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1 Introduction

Modeling with the help of fractional order integral and differential operators is very com-
mon in the community of engineers and scientists due to the applications. Recently, ex-
perts of theory and numeric methods have given interesting tools for the study of frac-
tional order models. In the theoretical aspects of the models, fixed point theorems play
a vital role. We suggest the readers for more detail about the fractional calculus and its
application to the work in [1-7]. Among the fractional operators, the Caputo—Fabrizio
[8—10] and the Atangana—Baleanu fractional differential operators with nonsingular ker-
nel [4-7, 11-15] are recently well studied operators.

Recently, some researchers have focused on the different types of FDEs with impulses
for the existence of solutions (EUS). Here, we highlight some of them. Sousa et al. [16]
considered the investigation of existence results and Ulam-stability by the help of fixed
point approach of an impulsive system. Xu and Liu [17] studied the boundedness criteria
for delay impulsive system and provided an application. Zhang and Xiong [18] used some
properties of the Mittag-Leffler function with one and two parameters for the existence
and stability results. Zhao et al. [19] evaluated fractional order impulsive systems with
Dirichlet boundaries by the help of Morse theory for the EUS. Heidarkhani et al. [20]
investigated multiple solutions with the help of three critical points approach.

For the application of the IDEs with impulses, we recommend the readers the recent
work [21-23]. Keeping the importance of the study, we are considering the following im-
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pulsive IDE for the existence, stability, and numerical solution:

<.D’x(t) = W(t,x(t)) + [} Kolt,s,%(s)) ds,

x(t) = 75 ffk (t—5)"""Gr(s,x(sp)) ds, ¢ € (tr, 8], (1.1)

B1x(0) + Box(b) = «(0),
where ¥ : [a,b] x R > R, Ky : [a,b] x [a,b] x R - R, ¥ : [a,b] — R are continuous
functions in the arguments with ¥ (¢,%(¢))|s-0 = 0. The ¢,D? is Caputo’s differential op-
erator of order ¢ € (0,1]. We consider the split of the interval [a, b] with respect to #,
8k such that a < & < 8 < b for k = 1,2,3,...,m and assume §,,,1 = b. We consider Ba-
nach space C'([0, b], R") of all the continuous functions with norm ||x|| s = SuP,cio ()5

where || - || is a complete norm in R”, where C'([0,5])(M) = {x € C}([0,5],R") : [x]lo0 <
M for all M > 0}.

Definition 1.1 Fractional order integral of ¢ : (0, +00) — R for order « > 0 is

TE0 () ﬁ /0 (t-5)(s)ds,

such that the integral is defined on (0, +00), where

(k) :/ eSs<Lds.
0

Definition 1.2 For a fractional order « > 0, Caputo’s derivative for ¢ (t) : (0, +00) — R is

given by

1 t
D)= ——— f— k—k—-1 . (k) d
(0=t [ -9 e ds
for k = [k] + 1, where [«] is used for the integer part of k.

2 Integral form

This section is reserved for the integral form of fractional order impulsive system (1.1)

Theorem 2.1 For ¢ € (0,1] and H(¢,x(t)) € Cla, b] such that x(t) is a solution of

D x(t) = H(t, x(2)),
x(t) = ﬁ f;{(t — )" 1Gi(s, x(sp)) ds, ¢ € (b, 8k], (2.1)
B1x(0) + B2x(b) = «(0),
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provided that

%}) - lgl’?(g) [ tik (8k — )" G (s, x(sy)) dls + fti(b — 5)" "' H(s, x(s)) ds]
+ ﬁ fot(t — 5)?=1H(s, x(s)) ds,
fort e [0,4],

5y o €= 9" Gils, x(s7) ds,

fOVt € [tx, 8x]

7 Sk G = 9" Gils, x(s0)) s + 355 [ (¢ = 9)7 "V H(s, x(s)) s,
fort € (8 tron).

Proof We divide the proof in parts as follows.
Case-I For t € (0,t,], applying the integral operator Z” on (2.1), we have

1

x(t) = x(0) + o)

