2.12)

for t ∈Nα–k–1,T+α .
We now substitute t = α – β – 1 into (2.11) and t = α – 1 – k into (2.12), then apply

condition (2.2). So, we have

1
Γ (k – β)

α–k–1∑

s=α–3

(
α – β – 1 – σ (s)

)–β+k–1[C1sα–1 + C2sα–2 + C3sα–3]

=
ηk

Γ (k – ω)

α–k–1∑

s=α–3

(
α – k – 1 – ρ(s)

)–ω+k–1[C1sα–1 + C2sα–2 + C3sα–3],

k = 0, 1. (2.13)

With k = 0 and k = 1 in (2.13), we obtain the equations

(E1) C1Γ (α)(1 – η0) + C2
[
Γ (α – 1)(η0ω – β) + Γ (α)(η0 – 1)

]
+ C3

[
Γ (α – 2)

2

× (
η0(1 – ω)ω – (1 – β)β

)
+ Γ (α – 1)(η0ω – β) + Γ (α)(1 – η0)

]
= 0,

(E2) C2Γ (α – 1)(1 – η1) + C3
[
Γ (α – 2)

(
(1 – β) – η1(1 – ω)

)
+ Γ (α – 1)(1 – η1)

]
= 0.

After taking the fractional delta sum of order β for (2.10), we get

�–βu(t) =
1

Γ (β)

t–β∑

s=α–3

(
t – σ (s)

)β–1[C1sα–1 + C2sα–2 + C3sα–3]

+
1

Γ (β)Γ (α)

t–β∑

s=α

s–α∑

r=0

(
t – σ (s)

)β–1(s – σ (r)
)α–1h(r + α – 1), (2.14)

for t ∈Nα+β–3,T+α+β .
Using the fractional nabla sum of order ω for (2.10), we obtain

∇–ωu(t) =
1

Γ (ω)

t∑

s=α–3

(
t – ρ(s)

)ω–1[C1sα–1 + C2sα–2 + C3sα–3]

+
1

Γ (ω)Γ (α)

t∑

s=α

s–α∑

r=0

(
t – ρ(s)

)ω–1(s – σ (r)
)α–1h(r + α – 1), (2.15)

for t ∈Nα–3,T+α .
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We now substitute t = T +α +β into (2.14) and t = T +α into (2.15), then apply condition
(2.3). So, we have

(E3) C1

T+α∑

s=α–1

[
(T + α + β – σ (s))β–1

Γ (β)
– λ

(T + α – ρ(s))ω–1

Γ (ω)

]
sα–1

+ C2

T+α∑

s=α–2

[
(T + α + β – σ (s))β–1

Γ (β)
– λ

(T + α – ρ(s))ω–1

Γ (ω)

]
sα–2

+ C3

T+α∑

s=α–3

[
(T + α + β – σ (s))β–1

Γ (β)
– λ

(T + α – ρ(s))ω–1

Γ (ω)

]
sα–3

=
1

Γ (α)

T+α∑

s=α

s–α∑

r=0

[
λ

(T + α – ρ(s))ω–1

Γ (ω)
–

(T + α + β – σ (s))β–1

Γ (β)

]

× (
s – σ (r)

)α–1h(r + α – 1).

Finding the solution of equations (E1)–(E3), we have

Ci =
Φ[h]
Λ

Ai, i = 1, 2, 3,

where Φ[h], Λ, A1, A2, and A3 are defined by (2.5)–(2.9), respectively. Substituting the
constants C1 through C3 into (2.10), we get the unique solution as (2.4). �

3 Main results
In this section, we show existence results of problem (1.1). Let C = C(Nα–3,T+α ,R) be the
Banach space of functions u with the norm defined by

‖u‖C = max
{‖u‖,

∥
∥�θ u

∥
∥,

∥
∥∇γ u

∥
∥}

,

where ‖u‖ = maxt∈Nα–3,T+α
|u(t)|, ‖�θ u‖ = maxt∈Nα–3,T+α

|�θ u(t – θ + 2)| and ‖∇γ u‖ =
maxt∈Nα–3,T+α

|∇γ u(t + 2)|. We define the operator F : C → C by

(Fu)(t) =
Φ[F(u)]

Λ

[
A1tα–1 + A2tα–2 + A3tα–3] +

1
Γ (α)

t–α∑

s=0

(
t – σ (s)

)α–1

× F
[
s + α – 1, u(s + α – 1),�θ u(s + α – θ + 1),∇γ u(s + α + 1)

]
, (3.1)

where Λ �= 0, A1, A2, and A3 are given in Lemma 2.3 and the functional Φ[F(u)] is given
by

