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Abstract
This article aims to introduce a hybrid family of 2-variable Boas–Buck-general
polynomials by taking Boas–Buck polynomials as a base with the 2-variable general
polynomials. These polynomials are framed within the context of the monomiality
principle, and their properties are established. Further, we investigate some members
belonging to this family. A general method to express connection coefficients
explicitly for the Boas–Buck general polynomial sets is presented. Carlitz theorem for
mixed generating functions is also extended to these polynomials. The shapes are
shown and zeros are computed for these polynomials using Mathematica software.
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1 Introduction and preliminaries
Special functions of multivariable form have shown remarkable progress in recent years
[1–6]. These functions arise in diverse areas of mathematics, and they provide a new
means of analysis ranging from the solution of large classes of partial differential equa-
tions often encountered in physical problems to the abstract group theory. A hybrid class
of polynomials exhibits a nature lying between the two polynomial families, which are
introduced and studied employing appropriate operational rules [7–14].

To consider the convolution of two or more polynomials to introduce new multivari-
able generalized polynomials is a recent topic of research and is useful from the point of
view of applications. These multivariable hybrid special polynomials are important as they
possess significant properties. It is useful from an applicative point of view and appears in
certain problems of number theory, combinatorics, classical and numerical analysis, the-
oretical physics, approximation theory, and other fields of pure and applied mathematics.

We recall the following 2-variable form of special polynomials, namely 2-variable gen-
eral polynomials.
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Table 1 Certain members belonging to the 2-variable general polynomials Pn(x, y)

S. No. Φ(y, t) Polynomial Generating function

I eyt
s

Gould–Hopper polynomials [2] exp(xt + yts) =
∑∞

n=0 G
(s)
n (x, y) t

n
n!

II C0(–yts) 2-variable generalized Laguerre
polynomials [3]

exp(xt)C0(–yts) =
∑∞

n=0 sLn(y, x) t
n
n!

III 1
1–ytr 2-variable truncated exponential

polynomials of order r [4]

ext

1–ytr =
∑∞

n=0 e
(r)
n (x, y)

tn
n!

IV teyt
j

et–1
2-dimensional Bernoulli
polynomials [5]

t
et–1

ext+yt
j
=

∑∞
n=0 B

(j)
n (x, y)

tn
n! , |t| < 2π

V 2eyt
j

et+1
2-dimensional Euler
polynomials [6]

2
et+1

ext+yt
j
=

∑∞
n=0 E

(j)
n (x, y)

tn
n! , |t| < π

Definition 1.1 A general polynomial set is said to be 2-variable general polynomials
Pn(x, y) if it has the following generating function [1]:

extΦ(y, t) =
∞∑

n=0

Pn(x, y)
tn

n!
, P0(x, y) = 1, (1)

where Φ(y, t) has (at least the formal) series expansion

Φ(y, t) =
∞∑

n=0

φn(y)
tn

n!
, φ0(y) �= 0. (2)

The 2-variable general polynomials family contains many important polynomials. We
present the list of some known 2-variable general polynomial families in Table 1.

The Boas–Buck polynomial set was introduced by Boas and Buck [15] in the year 1956.
It includes many important general classes of polynomial sets like Brenke polynomials,
Sheffer polynomials, Appell polynomials, etc. The Boas–Buck polynomial set is defined
by means of generating function as follows.

Definition 1.2 A polynomial set is said to be Boas–Buck polynomial set if it has the fol-
lowing generating function [15]:

A(t)B
(
xC(t)

)
=

∞∑

n=0

Fn(x)
tn

n!
, (3)

where A, B, and C are the power series such that

A(t) =
∞∑

n=0

an
tn

n!
, a0 �= 0; (4)

B(t) =
∞∑

n=0

bn
tn

n!
, bn �= 0 for all n; (5)

C(t) =
∞∑

n=1

cn
tn

n!
, c1 �= 0. (6)



Yasmin et al. Advances in Difference Equations        (2020) 2020:362 Page 3 of 21

The Boas–Buck polynomial set defined by Equation (3) is quasi-monomial under the
action of the following multiplicative and derivative operators [16]:

M̂F = xDxC′(C–1(σ )
)
σ –1 +

A′(C–1(σ ))
A(C–1(σ ))

, (7)

P̂F = C–1(σ ), (8)

where σ is the derivative operator of Bn(x) =
∑n

k=0 bk
xk

k! and is given by

σ (1) = 0 and σ
(
xn) = n

bn–1

bn
xn–1, n = 1, 2, . . . . (9)

According to the monomiality principle, the multiplicative operator M̂F and derivative
operator P̂F of Boas–Buck polynomials Fn(x), when acting on the Boas–Buck polynomials
Fn(x), yield

M̂F
{

Fn(x)
}

= Fn+1(x) (10)

and

P̂F
{

Fn(x)
}

= nFn–1(x). (11)

The differential equation satisfied by Boas–Buck polynomials Fn(x) is given by

M̂F P̂F
{

Fn(x)
}

= nFn(x). (12)

The exponential generating function of Boas–Buck polynomials Fn(x) can be cast in the
form

exp(M̂F t){1} =
∞∑

n=0

Fn(x)
tn

n!
. (13)

The Boas–Buck polynomial set includes many important general classes of polynomial
sets. Some of them are listed in Table 2.

