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Abstract
We construct a spot volatility kernel estimator of time-dependent diffusion models
with jumps. Instead of idiomatic intraday return over an observation interval, in the
proposed estimator, we use intraday range. Since the range represents the maximum
difference among all observations within an interval, all data are used, and no
information is lost. By setting a reasonable threshold and making the range not
greater than it we effectively eliminate the negative effect of jump on volatility
estimation. In this paper, we also prove the consistency and asymptotic normality of
the estimator and testify its higher accuracy.
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1 Introduction
In the analysis of financial markets, a correct description of the underlying variables is
crucial. As a matter of fact, the dynamic rules of these underlying variables can often be
evolved by the diffusion class models. Volatility is undoubtedly one of the most important
indicators in diffusion model research. Its correct estimation and forecast play important
roles in risk management, hedging, portfolio, and derivative pricing.

As we all know, the macro- and microeconomic environment is not static. Therefore it
is necessary to assume that the spot volatility is not only related to a specific state variable,
but also to time. In other words, the function of the underlying variables should satisfy a
time-dependent diffusion process. Fan and Wang [1] used a kernel smoothing technique to
consider spot volatility estimation for high-dimensional time-dependent diffusion models
and proved the consistency and asymptotic normality of their proposed estimator. Zu and
Boswijk [2] constructed a spot volatility estimator for high-frequency data contaminated
by market noise and presented a data-driven method to select the scale and bandwidth
parameters. For a continuous diffusion process

dXt = αt dt + βt dWt ,
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Kristensen [3] constructed a weighted integral volatility estimator by kernel and proposed
the following filtered spot volatility:

β̂2
t =

n∑

i=1

Kh(ti–1 – t)(Xti – Xti–1 )2, (1)

where h is the bandwidth, K is the kernel function, and Kh(·) = K(·/h)/h. Under some weak
conditions, he proved the following asymptotic normality of the estimator:

√
nh

(
β̂2

t – β2
t
) d−→ N

(
0, 2β4

t

∫

R
K2(z) dz

)
. (2)

With the development of electronic trading technology and means, it becomes possi-
ble to conduct frequent trading in a shorter period of time, and financial activities can
be carried out in scenario of higher frequency. It is unconvincing to use the continuous
diffusion models to describe high-frequency and even ultrahigh-frequency data. Both the-
oretical and practical studies show that there are jumps in financial variables, which have
important impacts in financial analysis (see Lee and Mykland [4] and Aït-Sahalia and Ja-
cod [5]). In recent years, more and more scholars have begun to consider jump diffusion
models to describe financial variables and studied their impacts on financial activities (see
Zhu et al. [6] and Matenda and Chikodza [7]).

We consider the following jump diffusion model:

Xt = X0 +
∫ t

0
αu du +

∫ t

0
βu dWu +

Nt∑

i=1

Yi, t ∈ (0, T], (3)

where αt , βt are càdlàg, Wt is a standard Wiener process,
∑Nt

i=1 Yi is a compound Poisson
process independent of Wt , Nt is a Poisson process with intensity λ, {Yi, i = 1, 2, . . . , Nt} is
the jump size at the ith jump point and independent of Nt .

To estimate the volatility better for jump diffusion models, eliminating the impacts of
jumps is one of the good choices, among which the threshold technique is a common and
effective method to remove jumps (Mancini [8], Mancini and Renò [9], Wang and Zhou
[10], Song and Wang [11], and Sun and Yu [12]). Intuitively, it is plausible that we can
remove the effects of jumps and estimate the spot volatility in equation (3) by modifying
β̂2

t in equation (1) as

β̂2
t =

n∑

i=1

Kh(ti–1 – t)(Xti – Xti–1 )2·I{(Xti –Xti–1 )2≤φ(δ)}, (4)

where I{·} is the indicator function, φ(δ) is a deterministic function of the time interval δ.
As a matter of fact, it is inappropriate more or less to apply this return-based method
directly to high-frequency data for the well-known negative effects of microscopic noise.