Φ
[
F(u)

]

=
1

Γ (α)

T+α∑

s=α

s–α∑

r=0

[
λ

(T + α – ρ(s))ω–1

Γ (ω)
–

(T + α + β – σ (s))β–1

Γ (β)

](
s – σ (r)

)α–1

× F
[
r + α – 1, u(r + α – 1),�θ u(r + α – θ + 1),∇γ u(r + α + 1)

]
. (3.2)

The boundary value problem (1.1) has solutions if and only if operator F has fixed
points.
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Theorem 3.1 Let F : Nα–3,T+α × R
3 → R be a continuous function and suppose that the

following conditions hold:
(H1) There exist constants L1, L2, L3 > 0 such that for each t ∈ Nα–3,T+α and ui, vi ∈ R,

i = 1, 2, 3,

∣
∣F(t, u1, u2, u3) – F(t, v1, v2, v3)

∣
∣ ≤ L1|u1 – v1| + L2|u2 – v2| + L3|u3 – v3|,

(H2) [L1 + L2 + L3] max{Ω1,Ω2,Ω3} < 1,
then problem (1.1) has a unique solution on Nα–3,T+α , where

Θ =
(T + α)α

Γ (α + 1)

[
λ

(T + ω)ω

Γ (ω + 1)
–

(T + β)β

Γ (β + 1)

]
, (3.3)

Ω1 =
Θ

|Λ|
[|A1|(T + α)α–1 + |A2|(T + α)α–2 + |A3|(T + α)α–3] +

(T + α)α

Γ (α + 1)
, (3.4)

Ω2 =
(T – θ + 5)θ–1

|Γ (1 – θ )|
{

Θ

|Λ|
[|A1|(T + α + 2)α–1 + |A2|(T + α + 2)α–2

+ |A3|(T + α + 2)α–3] +
(T + α + 2)α

Γ (α + 1)

}
, (3.5)

Ω3 =
(T – γ + 5)γ –1

|Γ (1 – γ )|
{

Θ

|Λ|
[|A1|(T + α + 2)α–1 + |A2|(T + α + 2)α–2

+ |A3|(T + α + 2)α–3] +
(T + α + 2)α

Γ (α + 1)

}
. (3.6)

Proof Letting u, v ∈ C , for each t ∈ Nα–3,T+α , we have

∣∣Φ
[
F(u)

]
– Φ

[
F(v)

]∣∣

≤ 1
Γ (α)

T+α∑

s=α

s–α∑

r=0

[
λ

(T + α – ρ(s))ω–1

Γ (ω)
–

(T + α + β – σ (s))β–1

Γ (β)

](
s – σ (r)

)α–1

× [
L1

∣
∣u(r + α – 1) – v(r + α – 1)

∣
∣ + L2

∣
∣�θ u(r + α – θ + 1) – �θ v(r + α – θ + 1)

∣
∣

+ L3
∣
∣∇γ u(r + α + 1) – ∇γ v(r + α + 1)

∣
∣]

≤ [
L1‖u – v‖ + L2

∥
∥�θ u – �θ v

∥
∥ + L3

∥
∥∇γ u – ∇γ v

∥
∥] (T + α)α

Γ (α + 1)

×
∣
∣∣
∣∣
λ

T+α∑

s=α

(T + α – ρ(s))ω–1

Γ (ω)
–

T+α∑

s=α

(T + α + β – σ (s))β–1

Γ (β)

∣
∣∣
∣∣

= ‖u – v‖C[L1 + L2 + L3]Θ (3.7)

and

∣∣(Fu)(t) – (Fv)(t)
∣∣

≤
∣∣
∣∣
Φ[F(u)] – Φ[F(v)]

Λ

∣∣
∣∣
[|A1|(T + α)α–1 + |A2|(T + α)α–2 + |A3|(T + α)α–3]

+
T∑

s=0

(T + α – σ (s))α–1

Γ (α)
[
L1

∣∣u(s + α – 1) – v(s + α – 1)
∣∣ + L2

∣∣�θ u(s + α – θ + 1)
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– �θ v(s + α – θ + 1)
∣∣ + L3

∣∣∇γ u(s + α + 1) – ∇γ v(s + α + 1)
∣∣]

≤ [
L1‖u – v‖ + L2

∥
∥�θ u – �θ v

∥
∥ + L3

∥
∥∇γ u – ∇γ v

∥
∥]{ Θ

|Λ|
[|A1|(T + α)α–1

+ |A2|(T + α)α–2 + |A3|(T + α)α–3] +
(T + α)α

Γ (α + 1)