In this paper, the 2-variable Boas–Buck-general polynomials are introduced by means of
a generating function, and their properties are studied. In order to show some applications
of the main results, several illustrative examples are also considered. The Carlitz theorem
for mixed generating functions is extended to the 2-variable Boas–Buck-general polyno-
mials, and an alternative method for finding the connection coefficient between two 2-
variable Boas–Buck-general polynomials is also presented. A recursion relation charac-

Table 2 Certain members belonging to the Boas–Buck family

S. No. C(t) and B(t) Polynomial set Generating function

I C(t) = t Brenke polynomials [17] A(t)B(xt) =
∑∞

n=0 Yn(x)
tn
n!

II B(t) = exp(t) Sheffer polynomials [18] A(t) exp(xC(t)) =
∑∞

n=0 Sn(x)
tn
n!

III C(t) = t & B(t) = exp(t) Appell polynomials [19] A(t) exp(xt) =
∑∞

n=0 Ln(x)
tn
n!
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terizing the 2-variable Boas–Buck-general polynomials is derived. Certain graphical rep-
resentations and numerical computations for these polynomials are also presented.

2 Boas–Buck-general polynomials FPn(x, y)
In this section, a new hybrid class of the 2-variable Boas–Buck-general polynomials (2VB-
BGP) denoted by F Pn(x, y) is introduced by convoluting the Boas–Buck polynomials Fn(x)
and 2-variable general polynomials Pn(x, y). In order to establish the generating function
for these polynomials, the operational technique with monomiality principle plays a major
role. Indeed, on replacing x by the multiplicative operator M̂F (7) of the Boas–Buck poly-
nomials Fn(x) in the generating function (1) of the 2-variable general polynomials Pn(x, y),
the following expression is obtained:

exp(M̂F t)Φ(y, t) =
∞∑

n=0

Pn(M̂F , y)
tn

n!
. (14)

Using Equation (13) (for 2VBBGP F Pn(x, y)) and denoting Pn(M̂F , y) by the resultant 2-
variable Boas–Buck-general polynomials (2VBBGP) F Pn(x, y), we get

Φ(y, t)
∞∑

n=0

Fn(x)
tn

n!
=

∞∑

n=0
F Pn(x, y)

tn

n!
, (15)

which by virtue of Equation (3) gives the following generating function of 2VBBGP
F Pn(x, y):

Φ(y, t)A(t)B
(
xC(t)

)
=

∞∑

n=0
F Pn(x, y)

tn

n!
. (16)

Further, using expansion (2) in Equation (15), then simplifying and comparing similar
powers of t on both sides of the resultant equation, we get the following series expansion
of the 2VBBGP F Pn(x, y):

F Pn(x, y) =
n∑

k=0

nCkFn–k(x)φk(y). (17)

In view of Table 2, certain polynomial sets belonging to the 2-variable Boas–Buck-
general family F Pn(x, y) are established and mentioned in Table 3.

Table 3 Certain members belonging to the 2VBBGP FPn(x, y)

S. No. Name and notation Generating function and series expansion

I Brenke general polynomials YPn(x, y) Φ(y, t)A(t)B(xt) =
∑∞

n=0 YPn(x, y) t
n
n!

YPn(x, y) =
∑n

k=0
nCkYn–k (x)φk (y)

II Sheffer general polynomials SPn(x, y) Φ(y, t)A(t) exp(xC(t)) =
∑∞

n=0 SPn(x, y) t
n
n!

SPn(x, y) =
∑n

k=0
nCkSn–k (x)φk (y)

III Appell general polynomials LPn(x, y) Φ(y, t)A(t) exp(xt) =
∑∞

n=0 LPn(x, y) t
n
n!

LPn(x, y) =
∑n

k=0
nCkLn–k (x)φk (y)
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In order to ensure that the 2VBBGP F Pn(x, y) are quasi-monomial, the following result
is proved. For the sake of uniformity, throughout the paper we take

Φ ′(y, z) =
∂

∂z
Φ(y, z), (18)

unless otherwise stated.

Theorem 2.1 The multiplicative and derivative operators of 2VBBGP F Pn(x, y) are respec-
tively given by

M̂F P = x∂xC′(C–1(σ )
)
σ –1 +

A′(C–1(σ ))
A(C–1(σ ))

+
Φ ′(y, C–1(σ ))
Φ(y, C–1(σ ))

(19)

and

P̂F P = C–1(σ ). (20)

Proof Note that Equation (9) allows us to write the relation

σB(xt) = tB(xt). (21)

So that we can write

C–1(σ )Φ(y, t)A(t)B
(
xC(t)

)
= tΦ(y, t)A(t)B

(
xC(t)

)
. (22)

Differentiating Equation (16) partially with respect to t, we obtain

[

x∂x
C′(t)
C(t)

+
A′(t)
A(t)

+
Φ ′(y, t)
Φ(y, t)

] ∞∑

n=0
F Pn(x, y)

tn

n!
=

∞∑

n=0
F Pn+1(x, y)

tn

n!
. (23)

Now, using identity (22) and comparing similar powers of t gives

[

x∂xC′(C–1(σ )
)
σ –1 +

A′(C–1(σ ))
A(C–1(σ ))

+
Φ ′(y, C–1(σ ))
Φ(y, C–1(σ ))

]

F Pn(x, y) = F Pn+1(x, y), (24)

which in view of relation (10) (for 2VBBGP F Pn(x, y)) gives assertion (19).
Rewriting identity (22) using generating function (16) of 2VBBGP F Pn(x, y), we obtain

C–1(σ )
∞∑

n=0
F Pn(x, y)

tn

n!
=

∞∑

n=1

n F Pn–1(x, y)
tn

n!
, (25)

which on comparing similar powers of t and in view of relation (11) (for 2VBBGP F Pn(x, y))
gives assertion (20). �

In view of relation (12) (for 2VBBGP F Pn(x, y)), expressions (19) and (20) give the fol-
lowing result.
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Theorem 2.2 The 2VBBGP F Pn(x, y) satisfies the following differential equation:

[

x∂xC′(C–1(σ )
)
σ –1 – nC(σ ) +

A′(C–1(σ ))
A(C–1(σ ))

+
Φ ′(y, C–1(σ ))
Φ(y, C–1(σ ))

]

F Pn(x, y) = 0. (26)

Remark 2.1 Taking C(t) = t in Equations (19), (20), and (26), the following consequences
of Theorems 2.1 and 2.2 are deduced.

