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Abstract
We investigate the optimal consumption and investment problem with lower and
upper bounds on consumption constraints. We derive closed-form solutions by
means of the dynamic programming approach. We also evaluate the effects of the
optimal consumption and portfolio on consumption constraints and present some
numerical/economic implications. In particular, we see that the upper bound on
consumption acts as a bliss level in a quadratic utility model.
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1 Introduction
After Merton’s pioneer research [9, 10] on continuous-time portfolio selection, there have
been many studies conducted on the optimal consumption and portfolio selection prob-
lem with realistic economic constraints such as borrowing constraints, subsistence con-
sumption constraints, portfolio constraints, etc. In this paper we focus on consumption
constraints in particular.

When observing the consumption behavior of the economic agent, it is natural to con-
sider the subsistence consumption requirement. A subsistence consumption constraint
means that the agent should consume a positive minimum consumption requirement
which the agent can live with. Some authors have previously investigated the portfolio
selection problem with a subsistence consumption constraint (Gong and Li [2], Lakner
and Nygren [7], Yuan and Hu [15], Shin et al. [13], etc).

When the optimal consumption and investment problem with quadratic utility is con-
sidered, a constant bliss level of consumption depending upon the coefficient of the
quadratic utility function can be presented. In this level, the agent has zero investment,
but consumes a constant bliss level (Koo et al. [6], Shin et al. [12]). This is the reason for
our interest in an upper bound on consumption. Since we have already considered the
agent who has a constraint which is acting like a bliss level in quadratic utility [12], we
investigate the aspects of the optimal consumption and investment policy of agent when
considering an upper bound on consumption. In the real financial market, there are cer-
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tain goods which cannot be infinitely consumed, such as foods, houses, and cars. Thus, the
upper bound on consumption has an economic meaning when the agent consumes nec-
essary goods. Jian et al. [4] and Xu and Yi [14] considered the optimal consumption and
portfolio selection problem with an upper bound consumption constraint, which is a con-
stant/a linear function of wealth, respectively. Unlike the bliss level on consumption, this
constraint implies a free boundary problem. In this paper, we take the portfolio selection
problem into account with the constant upper bound on consumption. In this paper we
want to combine two previous issues which are a subsistence consumption constraint and
a bliss level of consumption in the continuous-time portfolio selection problem, that is, we
consider both the upper and lower bounds on consumption simultaneously to formulate
these two issues.

Ma et al. [8] also considered the optimal consumption and investment problem with
lower and upper bounds on consumption. Mathematically, Ma et al. [8] solved the opti-
mization problem using a dual transformation, while we use the dynamic programming
method. Furthermore, we observe the numerical/economic implications of the optimal
consumption and portfolio with CRRA utility, and we can observe behaviors of the op-
timal consumption and portfolio, which are similar to the results with quadratic utility
[6, 12].

Bensoussan et al. [1] and Jang et al. [3] solved the optimal consumption and portfolio
selection problem in an incomplete market. Bensoussan et al. [1] considered involuntary
unemployment risk which was not able to be hedged in a market. In the paper of Jang et
al. [3], default risk of the provider of the annuity made a market to be incomplete. Using
those approaches, it is possible to extend our results to the labor income problem with
voluntary/involuntary retirement jointly.

The rest of this paper is composed as follows. We represent the financial market in
Sect. 2. We derive our optimization problem and solve this problem by means of the dy-
namic programming approach proposed by Karatzas et al. [5] in Sect. 3. Then, Sect. 4 gives
some numerical implications, and Sect. 5 brings to a conclusion.

2 The economy
Assume that there are a riskless asset P and a risky asset S in the financial market. A riskless
asset Pt at time t follows the ordinary differential equation (ODE)

dPt = rPt dt,

where r > 0 is an interest rate, and a risky asset St at time t evolves according to

dSt = bSt dt + σSt dZt ,

where b > r is a mean rate of return and σ is a volatility of the risky asset. All of the param-
eters, r, b, and σ , are assumed to be constants. Zt is the standard Brownian motion on a
probability space (Ω ,F ,P) and {Ft}t≥0 is the P-augmentation of the filtration generated
by the standard Brownian motion {Zt}t≥0.

Let πt be the amounts of money (dollar) invested in the risky asset St at time t, and let
ct ≥ 0 be the consumption rate process at time t. We assume that the portfolio process πt
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at time t is an Ft-measurable process, that the consumption process ct at time t is an Ft-
measurable nonnegative process, and that these processes satisfy the following technical
conditions:

∫ t

0
π2

s ds < ∞,
∫ t

0
cs ds < ∞ for all t ≥ 0 a.s.