In view of the advantages of the range-based method, such as estimating accuracy, data
integrity, and power of antinoise (see Christensen and Podolskij [13, 14], Liu et al. [15],
Vortelinos [16], and Xu et al. [17]), in this paper, we use the range to replace the return
(Xti – Xti–1 ) in equation (4). Meanwhile, since the range is defined as the maximum dif-
ference between two state variables within a given timing spacing, dominating its square
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no more than a specific threshold, we can propose a range-based threshold spot volatility
estimator.

The rest part is fixed up as follows. In Sect. 2, we give some necessary technical condi-
tions and construct the estimator of interest. Section 3 proves the consistency and asymp-
totic normality of the estimator. Conclusions are presented in Sect. 4.

2 Construction of estimator
For discussion, we decompose the process Xt as X = X(C) + X(J), where X(C) and X(J) are
the continuous and jump parts of the process, respectively. Some necessary constraints
are given further.

T1 The process αt is a second-order differentiable measurable process and satisfies

∣∣α(i)
t

∣∣ = OP(1), t ∈ [0, T], i = 0, 1, 2.

T2 The process βt is differentiable and satisfies

sup
{|βs – βt|, s, t ∈ [0, T], |s – t| ≤ ξ

}
= OP

(
ξ 1/2|log ξ |1/2)

and

sup
0≤t≤T

β2
t = OP(1).

T3 Kernel function K is differentiable with support [–1, 1] and satisfies

∫ 1

–1
K(c) dc = 1

and

∫ 1

–1
K2(c) dc,

∫ 1

–1
K3(c) dc,

∫ 1

–1
K ′(c) dc = OP(1).

Without loss of generality, we assume that the samples are selected at the equal time
spacing. Given n observations in the interval [0, T], the time spacing between two adjacent
observations is δ = T/n. For sampling of nonequal time spacing, it suffices to define δ =
maxi(ti – ti–1) (i = 1, 2, . . . , n).

We define the range of a process Xt in [ti–1, ti] as

rXti ,δ = sup
ti–1≤ς ,τ≤ti

{Xς – Xτ }.

For a scaled Wiener process Xt = βWt , Parkinson [18] proposed the pth moment generat-
ing function of its range in [ti–1, ti] as

E
[
rp

Xti ,δ

]
= λpδ

p/2
i βp (p ≥ 1), (5)

where λp = E[rp
W1,1

].
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Now we present the nonparametric spot volatility estimator

β̂2
t =

1
hμ2

n∑

i=1

K
(

ti – t
h

)
r2

Xti ,δ
I{r2

Xti ,δ
≤φ(δ)}, (6)

where I{·} is the indicator function, and φ(δ) is a deterministic function of the time spacing
δ and satisfies

lim
δ→0

φ(δ) = 0 (7)

and

lim
δ→0

(
δ log δ/φ(δ)

)
= 0. (8)

Remark 1 In the estimator β̂2
t of equation (6), we replace the term (Xi – Xti–1 )2 in return-

based estimators (see equation (1)) with range term r2
Xti ,δ

/μ2. As mentioned by Christensen
and Podolskij [13], when the sampling frequency is not very high (say, 2- or 3-h returns),
the return-based method is simple and efficient, but with the increase of frequency (1-s
returns and even tick-by-tick returns), it will be seriously affected by microscopic noise.
The main advantages of the range-based method are reflected in two aspects. On one
hand, it requires no sparse sampling, uses the entire data without being affected by the
noise, and thus ensures the integrity of information. On the other hand, it has a higher
efficiency.

Remark 2 The deterministic function φ(δ) is a threshold used to determine whether a
jump occurs. Theoretically, any function that satisfies equations (7) and (8) can be selected
as the threshold function. The power function δa (for any a ∈ (0, 1)) is a possible option
for the function φ(δ), since it satisfies equations (7) and (8). In diffusion models with finite
activity jumps, Yu et al. [19] chose φ(δ) = δ0.49, but in diffusion models with finite and
infinite activity jumps, Mancini [8] chose φ(δ) = δ0.99. Mancini and Renò [9] even thought
that a time-varying function could be selected.