Corollary 2.1 The Brenke general polynomials Y Pn(x, y) are quasi-monomial with respect
to the following multiplicative and derivative operators:

M̂Y P = x∂xσ
–1 +

A′(σ )
A(σ )

+
Φ ′(y,σ )
Φ(y,σ )

, (27)

P̂Y P = σ (28)

and satisfy the following differential equation:

[

x∂xσ
–1 – nσ +

A′(σ )
A(σ )

+
Φ ′(y,σ )
Φ(y,σ )

]

Y Pn(x, y) = 0. (29)

Remark 2.2 Taking B(t) = exp(t) in Equations (19), (20), and (26), the following conse-
quences of Theorems 2.1 and 2.2 are deduced.

Corollary 2.2 The Sheffer general polynomials SPn(x, y) are quasi-monomial with respect
to the following multiplicative and derivative operators:

M̂SP = xC′(C–1(∂x)
)

+
A′(C–1(∂x))
A(C–1(∂x))

+
Φ ′(y, C–1(∂x))
Φ(y, C–1(∂x))

, (30)

P̂SP = C–1(∂x) (31)

and satisfy the following differential equation:

[

xC′(C–1(∂x)
)

– nC(∂x) +
A′(C–1(∂x))
A(C–1(∂x))

+
Φ ′(y, C–1(∂x))
Φ(y, C–1(∂x))

]

SPn(x, y) = 0. (32)

Remark 2.3 Taking C(t) = t and B(t) = exp(t) in Equations (19), (20), and (26), the following
consequences of Theorems 2.1 and 2.2 are deduced.

Corollary 2.3 The Appell general polynomials LPn(x, y) are quasi-monomial with respect
to the following multiplicative and derivative operators:

M̂LP = x +
A′(∂x)
A(∂x)

+
Φ ′(y, ∂x)
Φ(y, ∂x)

, (33)

P̂LP = ∂x (34)

and satisfy the following differential equation:

[

x – n∂x +
A′(∂x)
A(∂x)

+
Φ ′(y, ∂x)
Φ(y, ∂x)

]

LPn(x, y) = 0. (35)
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Table 4 Results for Boas–Buck–Gould–Hopper polynomials FG
(s)
n (x, y)

S. No. Results Expressions

I Series expansion FG
(s)
n (x, y) =

∑n
k=0

nCkFn–k (x)G
(s)
k (0, y)

II Multiplicative operator M̂
FG

(s) = x∂xC′(C–1(σ ))σ –1 + A′ (C–1(σ ))
A(C–1(σ ))

+ syC1–s(σ )

III Derivative operator P̂
FG

(s) = C–1(σ )

IV Differential equation (x∂xC′(C–1(σ ))σ –1 – nC(σ ) + A′ (C–1(σ ))
A(C–1(σ ))

+ syC1–s(σ )) FG
(s)
n (x, y) = 0

In the next section, we discuss the illustrative examples of some members belonging
to the 2-variable Boas–Buck-general family F Pn(x, y) in order to give applications of the
results derived above.

3 Illustrative examples
Certain polynomial sets belonging to the 2VBBGP F Pn(x, y) and their corresponding re-
sults for the above established properties are derived and mentioned in the following il-
lustrative examples.

Example 3.1 For Φ(y, t) = eyts , the 2-variable general polynomials Pn(x, y) reduce to the
Gould–Hopper polynomials G(s)

n (x, y) (Table 1(I)). Consequently, the resulting Boas–
Buck–Gould–Hopper polynomials denoted by F G(s)

n (x, y) are defined by the following gen-
erating function:

exp
(
yts)A(t)B

(
xC(t)

)
=

∞∑

n=0
F G(s)

n (x, y)
tn

n!
. (36)

The other corresponding results for Boas–Buck–Gould–Hopper polynomials F G(s)
n (x, y)

are presented in Table 4.

Remark 3.1 Since for s = 2 the Gould–Hopper polynomials G(s)
n (x, y) reduce to the 2-

variable Hermite Kampé de Feriet polynomials Hn(x, y), taking s = 2 in Equation (36), we
get the following generating function for the Boas–Buck–Hermite polynomials denoted
by F Hn(x, y):

exp
(
yt2)A(t)B

(
xC(t)

)
=

∞∑

n=0
F Hn(x, y)

tn

n!
. (37)

The series definition and other results for the Boas–Buck–Hermite polynomials F Hn(x,
y) can be obtained by taking s = 2 in the results given in Table 4.