Then, the wealth process of the agent Xt at time t evolves according to

dXt =
[
rXt + πt(b – r) – ct

]
dt + σπt dZt , (2.1)

with an initial endowment X0 = x > 0.

3 The optimization problem
The goal of the agent is to maximize her/his lifetime discounted expected utility

J(x; c,π ) := E

[∫ ∞

0
e–βt c1–γ

t

1 – γ
dt

]

subject to the budget constraint (2.1) and the consumption constraint that restrains the
consumption behavior such that

B ≤ ct ≤ B for all t ≥ 0, (3.1)

where B > 0 and B > B are positive constants; that is, the upper bound of consumption as
well as the lower bound of consumption. Here, β > 0 is a subjective discount factor and
γ > 0 (γ �= 1) is an agent’s coefficient of relative risk aversion. The pair (c,π ) of the optimal
consumption and portfolio is called admissible at initial wealth x > 0 if Xt > 0 for all t ≥ 0
and if it satisfies constraint (3.1).

Thus, the value function of our optimization problem can be given by

V (x) := sup
(c,π )∈A(x)

J(x; c,π ), (3.2)

where A(x) is the class of all admissible pairs (c,π ) at x > 0 such that

E

[∫ ∞

0
e–βt

(
c1–γ

t

1 – γ

)–

dt
]

< ∞,

where z– := max(–z, 0).

Assumption 1 (Gong and Li [2]) There exists a positive lower bound of initial wealth
x > 0 such that

x >
B
r

.

From the value function (3.2), constraints (2.1) and (3.1), we derive the Bellman equation
as follows:

max
(B≤c≤B,π )

[{
rx + π (b – r) – c

}
V ′(x) +

1
2
σ 2π2V ′′(x) – βV (x) +

c1–γ

1 – γ

]
= 0. (3.3)
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The first order conditions (FOCs) imply

c∗ =

⎧⎪⎪⎨
⎪⎪⎩

B for B/r < x < z,

(V ′(x))– 1
γ for z ≤ x < z,

B for x ≥ z,

(3.4)

and

π∗ = –
b – r
σ 2

V ′(x)
V ′′(x)

, (3.5)

where z > 0 is the wealth level corresponding to the lower consumption level B, z > 0 is
the wealth level corresponding to the upper consumption level B, and z < z (z and z will be
determined later in Theorem 1). Inserting FOCs (3.4) and (3.5) into equation (3.3) yields

(rx – B)V ′(x) –
1
2
θ2 (V ′(x))2

V ′′(x)
– βV (x) +

B1–γ

1 – γ
= 0 for B/r < x < z, (3.6)

rxV ′(x) –
1
2
θ2 (V ′(x))2

V ′′(x)
– βV (x) +

γ

1 – γ
V ′(x)– 1–γ

γ = 0 for z ≤ x < z, (3.7)

and

(rx – B)V ′(x) –
1
2
θ2 (V ′(x))2

V ′′(x)
– βV (x) +

B1–γ

1 – γ
= 0 for x ≥ z, (3.8)

where θ := (b – r)/σ is Sharpe ratio (or market price of risk). Moreover, we define the
constant K > 0 as follows:

K := r +
β – r

γ
+

γ – 1
2γ 2 θ2 > 0. (3.9)

Remark 1 For later use, we define two quadratic functions as follows:

f (m) := rm2 –
(

β + r +
1
2
θ2

)
m + β (3.10)

and

g(n) :=
1
2
θ2n2 +

(
β – r +

1
2
θ2

)
n – r. (3.11)

The quadratic equation f (m) = 0 has two roots m1 and m2 (m1 > 1 > m2 > 0) and the
quadratic equation g(n) = 0 has two roots n1 > 0 and n2 < –1. In addition, we have the
following relationships between the roots of f (m) = 0 and the roots of g(n) = 0:

n1 =
1

m1 – 1
, n2 =

1
m2 – 1

, (3.12)

and

n1

n1 + 1
=

r – 1
2θ2n1

β
,

n2

n2 + 1
=

r – 1
2θ2n2

β
. (3.13)
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Theorem 1 The value function V (x) of the optimization problem (3.2) is given by

V (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C2(x – B
r )m2 + B1–γ

β(1–γ ) for B/r < x < z,
n1

n1+1 D1ξ
–γ (n1+1) + n2

n2+1 D2ξ
–γ (n2+1) + 1

(1–γ )K ξ 1–γ for z ≤ x ≤ z,

E1( B
r – x)m1 + B1–γ

β(1–γ ) for z < x < B/r,
B1–γ

β(1–γ ) for x ≥ B/r,

where

D1 =
1
K + γ n2( 1

K – 1
r )

γ (n1 – n2)
B1+γ n1 , (3.14)

D2 =
1
K + γ n1( 1

K – 1
r )

γ (n2 – n1)
B1+γ n2 , (3.15)

z = D1B–γ n1 + D2B–γ n2 +
B
K

,

z = D1B–γ n1 + D2B–γ n2 +
B
K

, (3.16)

C2 =
1

m2

(
z –

B
r

)1–m2

B–γ > 0,

and

E1 = –
1

m1

(
B
r

– z
)1–m1

B–γ < 0.