Remark 3 By setting a reasonable threshold φ(δ) and controlling the range in a proper
interval no more than the threshold, as δ → 0, the estimator β̂2

t can effectively eliminate
the influence of jumps. Therefore it is an ideal estimator of spot volatility in the jump
diffusion models, which are more in line with the realities of financial markets.

3 Consistency and asymptotic normality
Lemma 1 (Cai et al. [20]) Suppose that

∑Nt
i=1 Yi is the jump process in equation (3) and

φ(δ) satisfies equations (7) and (8). Suppose that for all t ∈ (0, T],

P(YNt = 0,
Nt �= 0) = 0.

Then

I{r2
Xti ,δ

≤φ(δ)} = I{
iN=0} (∀i = 1, 2, . . . , n). (9)
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Remark 4 Lemma 1 is an extension of Theorem 1 in [8]. In equation (9), the return is
replaced by the range. For small δ, if the squared range r2

Xti ,δ
in the interval [ti–1, ti] is not

larger than the threshold φ(δ), then no jumps will appear in the interval. Since the range
represents the maximum difference among all observations within an interval, more high-
frequency data are used, and the ability to detect jumps is better.

Remark 5 The condition P(YNt = 0,
Nt �= 0) = 0 was also used in [8]; it means that the
probability is 0 when 
Nt �= 0 and the jump size at the Ntth jump point equals 0.

Theorem 2 Suppose that Xt satisfies equation (3) and T1–T3 hold. If δ → 0 so that

δ/h → 0 (10)

and φ(δ) satisfies equations (7) and (8), then

β̂2
t

P−→ β2
t ,

where the symbol “
P−→” denotes the convergence in probability.

Proof We first prove that β̂2
t

P−→ 1
hμ2

∑n
i=1 K( ti–t

h )β2
ti

r2
Wti ,δ

. We can see from the definition
of β̂2

t and Lemma 1 that

β̂2
t =

1
hμ2

n∑

i=1

K
(

ti – t
h

)
r2

Xti ,δ
I{
iN=0} = A – B,

where

A =
1

hμ2

n∑

i=1

K
(

ti – t
h

)
r2

XC
ti ,δ

=
1

hμ2

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

(∫ τ

ς

αs ds +
∫ τ

ς

βs dWs

))2

,

B =
1

hμ2

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

(∫ τ

ς

αs ds +
∫ τ

ς

βs dWs

))2

I{
iN �=0}.

Using the triangle inequality, we obtain

(
sup

ti–1≤ς ,τ≤ti

(∫ τ

ς

αs ds +
∫ τ

ς

βs dWs

))2

≤ 2
(

sup
ti–1≤ς ,τ≤ti

∫ τ

ς

αs ds
)2

+ 2
(

sup
ti–1≤ς ,τ≤ti

∫ τ

ς

βs dWs

)2

= D + E.

Obviously,

D = 2
(

sup
ti–1≤ς ,τ≤ti

∫ τ

ς

αs ds
)2

= OP
(
δ2).
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For the term E, by the Burkholder–Davis–Gundy (BDG) inequality we obtain that

E = OP

(∫ ti

ti–1

β2
s ds

)
= OP(δ).

So

B = OP

(
NTδ

hμ2

)
= OP

(
δ

h

)
→ 0.

Next, we prove that

A
P−→ 1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ
. (11)

We easily get

A –
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ
=

1
hμ2

n∑

i=1

K
(

ti – t
h

)(
r2

XC
ti ,δ

– β2
ti

r2
Wti ,δ

)

= F + G,

where

F =
2

hμ2

n∑

i=1

K
(

ti – t
h

)
βti rWti ,δ (rXC

ti ,δ
– βti rWti ,δ ),

G =
1

hμ2

n∑

i=1

K
(

ti – t
h

)
(rXC

ti ,δ
– βti rWti ,δ )2.