Example 3.2 For Φ(y, t) = C0(–yts), the 2-variable general polynomials Pn(x, y) reduce to
the 2-variable generalized Laguerre polynomials sLn(y, x) (Table 1(II)). Consequently, the
resulting Boas–Buck–generalized Laguerre polynomials denoted by F L(s)

n (x, y) are defined
by the following generating function:

C0
(
–yts)A(t)B

(
xC(t)

)
=

∞∑

n=0
F L(s)

n (x, y)
tn

n!
. (38)
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Table 5 Results for Boas–Buck-generalized Laguerre polynomials FL
(s)
n (x, y)

S. No. Results Expressions

I Series expansion FL
(s)
n (x, y) =

∑n
k=0

nCkFn–k (x) sLk (0, y)

II Multiplicative operator M̂L(s) = x∂xC′(C–1(σ ))σ –1 + A′ (C–1(σ ))
A(C–1(σ ))

+ s∂–1
y C1–s(σ )

III Derivative operator P̂
F L
(s) = C–1(σ )

IV Differential equation (x∂xC′(C–1(σ ))σ –1 – nC(σ ) + A′ (C–1(σ ))
A(C–1(σ ))

+ s∂–1
y C1–s(σ )) FL

(s)
n (x, y) = 0

Table 6 Results for Boas–Buck-truncated exponential polynomials Fe
(r)
n (x, y)

S. No. Results Expressions

I Series expansion Fe
(r)
n (x, y) =

∑n
k=0

nCkFn–k (x)e
(r)
k (0, y)

II Multiplicative operator M̂
Fe
(r) = x∂xC′(C–1(σ ))σ –1 + A′ (C–1(σ ))

A(C–1(σ ))
+ ry∂yyC1–r (σ )

III Derivative operator P̂
F e
(r) = C–1(σ )

IV Differential equation (x∂xC′(C–1(σ ))σ –1 – nC(σ ) + A′ (C–1(σ ))
A(C–1(σ ))

+ ry∂yyC1–r (σ )) Fe
(r)
n (x, y) = 0

The other corresponding results for Boas–Buck-generalized Laguerre polynomials
F L(s)

n (x, y) are presented in Table 5.

Remark 3.2 Since for s = 1 and y → –y the 2-variable generalized Laguerre polynomials
sLn(y, x) reduce to the 2-variable Laguerre polynomials Ln(y, x), taking s = 1 and y → –y in
Equation (38), we get the generating function for the Boas–Buck–Laguerre polynomials
denoted by F Ln(x, y):

C0(yt)A(t)B
(
xC(t)

)
=

∞∑

n=0
F Ln(x, y)

tn

n!
. (39)

The series definition and other results for the Boas–Buck–Laguerre polynomials
F Ln(x, y) can be obtained by taking s = 1 and y → –y in the results given in Table 5.

Example 3.3 For Φ(y, t) = 1
1–ytr , the 2-variable general polynomials Pn(x, y) reduce to the

2-variable truncated exponential polynomials of order r, e(r)
n (x, y) (Table 1(III)). Conse-

quently, the resulting Boas–Buck-truncated exponential polynomials of order r denoted
by F e(r)

n (x, y) are defined by the following generating function:

1
1 – ytr A(t)B

(
xC(t)

)
=

∞∑

n=0
F e(r)

n (x, y)
tn

n!
. (40)

The other corresponding results for Boas–Buck-truncated exponential polynomials of
order r F e(r)

n (x, y) are presented in Table 6.

Example 3.4 For Φ(y, t) = teytj

et–1 , the 2-variable general polynomials Pn(x, y) reduce to the
2-dimensional Bernoulli polynomials B(j)

n (x, y) (Table 1(IV)). Consequently, the resulting
Boas–Buck–Bernoulli polynomials denoted by F B(j)

n (x, y) are defined by the following gen-
erating function:

teytj

et – 1
A(t)B

(
xC(t)

)
=

∞∑

n=0
F B(j)

n (x, y)
tn

n!
. (41)
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Table 7 Results for Boas–Buck–Bernoulli polynomials FB
(j)
n (x, y)

S. No. Results Expressions

I Series expansion FB
(j)
n (x, y) =

∑n
k=0

nCkFn–k (x)B
(j)
k (0, y)

II Multiplicative operator M̂
FB

(j) = x∂xC′(C–1(σ ))σ –1 + A′ (C–1(σ ))
A(C–1(σ ))

+ C(σ ) + jyC1–j(σ ) + (1 – exp(C–1(σ )))–1

III Derivative operator P̂
FB

(j) = C–1(σ )

IV Differential equation (x∂xC′(C–1(σ ))σ –1 – nC(σ ) + A′ (C–1(σ ))
A(C–1(σ ))

+ C(σ ) + jyC1–j(σ )

+ (1 – exp(C–1(σ )))–1) FB
(j)
n (x, y) = 0

Table 8 Results for Boas–Buck–Euler polynomials FE
(j)
n (x, y)

S. No. Results Expressions

I Series expansion FE
(j)
n (x, y) =

∑n
k=0

nCkFn–k (x)E
(j)
k (0, y)

II Multiplicative operator M̂
FE

(j) = x∂xC′(C–1(σ ))σ –1 + A′ (C–1(σ ))
A(C–1(σ ))

+ jyC1–j(σ ) – (1 + exp(C–1(σ )))–1

III Derivative operator P̂
F E

(j) = C–1(σ )

IV Differential equation (x∂xC′(C–1(σ ))σ –1 – nC(σ ) + A′ (C–1(σ ))
A(C–1(σ ))

+ jyC1–j(σ )

– (1 + exp(C–1(σ )))–1) FE
(j)
n (x, y) = 0

The other corresponding results for Boas–Buck–Bernoulli polynomials F B(j)
n (x, y) are

presented in Table 7.