/t(t - 5)"""H(s, x(s)) ds. (2.3)
0

Case-II For t € (8, tx,1], applying the integral operator Z” on (2.1), we have

t

x(t) = x(8x) + ﬁ :

(t - S)l?_lH(s,x(s)) ds, (2.4)

where by the help of the impulsive relation

x(8) = %f (t-9)"""Gi(s,x(s)) ds, (2.5)
23
we get
1 Ok
(8k) = o (8 — )" 7' Gi (s, x(sy) ) ds. (2.6)
Lk

Thus, (2.4) implies

t(t - s)ﬂ_IH(s,x(s)) ds. (2.7)

Sk 1
m ] (ak_s)ﬁ_lgk(s’x('g/:))ds-'—F(ﬂ) tk

k

x(t) =

Now, using the condition B1x(0) + B2x(¢) = «(0), we have

_@_ B2 % -l - b -1 i|
x(0) = 5 BTO) |:/;k (8x—5) gk(s,x(sk))ds+/tk (b—s)"""H(s,x(s)) ds |. (2.8)

Thus, by the help of (2.3) and (2.8), for ¢ € [0, £1], we have

0 8k b
x(t) = % - ﬁlﬁz(z?) [/t‘k (8 — )" Gi(s,%(s5.)) ds +/

73

b - s)ﬁ_lH(s,x(s)) ds:|

1

T

/t(t - s)ﬂ‘lH(s,x(s)) ds. (2.9)
0
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Case-1II For t € (tx, 8], we have

1
x(f) = m (t —5)" "' Gi(s,(sy ) ) ds. (2.10)
This completes the proof. d

Corollary 2.1 By replacing H(t,x(t)) with W (¢, x(t)) + f Ko(t,s,x(s)) ds, while keeping the
conditions and order of derivative the same as in the theorem above, we get the following

solution for fractional impulsive system (1.1):

Ot [ (8- 5)" lgk(s,x<sk>)ds+ S =5 (@ (s,x(5))

+ [7 Ko(s,z,%(2)) dz) ds] + =55 fo —8)? (W (s, x(s))
+ [ . Ko(s, z,x(2)) dz) ds,
forte[0,t],
7 S (& =97 Gils, x(57)) s,

) = fOV t € [tx, 8kl,

(2.11)

1"(75 fék(ék )" G(s, x(sy)) ds + % f:i(t LW (s,x(5))
+ [5 Kols, z,x(2)) dz) ds,

Jor t € [8x, tisa].

3 Theorems for EUS
For the main results of this manuscript, we convert the suggested problem (1.1) into a
fixed point problem. For this, we introduce the following operator:

€O [ [ K (8 —5)" 1Qk(s,x(s;))ds + (b= )" 1 (W (s5,1(5))
2 Kols, z,x(z))dz) de] + 75 [1(6 =) (W (s,%(5))
+ [7 Ko(s, 2, %(2)) dz) ds,
fort € [0,4],

757 S (& =97 Gils, x(57)) s,

PO ot e s, 3.1)

1"(19) (Sk —8)"71Gi(s, x(s7)) ds + (179) fr;(t—s)ﬁ"l(llf(s,x(s))
+ fa Ko(s, z,%(z)) dz) ds,

for t € [8k, trs1]-

The following assumptions are assumed for the proof of our main results:
(A1) w(x(@):[0,b] x R — R, Ko(t,s,x(£)) : [0,b] x [0,b] x R — R are continuous
functions, and there exist constants K, K,, K3, K4, K5, Kg € R such that
1. | (t,x(t) — & (t,y(@)] <Kilx(t) —y(#)| forall £ € [0,b] and x,y € R;
2. [P (tx)| <Ky + Ksx(8)];
3. | Kolt, s,x(2)) — Ko(t, s, y(£))| < Kylx(t) — y(¢)| for all ¢, s € [0,b] and x,y € R;

Page 4 of 11
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4. [Ko(t,s,x(8)| < Ks + Ke|x(2)].