For z ≤ x < z, ξ is determined by the algebraic equation as follows:

x = D1ξ
–γ n1 + D2ξ

–γ n2 +
1
K

ξ .

Proof For B/r < x < z, if we conjecture the form of the solution to equation (3.6) as follows:

V (x) = C1

(
x –

B
r

)m1

+ C2

(
x –

B
r

)m2

+
B1–γ

β(1 – γ )
,

then it solves equation (3.6) when C1 = 0 and C2 > 0. Thus, V (x) is given by

V (x) = C2

(
x –

B
r

)m2

+
B1–γ

β(1 – γ )
, (3.17)

where m1 and m2 are the two roots of the quadratic equation f (m) = 0 in (3.10), and C2 is
a constant which will be determined later.

In the case of x ≥ z, x – B/r should be negative in the interval (z, B/r). Hence we suppose
that the form of the solution to equation (3.8) is given as follows:

V (x) = E1

(
B
r

– x
)m1

+ E2

(
B
r

– x
)m2

+
B1–γ

β(1 – γ )
.
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By the property limx→B/r V ′(x) < ∞, E2 = 0. Hence, we obtain V (x) as follows:

V (x) = E1

(
B
r

– x
)m1

+
B1–γ

β(1 – γ )
.

For x > B/r, similar to the case of B/r < x < z, if we suppose that the form of the solution
to equation (3.8) is given as follows:

V (x) = F1

(
x –

B
r

)m1

+ F2

(
x –

B
r

)m2

+
B1–γ

β(1 – γ )
,

then it solves equation (3.8) when F1 = 0 and F2 = 0 because of limx→∞ V (x) < ∞. Thus,
V (x) is given by

V (x) =
B1–γ

β(1 – γ )
.

We now find the solution to equation (3.7) for z ≤ x < z. First, we assume that the optimal
consumption is a function of optimal wealth, that is, c = C(x) and X(·) = C–1(·). From FOC
(3.4), we have

V ′(x) = C(x)–γ , V ′′(x) = –γ
C(x)–γ –1

X ′(c)
. (3.18)

Substituting equations (3.18) into equation (3.7) implies

βV
(
X(c)

)
= rc–γ X(c) +

1
2γ

θ2c1–γ X ′(c) +
γ

1 – γ
c1–γ . (3.19)

By differentiating equation (3.19) with respect to c, we obtain the following second order
ODE:

1
2γ

θ2c2X ′′(c) –
(

β – r –
1 – γ

2γ
θ2

)
cX ′(c) – γ rX(c) + γ c = 0. (3.20)

Then, we can obtain the solution to equation (3.20) as follows:

X(c) = D1c–γ n1 + D2c–γ n2 +
1
K

c, (3.21)

where n1 and n2 are the two roots of the quadratic equation g(n) = 0 in (3.11), and D1 and
D2 are constants which will be determined later. Inserting equation (3.21) into equation
(3.19) implies

V (x) =
r – 1

2θ2n1

β
D1ξ

–γ (n1+1) +
r – 1

2θ2n2

β
D2ξ

–γ (n2+1) +
1

(1 – γ )K
ξ 1–γ

=
n1

n1 + 1
D1ξ

–γ (n1+1) +
n2

n2 + 1
D2ξ

–γ (n2+1) +
1

(1 – γ )K
ξ 1–γ ,
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where the second equality is obtained from the relationships (3.13) and ξ is determined
from the algebraic equation

x = D1ξ
–γ n1 + D2ξ

–γ n2 +
1
K

ξ .

From (3.21), we obtain the wealth levels z and z:

z = X(B) = D1B–γ n1 + D2B–γ n2 +
B
K

, z = X(B) = D1B–γ n1 + D2B–γ n2 +
B
K

. (3.22)

Based on equations (3.17) and (3.18) as well as the C1- and C2-conditions of V (x) at z,
we have the following equations:

V ′(z) = C2m2

(
z –

B
r

)m2–1

= B–γ (3.23)

and

V ′′(z) = C2m2(m2 – 1)
(

z –
B
r

)m2–2

= –γ
B–γ –1

X ′(B)
. (3.24)

Two equations (3.23) and (3.24) imply

C2 =
1

m2

(
z –

B
r

)1–m2

B–γ > 0

and

B · X ′(B) = –γ n1D1B–γ n1 – γ n2D2B–γ n2 +
1
K

B = –
γ

m2 – 1

(
z –

B
r

)
. (3.25)

Substituting z in (3.22) into equation (3.25) implies

D1 =
1
K + γ n2( 1

K – 1
r )

γ (n1 – n2)
B1+γ n1 , (3.26)

since n2 = 1/(m2 – 1) in (3.12). Similarly, we can also obtain E1 and D2 as follows:

E1 = –
1

m1

(
B
r

– z
)1–m1

B–γ < 0,

D2 =
1
K + γ n1( 1

K – 1
r )

γ (n2 – n1)
B1+γ n2 .