}

≤ ‖u – v‖C[L1 + L2 + L3]Ω1. (3.8)

We find that

(
�θFu

)
(t – θ + 2)

=
Φ[F(u)]
ΛΓ (–θ )

t+2∑

s=α–3

(
t – θ + 2 – σ (s)

)–θ–1[|A1|sα–1 + |A2|sα–2 + |A3|sα–3]

+
1

Γ (–θ )Γ (α)

t+2∑

s=α

s–α∑

r=0

(
t – θ + 2 – σ (s)

)–θ–1(s – σ (r)
)α–1

× F
[
r + α – 1, u(r + α – 1),�θ u(r + α – θ + 1),∇γ u(r + α + 1)

]
(3.9)

and

(∇γFu
)
(t + 2)

=
Φ[F(u)]
ΛΓ (–γ )

t+2∑

s=α–3

(
t + 2 – ρ(s)

)–γ –1[|A1|sα–1 + |A2|sα–2 + |A3|sα–3]

+
1

Γ (–γ )Γ (α)

t+2∑

s=α

s–α∑

r=0

(
t + 2 – ρ(s)

)–γ –1(s – σ (r)
)α–1

× F
[
r + α – 1, u(r + α – 1),�θ u(r + α – θ + 1),∇γ u(r + α + 1)

]
. (3.10)

Since

∣∣(�θFu
)
(t – θ + 2) –

(
�θFv

)
(t – θ + 2)

∣∣ ≤ ‖u – v‖C[L1 + L2 + L3]Ω2, (3.11)
∣
∣(∇γFu

)
(t + 2) –

(∇γFv
)
(t + 2)

∣
∣ ≤ ‖u – v‖C[L1 + L2 + L3]Ω3, (3.12)

we get

∥
∥(Fu) – (Fv)

∥
∥
C ≤ [L1 + L2 + L3] max{Ω1,Ω2,Ω3}‖u – v‖C . (3.13)

By (H2), we get ‖(Fu)(t) – (Fv)(t)‖C < ‖u – v‖C .
Hence, F is a contraction. By the Banach contraction principle, we conclude that F has

a unique fixed point which is a unique solution of the problem (1.1) for t ∈Nα–3,T+α . �

We next show that our problem (1.1) has at least one solution as follows.

Lemma 3.1 (Arzelá–Ascoli theorem, [43]) A set of functions in C[a, b] with the sup-norm
is relatively compact if and only it is uniformly bounded and equicontinuous on [a, b].
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Lemma 3.2 ([43]) If a set is closed and relatively compact, then it is compact.

Lemma 3.3 (Schauder’s fixed point theorem, [44]) Let (D, d) be a complete metric space,
U a closed convex subset of D, and T : D → D a map such that the set Tu : u ∈ U is relatively
compact in D. Then, the operator T has at least one fixed point u∗ ∈ U : Tu∗ = u∗.

Theorem 3.2 Suppose that (H1) and (H2) hold. Then problem (1.1) has at least one solu-
tion on Nα–3,T+α .

Proof Step I. We verify that F maps bounded sets into bounded sets in BR, where we
consider BR = {u ∈ C : ‖u‖C ≤ R}.

Let maxt∈Nα–3,T+α
|F(t, 0, 0, 0)| = M and choose a constant

R ≥ M max{Ω1,Ω2,Ω3}
1 – [L1 + L2 + L3] max{Ω1,Ω2,Ω3} . (3.14)

For each u ∈ BR, we obtain

∣
∣Φ

[
F(u)

]∣∣

≤ 1
Γ (α)

T+α∑

s=α

s–α∑

r=0

[
λ

(T + α – ρ(s))ω–1

Γ (ω)
–

(T + α + β – σ (s))β–1

Γ (β)

](
s – σ (r)

)α–1

× [∣∣F
[
r + α – 1, u(r + α – 1),�θ u(r + α – θ + 1),∇γ u(r + α + 1)

]

– F(r + α – 1, 0, 0, 0)
∣
∣ +

∣
∣F(r + α – 1, 0, 0, 0)

∣
∣]

≤ [[
L1‖u‖ + L2

∥
∥�θ u

∥
∥ + L3

∥
∥∇γ u

∥
∥]

+ M
] (T + α)α

Γ (α + 1)Γ (T + 1)

×
[
λ

Γ (T + ω + 1)
Γ (ω + 1)

–
Γ (T – β + 1)

Γ (β + 1)

]