(Az) Gr: Ik x R — R for Iy = [t, 8], for k =1,2,...,p are continuous and there exist

positive constants K,, IL, such that
L |Gr(t,x(t)) — Gr(t, (D)) < Kylx -yl forallx,y e R, t e I, k= 1,2,..., p;
2. |Gi(t,x(2))| < g for all £ € It and x(t) e R.

(A3) For M = |x(®)|, x1 = % + ﬂ?’;%ﬂﬁ) + (ﬂll;?(f;il) + 0+1))(K2 + KsM + Ks +
KeM), = 19+I)JL b’ + o 1)bﬂ(]Kz + KaM + (Ks + KgM))
max{x1, X2, X3}-

(As) For real values K; for i = 1,2,3,4, t,s € [0, 5], |x(2)]| = M with ¢ = max{ Q=<0 0)”

Bolb? Ko+b” (Ky +bK4g)]+B1b” (K1 +(s—a)Ky)
S T

’Fﬂ+1b’andX:

’1"13+1

Theorem 3.1 Assume that conditions (A,)—(As) are satisfied, then the fractional IDE (1.1)
has a unique solution provided that ¢ < 1.

Proof For B = {x(t) € PC([0,b],R) : ||x|| < M}, we prove that the operator 7 : B — B.
For the unique fixed point of the operator F, we divide the proof in the following three
steps.
Step 1. For t € [0,£1], (3.1) implies

| 7@ =

§
0) ﬁz [F(lz?) k(fsk—s)ﬁ_lgk(s’x(*g/:)) ds
173

b S
+ % /tk (b-s)"1 (l]l (s,x(5)) + /a Ko(s,z,x(2)) dz> dzi|
Lo .
¥ 1"(19)/0 (t-5) (11/ (S,x(s)) "'/ ]CO(S;Z,JC(Z)) dz) ds

@ ﬁZ 1 _ -1
ﬁl‘ ﬂl[r(ﬁ) (8= )" Gi(s,x(s5)) [ ds

1 b
+W/tk (b-s)"- (Hw > ||+/ [Ko(ss 2o ||dz> }
-1
1“(19)/ (t-s) <”‘1’ (s,%(9)) | |+f [ Ko(s, 2 %(2)) | dz)

K(O) ,32 9-1
_/31 [ ﬁ)/(é—s) ds

1t o1 s
gy [ -9 (o oot [ s el )

* r®) /t(t -9 <K2 + Ks|x(t)] + /S(Kf; + Ke |%(t)]) dz) ds

L0 gL

T B BLTr@w+1)
1

"Tw+1)

(6 — )"
(b - tk)ﬁ (Kz + KgM + (Ks + KGM))]

1 ?
+ m(t—s) (Ky + KsM + Ks + Kg M)
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K(O) ﬂZI[lg 9
=5 " /31 @)W

N 1
? 1 s
< F(l? 1) tk) +m(t—s) >(K2+K3M+K5+K6M)
<O,
T B

LA
Bl (W +1)
b’ By b’
’ (511"(19 +1) * @+ 1))(K2 + Ky M + Ks + KeM). (3.2)

Now, for the ¢ € (8¢, tx.1], we have

I730] = | g5y [ -9 Gt xt) s

F(l?

1“(119) (£-s)"" 1< (s, %(5)) / Ko(s,2,%(z)) dz)

1 5
< F_ﬁ) /tk (8 —S)ﬁ_l]Lg ds

! (t 571 <K2 + Ks|a(t)| + /S(Ks + K |x(2)|) dz) ds

F(ﬁ) g

L, 1
< G Ok — )" + T+ D (t - )" (Ka + KsM + (Ks + KgM))

S BV
—r®+1) r@+1)

b’ (Kz + KsM + (K5 + ]KGM)). (3.3)
Now, for ¢ € (, 8], where k =1,2,3,...,p and x(¢t) € B, we have

|7 =

‘m / (£ = 57'Gi (5, x(s5)) ds

1 t
= gy [ 9 Gl st s

o
SF(U“ )(t tr)

Ly

< ¥
= Tw+1)

(3.4)

By the help of (3.2)—(3.3), we have || 7 x| < x. This implies that 7 : B — B.