Example 3.5 For Φ(y, t) = 2eytj

et+1 , the 2-variable general polynomials Pn(x, y) reduce to the
2-dimensional Euler polynomials E(j)

n (x, y) (Table 1(V)). Consequently, the resulting Boas–
Buck–Euler polynomials denoted by F E(j)

n (x, y) are defined by the following generating
function:

2eytj

et + 1
A(t)B

(
xC(t)

)
=

∞∑

n=0
F E(j)

n (x, y)
tn

n!
. (42)

The other corresponding results for Boas–Buck–Euler polynomials F E(j)
n (x, y) are pre-

sented in Table 8.

In the next section, connection coefficients between two 2VBBGP F Pn(x, y) sets are de-
rived. Further, Carlitz theorem is extended for the 2VBBGP F Pn(x, y).

4 Connection coefficient and Carlitz theorem
In the last few years, popularity and interest in detecting connection coefficients have
gained attention as they play a vital role in various situations of pure and applied mathe-
matics, especially in combinatorial analysis, and are used in the computation of physical
and chemical properties of the quantum-mechanical system. To express a general method
for the derivation of connection coefficients for the 2VBBGP F Pn(x, y), the following the-
orem is proved.

Theorem 4.1 Let {F Pn(x, y)}n≥0 with lowering operator P̂F P and {F Qn(x, y)}n≥0 with lower-
ing operator P̂F Q be two polynomial sets of 2VBBGP generated respectively by

Φ1(y, t)A1(t)B1
(
xC1(t)

)
=

∞∑

n=0
F Pn(x, y)

tn

n!
(43)
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and

Φ2(y, t)A2(t)B2
(
xC2(t)

)
=

∞∑

n=0
F Qn(x, y)

tn

n!
. (44)

Then the connection coefficient Cm,n in

F Qn(x, y) =
n∑

m=0

Cm,n F Pm(x, y) (45)

is given by the generating function

A2(t)Φ2(0, t)
A1(f –1(t))Φ1(0, f –1(t))

f –m(t)
m!

=
∞∑

n=0

Cm,n
tn

n!
, (46)

where P̂F Q = f (P̂F P).

Proof Using the result [20, p. 416, Theorem 3.1], we can write 2VBBGP F Qn(x, y) as

F Qn(x, y) =
n∑

m=0

(P̂F P)m F Qn(0, 0)
A1(P̂F P)Φ1(0, P̂F P)

F Pm(x, y)
m!

. (47)

Putting value of F Qn(x, y) from Equation (47) in (45) gives

Cm,n =
(P̂F P)m

m!
F Qn(0, 0)

A1(P̂F P)Φ1(0, P̂F P)
. (48)

Since

B(2)
n (t) =

n∑

k=0

b(2)
k

tk

k!
, bn �= 0 for all n, (49)

so, from the result [20, p. 415, Lemma 2.2], we can write

F Qn(0, 0) = A2(P̂F Q)Φ2(0, P̂F Q)B(2)
n (0). (50)

Using the above relation and the fact P̂F Q = f (P̂F P) in Equation (48), we get

Cm,n = f –m(P̂F Q)
A2(P̂F Q)Φ2(0, P̂F Q)

A1(f –1(P̂F Q))Φ1(0, f –1(P̂F Q))
B(2)

n (0)
m!

. (51)

Putting

f –m(t)
A2(t)Φ2(0, t)

A1(f –1(t))Φ1(0, f –1(t))
=

∞∑

k=0

gk(m)tk (52)

in Equation (51), we obtain

Cm,n =
∞∑

k=0

gk(m)(P̂F Q)k B(2)
n (0)
m!

. (53)
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Since P̂F Q is a lowering operator of F Qn(x, y), so P̂F Q is also a lowering operator of B(2)
n (x).

Using this fact and simplifying Equation (53) give

Cm,n =
n!
m!

gn(m). (54)

Now, on putting the above value of gn(m) in Equation (52), we obtain assertion (46). �

Remark 4.1 Since for B1(t) = B2(t) = B(t)

P̂F P = C–1
1 (σ ) (55)

and

P̂F Q = C–1
2 (σ ), (56)

where σ is the derivative operator of Bn(x) =
∑n

k=0 bk
xk

k! , from Equations (55) and (56) we
can write

P̂F Q = C–1
2

(
C1(P̂F P)

)
. (57)

Thus the following consequence of Theorem 4.1 is obtained.

Corollary 4.1 Let {F Pn(x, y)}n≥0 with lowering operator P̂F P and {F Qn(x, y)}n≥0 with low-
ering operator P̂F Q be two polynomial sets of 2VBBGP generated respectively by

Φ1(y, t)A1(t)B
(
xC1(t)

)
=

∞∑

n=0
F Pn(x, y)

tn

n!
(58)

and

Φ2(y, t)A2(t)B
(
xC2(t)

)
=

∞∑

n=0
F Qn(x, y)

tn

n!
. (59)

Then the connection coefficient Cm,n in

F Qn(x, y) =
n∑

m=0

Cm,n F Pm(x, y) (60)

is given by the generating function

A2(t)Φ2(0, t)
A1(C2(C1(t)))Φ1(0, C2(C1(t)))

C–m
2 (C1(t))

m!
=

∞∑

n=0

Cm,n
tn

n!
. (61)