≤ [
(L1 + L2 + L3)‖u‖C + M

]
Θ (3.15)

and

∣∣(Fu)(t)
∣∣

≤
∣
∣∣
∣
Φ[F(u)]

Λ

∣
∣∣
∣
[|A1|(T + α)α–1 + |A2|(T + α)α–2 + |A3|(T + α)α–3]

+
T∑

s=0

(T + α – σ (s))α–1

Γ (α)
[∣∣F

[
s + α – 1, u(s + α – 1),�θ u(s + α – θ + 1),

∇γ u(s + α + 1)
]

– F(s + α – 1, 0, 0, 0)
∣
∣ +

∣
∣F(s + α – 1, 0, 0, 0)

∣
∣]

≤ [
(L1 + L2 + L3)‖u‖C + M

]{ Θ

|Λ|
[|A1|(T + α)α–1 + |A2|(T + α)α–2

+ |A3|(T + α)α–3] +
Γ (T + α + 1)

Γ (α + 1)Γ (T + 1)

}

≤ [
(L1 + L2 + L3)‖u‖C + M

]
Ω1. (3.16)
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Since

∣∣(�θFu
)
(t – θ + 2)

∣∣ ≤ [
(L1 + L2 + L3)‖u‖C + M

]
Ω2, (3.17)

∣
∣(∇γFu

)
(t + 2)

∣
∣ ≤ [

(L1 + L2 + L3)‖u‖C + M
]
Ω3, (3.18)

this implies that

∥∥(Fu)(t)
∥∥
C ≤ [

(L1 + L2 + L3)‖u‖C + M
]

max{Ω1,Ω2,Ω3}
≤ R. (3.19)

We find that ‖Fu‖C ≤ R. Hence, F is uniformly bounded.
Step II. Since F is a continuous function, the operator F is continuous on BR.
Step III. We show that F is equicontinuous on BR. For any ε > 0, there exists a positive

constant ρ∗ = min{δ1, δ2, δ3, δ4, δ5, δ6} such that for t1, t2 ∈Nα–3,T+α ,

∣∣tα–i
2 – tα–i

1
∣∣ <

ε|Λ|
4|Ai|Θ‖F‖ , if |t2 – t1| < δi, i = 1, 2, 3,

∣∣tα

2 – tα

1
∣∣ <

εΓ (α + 1)
4‖F‖ , if |t2 – t1| < δ4,

∣∣(t2 – α – θ + 5)–θ – (t1 – α – θ + 5)–θ
∣∣

<
(
ε
∣
∣Γ (1 – θ )

∣
∣)

(
‖F‖

[
Θ

|Λ|
(|A1|(T + α + 2)α–1 + |A2|(T + α + 2)α–2

+ |A3|(T + α + 2)α–3) +
(T + α + 2)α

Γ (α + 1)

])–1

,

if |t2 – t1| < δ5,
∣
∣(t2 – α + 6)–γ – (t2 – α + 6)–γ

∣
∣

<
(
ε
∣
∣Γ (1 – γ )

∣
∣)

(
‖F‖

[
Θ

|Λ|
(|A1|(T + α + 2)α–1 + |A2|(T + α + 2)α–2

+ |A3|(T + α + 2)α–3) +
(T + α + 2)α

Γ (α + 1)

])–1

,

if |t2 – t1| < δ6.

Then, for |t2 – t1| < ρ∗, we have

∣
∣(Fu)(t2) – (Fu)(t1)

∣
∣

≤
∣∣
∣∣
Φ[F(u)]

Λ

∣∣
∣∣
[|A1|

∣
∣tα–1

2 – tα–1
2

∣
∣ + |A2|

∣
∣tα–1

2 – tα–2
2

∣
∣ + |A3|

× ∣∣tα–1
2 – tα–3

2
∣∣] +

∣∣
∣∣
∣

t2∑

s=0

(t2 – σ (s))α–1

Γ (α)
F
[
s + α – 1, u(s + α – 1),

�θ u(s + α – θ + 1),∇γ u(s + α + 1)
]

–
t1∑

s=0

(t1 – σ (s))α–1

Γ (α)
F
[
s + α – 1,
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u(s + α – 1),�θ u(s + α – θ + 1),∇γ u(s + α + 1)
]
∣∣
∣∣
∣

<
∣
∣∣
∣
A1

Λ

∣
∣∣
∣Θ‖F‖∣∣tα–1

2 – tα–1
1

∣∣ +
∣
∣∣
∣
A2

Λ

∣
∣∣
∣Θ‖F‖∣∣tα–2

2 – tα–2
1

∣∣ +
∣
∣∣
∣
A3

Λ

∣
∣∣
∣Θ‖F‖∣∣tα–3

2 – tα–3
1

∣∣

+
‖F‖

Γ (α + 1)
∣∣tα

2 – tα

1
∣∣

<
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε. (3.20)