Step 2. Now, we show that 7 is a strict contraction. For this, we assume x(¢), y(¢) € R.
And consider the following three cases.

Case I For t € [0,t;], we have

EGENEIG]

@_@[L &
B BilLT®W)

(8 — )" Gi(s,%(s.)) ds

F(z?) (b —s)7- 1( (s,x(s)) + /: ICo(s,z,x(z)) dz) dz]

Page6of 11
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<%’%[r(lﬂ) (=97 Gu(s5(sk))
F(lz?) (b- Sm( /K”” > }
N W f (t_s)“(w(s, ¥6) + / Ko(s,2,%(2)) dz) ds>

B 1 91
EE[W}) 8k —5)" " Lgllx — yll ds

F(lﬁ) (b-9)"" 1(||W(s,x(s)) ¥ (5,56)
. / 1Ko5,2,%(2) ~ Ko(s,2.5() | dz) dz]
+ i [ =97 (19 650) v 6501
+ /ﬂ S 1Ko (s, 2, 2(2)) = Ko(s,2,3(2)) | d2> ds
s%[r(lﬁ)/ (8 — )" "Ll -yl ds
+%f% (b- s)“(Klnx y||+/K4||x yndz) }
+ F(lz?)/o (t—s)ﬁ-l(K1||x—y||+/a K4||x—y||dz) ds

B2 b? b’
= [E(F(ﬁ + I)Lg * r@+ 1)(K1 +bK4))

s

m(Kl +bK4):|||x—y||. (3.5)

For t € (8k, tx+1], we have
| 7(2) —Ty(t)”

H r ), S0 x(sk))ds+r(19 /(’5‘ )" 1<‘1”(S #(s))

S

/ ICO s z,x(z)) dz) ds — (119) (8x —s)ﬂ_lgk(s,y(s,;)) ds
1

F(z?) (t s)§1< (sys) /Koszy( ))dz)ds

<y | 0097 16u(s(5) - 6o (s) |

gy =9 (19650) -9 50|




Khan et al. Advances in Difference Equations (2020) 2020:458 Page 8of 11

+ / [KCo (s, 2, %(2)) = Ko(s, 2 () | dz) ds

b K, + b’ (K; + bK@} llx — y]I. (3.6)

- [7 1
“|lre+1) r@+1)

Now, for ¢ € (&, 8], where k =1,2,3,...,p and x(¢t) € B, we have

| Tx(t) = Ty(t) ||

= H o) ), (t—s 19 1gk(s, (Sk))d (119) (t—s)ﬂ lgk(s’ (Sk))d

< F(z&‘) (t —8)" M| Gr(s,%(s5)) = G (s, ¥(s%)) | ds

Sm(t t)” llx = 1

<Fwep’ = 37)

Thus, with the help of (3.5)—(3.7), we have that the operator 7 is a contraction, and by the
Banach fixed point theorem 7 has a unique fixed point. This further implies that fractional

impulsive system (1.1) has a unique solution, which accomplishes the proof. d

4 Data dependence
Here, we present data-dependence of the solution of impulsive system (1.1). We follow the

results studied given in [12, 24].

Theorem 4.1 Assume that (A;) to As are satisfied. Then, for x(t), x(t) satisfying (2.11),
we have ||x(t) = X(t)||loo < .

Proof With the help of Theorem 2.1, we have

?) A [f (5k - 5)"71Gi(s, x(s7)) ds
+ ftk - W (s,x(s)) + fd Ko(s, z,%(z)) dz) dz]
* 70 fJ ‘- S)”‘I(W(s,x(s)) o [ Kols 2 x(2)) d) ds

— O B - ) G, Fsp) s
+ft (b-1s)""Y( lI/(s,x(s)) f Ko(s,z,%(2)) dz) dz]
fo (£ —s)?1( )+ [2 Kols,z,%(2)) dz) ds,
x(t) —%(2) = forte [0,1], (4.1)