For the term G, we have

G ≤ 1
hμ2

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds +
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣

)2

≤ 2
hμ2

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds
∣∣∣∣

)2

+
2

hμ2

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣

)2

= G1 + G2.

By condition T1 we have

max
i

sup
ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds
∣∣∣∣ = OP(δ).

Therefore

G1 =
2

hμ2

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds
∣∣∣∣

)2

= OP(δ).
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By the BDG inequality there exists a constant C(> 0) such that

(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣

)2

≤ C
∫ ti

ti–1

(βs – βti )
2 ds.

Combining with condition T2, we obtain

G2 ≤ 2C
hμ2

n∑

i=1

K
(

ti – t
h

)∫ ti

ti–1

(βs – βti )
2 ds

= OP
(
δ|log δ|).

Hence

G = oP(1).

Using the decomposition similar to G, we get

F ≤ 2
hμ2

n∑

i=1

K
(

ti – t
h

)
βti rWti ,δ sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds +
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣.

Using Hölder’s inequality, we have

F ≤ 2
μ2

(
1
h

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

)1/2

·
(

1
h

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds +
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣

)2
)1/2

.

Using Hölder’s inequality again, we have

E[F] ≤ 2
μ2

(
E

[
1
h

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

])1/2

·
(

E

[
1
h

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds +
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣

)2
])1/2

.

From equation (5) we have E[r2
Wti ,δ

]=μ2δ, and therefore

2
μ2

(
E

[
1
h

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

])1/2

= OP(1).

By the discussion of G we have obtained

(
E

[
1
h

n∑

i=1

K
(

ti – t
h

)(
sup

ti–1≤ς ,τ≤ti

∣∣∣∣
∫ τ

ς

αs ds +
∫ τ

ς

(βs – βti ) dWs

∣∣∣∣

)2
])1/2

= OP
(
δ1/2|log δ|1/2).
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Hence

A –
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ
= oP(1).

So equation (11) is proved. In the rest of the proof, it suffices to prove

1
hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

P−→ β2
t ,

E

[
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

]

=
δ

h

n∑

i=1

K
(

ti – t
h

)
β2

ti

=
1
h

n∑

i=1

β2
ti

∫ ti

ti–1

(
K

(
ti – t

h

)
– K

(
u – t

h

))
du

+
1
h

n∑

i=1

∫ ti

ti–1

K
(

u – t
h

)(
β2

ti
– β2

u
)

du

+
1
h

n∑

i=1

∫ ti

ti–1

K
(

u – t
h

)
β2

u du

= H1 + H2 + H3.

(12)

For H1, using Taylor’s formula, we have

H1 =
1
h

n∑

i=1

β2
ti

∫ ti

ti–1

(
K ′

(
u – t

h

)
· ti – u

h
+ o

(
ti – u

h

))
du

= OP

(
δ

h2

∫ T

0
K ′

(
u – t

h

)
du

)

= OP

(
δ

h

∫ 1

–1
K ′(s) ds

)
.

By condition T3 and equation (10) we have H1 = OP(δ/h) = oP(1). Using condition T2, we
easily get

H2 = δ1/2|log δ|1/2 = oP(1).

For the term H3, let

u – t
h

= s.
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Then

H3 =
∫ 1

–1
K(s)β2

sh+t ds

=
∫ 1

–1
K(s)

(
β2

t + OP
(
h1/2|log h|1/2))ds

= β2
t + OP

(
h1/2|log h|1/2).

Combining with the discussions of the terms H1, H2, and H3, we get

E

[
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

]
P−→ β2

t .

Let

ρi =
1

hμ2
K

(
ti – t

h

)
β2

ti

(
r2

Wti ,δ
– E

[
r2

Wti ,δ

])
.

Then

E
[
ρ2

i
]

=
δ2

h2 K2
(

ti – t
h

)
β4

ti
· M2,

where M2 = (μ4 – μ2
2)/μ2

2. By using a decomposition similar to equation (12) we can obtain

n∑

i=1

E
[
ρ2

i
]

=
δM2β

4
t

h

∫ 1

–1
K2(s) ds + OP

(
δ|log h|1/2

h1/2

)

= oP(1).