To give an application of the result given in Theorem 4.1, we consider the following
example.
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Example 4.1 Since for Φ1(y, t) = eyts the 2-variable general polynomials Pn(x, y) reduce to
Gould–Hopper polynomials G(s)

n (x, y) (Table 1(I)) and for A1(t) = t
et–1 , B1(xt) = exp(xt) and

C1(t) = t, the Boas–Buck polynomials reduce to Bernoulli polynomials [21], the resulting
Bernoulli–Gould–Hopper polynomials denoted by BG(s)

n (x, y) are defined by the following
generating function:

t
et – 1

exp
(
xt + yts) =

∞∑

n=0
BG(s)

n (x, y)
tn

n!
. (62)

Since for Φ2(y, t) = C0(–ytr) the 2-variable general polynomials Pn(x, y) reduce to 2-
variable generalized Laguerre polynomials rLn(x, y) (Table 1(II)) and for A2(t) = 2

et+1 ,
B2(xt) = exp(xt), and C2(t) = t the Boas–Buck polynomials reduce to Euler polynomials
[21], the resulting Euler–Laguerre polynomials denoted by EL(r)

n (x, y) are defined by the
following generating function:

2C0(–ytr)
et + 1

exp(xt) =
∞∑

n=0
EL(r)

n (x, y)
tn

n!
. (63)

Now, by using Theorem 4.1, the connection coefficient in

EL(r)
n (x, y) =

n∑

m=0

Cm,n BG(s)
m (x, y) (64)

is given by the generating function

–
2(et – 1)

et + 1
t–(m+1)

m!
=

∞∑

n=0

Cm,n
tn

n!
. (65)

Similarly, connection coefficients of other members belonging to this family can be ob-
tained.

In order to extend Carlitz theorem for 2VBBGP F Pn(x, y), we first define a generating
function of 2VBBGP of order α, F P(α)

n (x, y) as follows:

(
Φ(y, t)

)αA(t)B
(
xC(t)

)
=

∞∑

n=0
F P(α)

n (x, y)
tn

n!
, (66)

where Φ(y, t), A(t), B(t), and C(t) are given by (2), (4), (5), and (6), respectively.
Next we prove the following result.

Theorem 4.2 Let A(t), B(t), C(t), and Φ(y, t) be regular in the neighborhood of ori-
gin. Then, for arbitrary μ, the following generating function for the 2VBBGP of order α,
F P(α)

n (x, y) holds true:

∞∑

n=0
F P(α+μn)

n (x, y)
wn

n!
=

Φα+1(y, z)A(z)B(xC(z))
Φ(y, z) – μzΦ ′(y, z)

, (67)

where w = z(Φ(y, t))–μ.
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Proof Applying Taylor’s expansion theorem in Equation (66), we get

F P(α)
n (x, y) = ∂n

t
{(

Φ(y, t)
)αA(t)B

(
xC(t)

)}∣
∣
t=0, ∂t ≡ ∂

∂t
(68)

so that we can also write

F P(α+μn)
n (x, y) = ∂n

t
{(

Φ(y, t)
)α+μnA(t)B

(
xC(t)

)}∣
∣
t=0. (69)

Taking

f (t) =
(
Φ(y, t)

)αA(t)B
(
xC(t)

)
(70)

and

ψ(t) =
(
Φ(y, t)

)μ, (71)

then Equation (69) can be written as

F P(α+μn)
n (x, y) = ∂n

t
{

f (t)
(
ψ(t)

)n}∣∣
t=0. (72)

Recall Lagrange’s expansion [22, p. 146]

f (z)
1 – wψ ′(z)

=
∞∑

n=0

wn

n!
∂n

t
{

f (t)
(
ψ(t)

)n}∣∣
t=0, (73)

where the functions f (t) and ψ(t) are regular about the origin and z is given by

z = wψ(z), ψ(z) �= 0. (74)

Using Equation (72) in Lagrange’s expansion (73), we have

f (z)
1 – wψ ′(z)

=
∞∑

n=0

wn

n! F P(α+μn)
n (x, y)

∣
∣
t=0, (75)

which in view of Equations (70), (71), and (74) gives assertion (67). �

To give an application of the result given in Theorem 4.2, we consider the following
example.

Example 4.2 Consider Boas–Buck–Hermite polynomials F Hn(x, y) defined by Equation
(37). In view of Equation (66), the generating function of Boas–Buck–Hermite polynomi-
als of order α F H (α)

n (x, y) is given by

exp
(
αyt2)A(t)B

(
xC(t)

)
=

∞∑

n=0
F H (α)

n (x, y)
tn

n!
. (76)
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Then its Carlitz type generating function is given by

∞∑

n=0
F H (α+μn)

n (x, y)
wn

n!
=

exp(αyz2)A(z)B(xC(z))
1 – 2μyz2 , (77)

where w = z exp(–μyt2).

Similarly, a Carlitz type generating function of other members belonging to this family
can be obtained.

In the next section, the recursion relation which characterizes the 2VBBGP F Pn(x, y) is
given.

5 Concluding remarks
One of the main results of Boas and Buck [15] is that a necessary and sufficient condition
for the polynomials Fn(x) to have a generating function of Boas–Buck type is that there ex-
ists a sequence of numbers αk and βk such that, for n ≥ 1, the following recursion relation
holds:

nFn(x) – xF ′
n(x) =

n–1∑

k=0

αkFn–1–k(x) + x
n–1∑

k=0

βkF ′
n–1–k(x). (78)

For the hybrid polynomials 2VBBGP F Pn(x, y), we prove the following analogous result.