5 (5k -5)"" lgk(S,x(Sk))dS + T3 ftk (t—5)"71 (W (s,x(s))
+f Ko(s, z,x(z)) dz) ds — 1.(19) (6/( )" 1Gi(s,%(sp)) ds
ftk(t 8)? (W (s,%(s)) f Kol(s,z,%(2)) dz) ds,
fOf t € [6x, tie1],
5 Jo =97 Gils, x(s57)) ds — 355 s (€ = 9)"7 G5, %si)) s,
for t € [tx, 8k].
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Case 1. Then, for t € [0, £1], we have

HOREOI ™

0 1
) Kﬂl ﬂlﬁz(ﬁ)[/ (3 =9 Gelsx(s5)) s

+/ (b—s)"1 (lI/ (s, %(5)) +fs Ko(s,z,%(2)) dz) dzi|
173 a
N 1"(119) /t(t_s)ﬁ—l(lll(s,x(s)) + fs Ko(s, 2z x(2)) dz) ds
0 a
s b}
b s
(b- )“(w X)) = | Kols,z,%(z) d)d]
+/tk s (5,%(s)) fa o(s,2:%(2)) dz ) dz
_ % /t(t_s)z?—l <lI/(s,36(s)) + /s Ko(s,2,%(2)) dz) ds
0
0)—%x(0
_ e )ﬁla )l . F — [ / 8k =9)" | Gels % (si)) - Gels % (si))) | ds
b
+/ (b—s)”’1<HlI/(s,x(s)) - (s,%(9)|
23

+ /S”ICO (s, z,x(z)) - Ko(s,z,%(z)) || dz) dz:|

T /O(t ) (II‘P(s,x(s)) v (5%0)) |

/ ||/Co s,2,%(z ICO(S Z,X z)) || dz) ds

||K 0)-x Ol 52[1?’9K + b7 (K + bKy)] + B16” (Ky + (s — a)Ka) - %
B1 Bl (9 +1) '

(4.2)
Similarly, for t € (8k, tx41], we have

ROETIN

H ro ), 3k )" Gr(s,%(s5)) ds + —— @) / (t—s)" 1<lI/(s x(s))

Sk

/ Ko(s,2,%(2)) dz) ds — (119) (8% — )" Gi(s,%(s.)) ds

1 ! ¥-1 ~ ~
"t ), (t-s) <l1/ (5,%(s)) + /a Ko(s,2,%(2)) dz) ds

= o [ =9 G 0) -6 F) |
TI®) Jy g g

1 ‘ 9-1
+ W /tk (t-3s) (Hlll(s,x(s)) - l]/(s,x(s)) ”
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+

/s Ko(s,z,x(2)) = Ko(s, 2, x(2)) ’

dz) ds

1 ~ ~
mbﬁ(Klﬂx—xH + bK4||x—x||)

b’ )
= T e+ (a+ bRl =3 (4.3)

Finally, for ¢ € [t, k], we have
|20 -3 ®)]

|7 [ e Gt - s [ =906

I ~
= gy €916k x(5)) - G35 a5

1 i
<— PR Nx=%. 4.4
“Ir@®+1) el =71 (44

Thus, by the help of (4.2)—(4.4), ||x -%(#)| < ¢. O

5 Application
In order to give verification of the existence and data dependence theorems, here we give

the following illustrative model.

Example 5.1 Assume that ¢ =0.5, 8; =5, 82 =2,b=0.5,1=[0,1] and

‘D x(t) = 1k (cos(t) + [ sinx()dt), te[0,1],64 %,

x(t) = 32D for ¢ € (¢, 6] (5.1)

B1x(0) + Box(b) = 155

Then from (5.1) one can easily evaluate from M < %, b=1,a=0,K; =1/100,K5 =K, =0,
K3 =1/100 = K¢, Ky = Ly = %, x < 1. Thus, by the help of Theorem 3.1, system (5.1) has a

unique solution [0, 1].

6 Conclusion

In this article we have considered a fractional order impulsive IDE (1.1) for the existence
of unique solution, data dependence, and stability results. We have used basic results from
the fixed point theory and literature for fractional order calculus. The results are examined
with the help of an expressive numerical example.
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