Therefore

1
hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

P−→ β2
t .

These complete the proof of Theorem 2. �

Theorem 3 Suppose the process Xt satisfies the conditions of Theorem 2. If δ → 0 so that

h2|log h|
δ

= oP(1), (13)

then

√
h
δ

(
β̂2

t – β2
t
) d−→ N

(
0, M2β

4
t

∫ 1

–1
K2(s) ds

)
, (14)

where M2 = (μ4 – μ2
2)/μ2

2, and the symbol “
d−→” denotes the convergence in distribution.
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Proof Decompose (β̂2
t – β2

t ) as

(
β̂2

t –
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
r2

Wti ,δ

)

+
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti

(
r2

Wti ,δ
– E

[
r2

Wti ,δ

])

+

(
1

hμ2

n∑

i=1

K
(

ti – t
h

)
β2

ti
E
[
r2

Wti ,δ

]
– β2

t

)

= L1 + L2 + L3.

By the proof of Theorem 2 we know that

L1 = L3 = OP
(
h1/2|log h|1/2),

and therefore we obtain from equation (13) that

√
h
δ

L1 =
√

h
δ

L3 = OP

(
h|log h|1/2

δ1/2

)
= oP(1).

Now we discuss the term L2. Similarly, from the proof of Theorem 2 we get that

√
h
δ

L2 =
√

h
δ

n∑

i=1

ρi

and

h
δ

n∑

i=1

E
[
ρ2

i
]

= M2β
4
t

∫ 1

–1
K2(s) ds + OP

(
h1/2|log h|1/2).

As long as (h3/2/δ3/2)
∑n

i=1 E[ρ3
i ] → 0 we further can conclude that

√
h/δρi (i = 1, 2, . . . , n)

satisfies Lyapunov’s condition:

h3/2

δ3/2

n∑

i=1

E
[
ρ3

i
]

=
h3/2

δ3/2 · 1
h3μ3

2

n∑

i=1

K3
(

ti – t
h

)
β6

ti
· E

[(
r2

Wti ,δ
– E

[
r2

Wti ,δ

])3]

=
( μ6
μ3

2
– 3μ4

μ2
2

+ 2)δ3

h3/2δ3/2

n∑

i=1

K3
(

ti – t
h

)
β6

ti

= OP

(
δ1/2

h1/2

)
→ 0.

By Lyapunov’s central limit theorem we obtain

√
h
δ

n∑

i=1

ρi
d−→ N

(
0, M2β

4
t

∫ 1

–1
K2(s) ds

)
.
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Further,

√
h
δ

(
β̂2

t – β2
t
) d−→ N

(
0, M2β

4
t

∫ 1

–1
K2(s) ds

)
. �

Remark 6 In spot volatility estimation for continuous diffusion models, Fan and Wang
[1] selected the bandwidth h ∼ δ1/2/log(1/δ). In this case, equation (13) is also satisfied.
Choosing h = O(δ1/2/ log(1/δ)), we can obtain the convergence rate close to the optimal
rate n–1/4, which was in keeping with the rate in Mykland and Zhang [21] and Foster and
Nelson [22]. Kristensen [3] chose a variable bandwidth h = O(δ1/(2γ +1)) by setting 0 < γ ≤ 1
(for models driven by a Wiener process, it is 0 < γ < 1/2) and obtained the optimal attain-
able convergence rate OP(δγ /(2γ +1)).

Remark 7 It is worth mentioning that the constant M2 in equation (14) is approximately
equal to 0.4; however, the amount in equation (2) is 2 (the same amount in Theorem 1 in
Fan and Wang [1]).

4 Conclusions
Combining with the range-based method and the threshold technique, we propose a non-
parametric spot volatility estimation procedure for time-dependent diffusion models with
jumps. Using the range instead of the return of the state variables, we employ the total data
and improve the estimating precision. Meanwhile, restricting the squared range to be not
greater than a specific threshold, the estimator is robust to the jumps.
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