Similarly, we have

∣∣(�θFu
)
(t2 – θ + 2) –

(
�θFu

)
(t1 – θ + 2)

∣∣ < ε, (3.21)
∣
∣(∇γFu

)
(t2 + 2) –

(∇γFu
)
(t1 + 2)

∣
∣ < ε. (3.22)

So,

∥
∥(Fu)(t2) – (Fu)(t1)

∥
∥
C < ε. (3.23)

Hence, the set F (BR) is equicontinuous. Combining the results of Steps I to III with
the Arzelá–Ascoli theorem, we get that F : C → C is completely continuous. By using
Schauder fixed point theorem, we can conclude that boundary value problem (1.1) has at
least one solution. �

4 Some examples
In this section, we provide a mixed boundary value problem for fractional delta–nabla
difference equations and apply our results from the previous section as follows:

�
5
2 u(t) = F

[
t + α – 1, u(t + α – 1),�θ u(t + α – θ + 1),∇γ u(t + α + 1)

]
,

�
5
4 –ku

(
1
4

)
=

(
k + 1

3

)
∇ 7

6 –ku
(

3
2

– k
)

, k = 0, 1,

�– 5
4 u

(
35
4

)
= 2∇– 7

6 u
(

15
2

)
.

(4.1)

Here α = 5
2 , θ = 4

3 , γ = 8
5 , β = 5

4 , ω = 7
6 , η0 = 1

3 , η1 = 2
3 , and λ = 2, T = 5. We find that

|Λ| = 3.711, Θ = 529.938, Ω1 = 5151.475, Ω2 = 87.307,

Ω3 = 53.338.

(i) Let

F
[
t, u(t),�θ u(t – θ + 2),∇γ u(t + 2)

]

=
e– cos2 t

(t + 100)2 · |u(t)| + 2|� 4
3 u(t + 2

3 )| + 3|∇ 8
5 u(t + 2)|

[1 + |u(t)|] .
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Since (H1) holds for each t ∈N– 1
2 , 15

2
, we obtain

∣∣F
[
t, u(t),�θ u(t – θ + 2),∇γ u(t + 2)

]
– F

[
t, v(t),�θ v(t – θ + 2),∇γ v(t + 2)

]∣∣

≤ 4
46,225

‖u – v‖ +
8

46,225
∥∥�θ u – �θ v

∥∥ +
12

46,225
∥∥∇γ u – ∇γ v

∥∥,

so L1 = 4
46,225 , L2 = 8

46,225 , L3 = 12
46,225 .

Finally, we can show that (H2) holds with

[L1 + L2 + L3] max{Ω1,Ω2,Ω3} = 0.275 < 1.

Hence, by Theorem 3.1, Problem 4.1 has a unique solution on N– 1
2 , 15

2
. In addition, by The-

orem 3.2, Problem 4.1 has at least one solution on N– 1
2 , 15

2
.

(ii) Let

F
[
t, u(t),�θ u(t – θ + 2),∇γ u(t + 2)

]

=
e– sin2 t

2t + 10
· 3|u(t)| + 5|� 4

3 u(t + 2
3 )| + 2|∇ 8

5 u(t + 2)|
[1 + |u(t)|] .

Since (H1) holds for each t ∈N– 1
2 , 15

2
, we obtain

∣∣F
[
t, u(t),�θ u(t – θ + 2),∇γ u(t + 2)

]
– F

[
t, v(t),�θ v(t – θ + 2),∇γ v(t + 2)

]∣∣

≤ 3
115

‖u – v‖ +
5

115
∥
∥�θ u – �θ v

∥
∥ +

2
115

∥
∥∇γ u – ∇γ v

∥
∥,

so L1 = 3
115 , L2 = 5

115 , L3 = 2
115 .

Finally, we show that (H2) not holds with

[L1 + L2 + L3] max{Ω1,Ω2,Ω3} = 41.473 > 1.

Therefore, Problem 4.1 is inconsistent with Theorem 3.1 and 3.2, which makes it impos-
sible to conclude the existence results for this problem.

5 Conclusions
We consider a fractional delta–nabla difference equation with fractional delta–nabla sum-
difference boundary value conditions. In our studies, we employ the Banach contraction
principle to investigate the conditions for the existence and uniqueness of solution for
our problem. In addition, the conditions for at least one solution is obtained by using the
Schauder’s fixed point theorem.
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