Theorem 5.1 For the 2VBBGP F Pn(x, y) defined by Equation (16), the following recursion
relation holds true for n ≥ 1:

n F Pn(x, y) – x∂x F Pn(x, y)

=
n–1∑

k=0

nCk+1
[(

μk(y) + αk
)

F Pn–1–k(x, y) + xξk∂x F Pn–1–k(x, y)
]
, (79)

where

t
A′(t)
A(t)

=
∞∑

n=0

αn
tn+1

(n + 1)!
, (80)

t
C′(t)
C(t)

= 1 +
∞∑

n=0

ξn
tn+1

(n + 1)!
, (81)

and

t
Φ ′(y, t)
Φ(y, t)

=
∞∑

n=0

μn(y)
tn+1

(n + 1)!
, Φ ′(y, t) =

d
dt

Φ(y, t). (82)

Proof Consider

G = Φ(y, t)A(t)B
(
xC(t)

)
. (83)
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Then

∂G
∂x

= C(t)Φ(y, t)A(t)B′(xC(t)
)

(84)

and

∂G
∂t

=
[

Φ ′(y, t)
Φ (y, t)

+
A′(t)
A(t)

+ xC′(t)
B′(xC(t))
B(xC(t))

]

Φ(y, t)A(t)B
(
xC(t)

)
. (85)

Eliminating B(xC(t)) and B′(xC(t)) from Equations (83)–(85) gives

t
∂G
∂t

– xt
C′(t)
C(t)

∂G
∂x

=
[

t
Φ ′(y, t)
Φ (y, t)

+ t
A′(t)
A(t)

]

G. (86)

In view of Equations (16) and (83), we have

G =
∞∑

n=0
F Pn(x, y)

tn

n!
. (87)

Using Equations (80)–(82) and (87) in Equation (86), we have

∞∑

n=0

n F Pn(x, y)
tn

n!
– x

[

1 +
∞∑

n=0

ξn
tn+1

(n + 1)!

] ∞∑

n=0

∂

∂x F Pn(x, y)
tn

n!

=

[ ∞∑

n=0

μn(y)
tn+1

(n + 1)!
+

∞∑

n=0

αn
tn+1

(n + 1)!

] ∞∑

n=0
F Pn(x, y)

tn

n!
. (88)

Simplifying Equation (88) gives

∞∑

n=1

[
n F Pn(x, y) – x F P′

n(x, y)
] tn

n!

=
∞∑

n=1

n–1∑

k=0

nCk+1
[(

μk(y) + αk
)

F Pn–1–k(x, y) + xξk F P′
n–1–k(x, y)

] tn

n!
, (89)

from which, on comparing the coefficients of equal powers of t in Equation (89), we get
assertion (79). �

Remark 5.1 Since for C(t) = t the 2VBBGP F Pn(x, y) reduce to the Brenke general polyno-
mials Y Pn(x, y), from Equation (81) it follows that ξk = 0. Thus the following consequence
of Theorem 5.1 is obtained.

Corollary 5.1 For the Brenke general polynomials Y Pn(x, y) defined by Table 3(I), the fol-
lowing recursion relation holds true for n ≥ 1:

n F Pn(x, y) – x∂x F Pn(x, y) =
n–1∑

k=0

nCk+1
(
μk(y) + αk

)
F Pn–1–k(x, y), (90)

where αn and μn(y) are defined by Equations (80) and (82) respectively.
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Remark 5.2 Since for B(t) = exp(t) the 2VBBGP F Pn(x, y) reduce to the Sheffer general
polynomials SPn(x, y), it follows that Sheffer general polynomials SPn(x, y) satisfy the re-
cursion relation identical to (79) with Equations (80), (81), and (82) holding.

Remark 5.3 Since for C(t) = t and B(t) = exp(t) the 2VBBGP F Pn(x, y) reduce to the Ap-
pell general polynomials LPn(x, y), from Equation (81) it follows that ξk = 0. Thus Sheffer
general polynomials SPn(x, y) satisfy the recursion relation identical to (90) with Equations
(80) and (82) holding.

Finally, to give an application of the result given in Theorem 5.1, we consider the follow-
ing example.

Example 5.1 Since for Φ(y, t) = 1
1–yt the 2-variable general polynomials Pn(x, y) reduce

to 2-variable truncated exponential polynomials of order 1 en(x, y) (Table 1(III)) and for
A(t) = 1

1–t , B(xt) = exp(xt), and C(t) = –t
1–t the Boas–Buck polynomials reduce to Laguerre

polynomials [23], putting these values in Equation (16), the 2VBBGP F Pn(x, y) is reduced to
the Laguerre-truncated exponential polynomials (LTEP) denoted by Len(x, y) and is given
by

1
(1 – t)(1 – yt)

exp

(
–xt
1 – t

)

=
∞∑

n=0
Len(x, y)

tn

n!
. (91)

From the expressions of A(t), C(t), and Φ(y, t), we find

t
A′(t)
A(t)

=
∞∑

n=0

tn+1, (92)

t
C′(t)
C(t)

= 1 +
∞∑

n=0

tn+1, (93)

and

t
Φ ′(y, t)
Φ(y, t)

=
∞∑

n=0

yntn+1. (94)

On comparing Equations (92)–(94) with Equations (81)–(83), we find

αk = ξk = (k + 1)! (95)

and

μk = yk+1(k + 1)!. (96)

Using the expressions from Equations (95) and (96) in Equation (79), we get the following
recurrence relation for LTEP Len(x, y):

n Len(x, y) – x∂x Len(x, y)

=
n–1∑

k=0

n!
(n – k – 1)!

[(
yk + 1

)
Len–1–k(x, y) + x∂x Len–1–k(x, y)

]
. (97)
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Similarly, a recurrence relation of other members belonging to this family can also be
obtained.

Appendix
In the previous section, the recursion relation of 2VBBGP F Pn(x, y) has been obtained. In
this section, we discuss the graphical and computational aspects related to these polyno-
mials. The software “Mathematica” is used to show the behavior of LTEP Len(x, y) (which
is a member of 2VBBGP F Pn(x, y)) by means of the graph, 3D surface plot, and plotting of
zeros. The LTEP Len(x, y) are defined by the generating function (91), and first few LTEP
Len(x, y) are as follows:

Le0(x, y) = 1,

Le1(x, y) = 1 – x + y,

Le2(x, y) = 2 – 4x + x2 + 2y – 2xy + 2y2,

Le3(x, y) = 6 – 18x + 9x2 – x3 + 6y – 12xy + 3x2y + 6y2 – 6xy2 + 6y3,

Le4(x, y) = 24 – 96x + 72x2 – 16x3 + x4 + 24y – 72xy + 36x2y – 4x3y + 24y2

– 48xy2 + 12x2y2 + 24y3 – 24xy3 + 24y4.

The shape of LTEP Len(x, y) for y = 5 is displayed. In Fig. 1 (left) and Fig. 1 (right), graphs
for the even values (2n; n = 0, 1, 2, . . . , 6) and odd values (2n + 1; n = 0, 1, 2, . . . , 6) are shown
respectively.

The 3D surface plots are more informative and better for analysis. The predictor vari-
ables are displayed on the x and y axes, while the response variable z is represented by
a smooth surface (3D surface plot) or a grid. It helps to visualize the response surface
and hence provide a more clear concept. The surface plot of LTEP Len(x, y) for n = 20 and
n = 21 is displayed in Fig. 2.

Numerical results for number of real and complex zeros of the LTEP Len(x, y) for y = 5
are listed in Table 9.

Approximate solution satisfying the LTEP Len(x, y) for y = 5 is given in Table 10.

Figure 1 Curve of LTEP Len(x, y)
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Figure 2 Surface plot of Le20(x, y) and Le21(x, y)

Table 9 Numbers of real and complex zeros of Len(x, y)

Degree n Number of real zeros Number of complex zeros

1 1 0
2 0 2
3 1 2
4 0 4
5 1 4
6 0 6
7 1 6
8 2 6

Table 10 Approximate solutions of Len(x, y)

Degree n Real roots Complex roots

1 6.0 –

2 – 7 – 3.6055 i, 7 + 3.6055 i

3 11.0158 6.4921 – 6.5438 i, 6.4921 + 6.5438 i

4 – 5.4531 – 9.1917 i, 5.4531 + 9.1917 i,
12.5469 – 2.5837 i, 12.5469 + 2.5837 i

5 16.5244 4.1237 – 11.5904 i, 4.1237 + 11.5904 i,
12.6141 – 5.3208 i, 12.6141 + 5.3208 i

6 – 2.5968 – 13.7943 i, 2.5968 + 13.7943 i,
12.3359 – 8.0810 i, 12.3359 + 8.0810 i,
18.0672 – 1.3250 i, 18.0672 + 1.3250 i

7 22.6802 0.9244 – 15.8430 i, 0.9244 + 15.8430 i,
11.7720 – 10.6952 i, 11.7720 + 10.6952 i,
17.9634 – 4.2342 i, 17.9634 + 4.2342 i

8 21.9201, 25.7017 –0.8611 – 17.7645 i, –0.8611 + 17.7645 i,
10.9879 – 13.1768 i, 10.9879 + 13.1768 i,
18.0622 – 7.0034 i, 18.0622 + 7.0034 i

Next, we draw the graphs showing shapes with scattered real zeros of LTEP Len(x, y). In
Fig. 3 (left) and Fig. 3 (right), graphs for the even value n = 20 and odd value n = 21 along
with their real zeros are shown respectively for y = 5.

Using computers it has been checked for several values of n that, for b ∈ R and x ∈ C,
LTEP Len(x, b) has Im(x) = 0 reflection symmetry. However, LTEP Len(x, b) does not have
Re(x) = a reflection symmetry (see Fig. 4). But it still remains unknown whether this is
true or not for all values of n. In Fig. 4 (left) and Fig. 4 (right), zeros for the even value
n = 20 and odd value n = 21 are shown respectively for y = 5.
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Figure 3 Graph of Le20(x, y) and Le21(x, y) along with their real zeros

Figure 4 Zeros of LTEP Len(x,b) have Im(x) = 0 reflection symmetry

Figure 5 Real zeros of Len(x, y)

By using numerical investigation and computer experiments, we find the real and com-
plex zeros and observe the phenomenon of distribution of the zeros. Real zeros of the
LTEP Len(x, y) for y = 5, x ∈R, and 1 ≤ n ≤ 20 are plotted in Fig. 5.
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Figure 6 Stacks of zeros of LTEP Len(x, y) = 0

Next, stacks of zeros of LTEP Len(x, y) = 0 for y = 5 and 1 ≤ n ≤ 20 form a 3-D structure
and are presented in Fig. 6.

We observed the remarkable regular structure of zeros of LTEP Len(x, y) = 0. Similar
numerical computations give an unrestricted capability to create visual mathematical in-
vestigations of the behavior of several other polynomials belonging to 2VBBGP F Pn(x, y).
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