(3.27)

�

According to Remark 3.3 in Shim and Shin [11], we obtain the following lemma.

Lemma 1 D1 > 0 in (3.14).

Proof Since n1 – n2 > 0, it is sufficient to show that

1
K

+ γ n2

(
1
K

–
1
r

)
> 0. (3.28)
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For n2 < x < n1, we define a function

h(x) := –
g(x)

x – n2
= –

1
2
θ2(x – n1) > 0,

with the quadratic function g(·) in (3.11). Then, h(x) is a linearly decreasing function for
n2 < x < n1. Since g(–1/γ ) = –K < 0 and n2 < –1/γ < 0 < n1, we can see that h(–1/γ ) >
h(0) > 0 and

–
K

1
γ

+ n2
> –

r
n2

> 0,

that is,

0 <
– 1

γ
– n2

K
< –

n2

r
. (3.29)

Thus, inequality (3.29) implies inequality (3.28). �

Lemma 2 D2 < 0 in (3.15).

Proof It is similar to the proof of Lemma 1. �

Lemma 3

z <
B
r

.

Proof From (3.16), (3.14), and (3.15), we see that

z =
1
K + γ n2( 1

K – 1
r )

γ (n1 – n2)
B1+γ n1 B–γ n1 +

1
K + γ n1( 1

K – 1
r )

γ (n2 – n1)
B1+γ n2 B–γ n2 +

B
K

=
[ 1

K + γ n2( 1
K – 1

r )
γ (n1 – n2)

(
B
B

)1+γ n1

+
1
K + γ n1( 1

K – 1
r )

γ (n2 – n1)
+

1
K

]
B

<
[ 1

K + γ n2( 1
K – 1

r )
γ (n1 – n2)

+
1
K + γ n1( 1

K – 1
r )

γ (n2 – n1)
+

1
K

]
B

=
B
r

,

where the inequality is obtained from (3.28) and B/B < 1. �

Lemma 4 X ′(c) > 0 for B < c < B.

Proof We derive X ′′(·) from X(·) in (3.21) as follows:

X ′′(c) = c–2[γ n1(γ n1 + 1)D1c–γ n1 + γ n2(γ n2 + 1)D2c–γ n2
]

=: c–2F(c). (3.30)

Since D2 < 0, F(c) = 0 has a unique solution c	 > 0 such that

c	 =
[

–
n2(γ n2 + 1)D2

n1(γ n1 + 1)D1

]– 1
γ (n1–n2)

.
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Since limc→0+ F(c) = +∞ and limc→+∞ F(c) = –∞, X ′(c) is an increasing function for B <
c ≤ c	 and a decreasing function for c	 < c < B. Since X ′(B) > 0, if X ′(B) ≥ 0, then X ′(c) > 0
for B < c < B. Thus it is sufficient to show that X ′(B) ≥ 0. So

X ′(B) = –γ n1D1B–γ n1–1 – γ n2D2B–γ n2–1 +
1
K

= –
n1

n1 – n2

[
1
K

+ γ n2

(
1
K

–
1
r

)](
B
B

)1+γ n1

–
n2

n1 – n2

[
1
K

+ γ n1

(
1
K

–
1
r

)]
+

1
K

> –
n1

n1 – n2

[
1
K

+ γ n2

(
1
K

–
1
r

)]
–

n2

n1 – n2

[
1
K

+ γ n1

(
1
K

–
1
r

)]
+

1
K

= 0,

where the second equality is obtained by inserting D1 and D2 in (3.26) and (3.27), respec-
tively, into this equation, and the inequality from inequality –(B/B)1+γ n1 > –1. �

Lemma 4 shows that the wealth process X(c) is an increasing function of consumption
c. Therefore, based on Lemmas 3 and 4, we can see that

B
r

< z < z <
B
r

.

We derive the optimal policies in the next theorem using FOCs (3.4), (3.5), and (3.18).

Theorem 2 The optimal consumption and portfolio policies (c∗
t ,π∗

t ) are given by

c∗
t =

⎧⎪⎪⎨
⎪⎪⎩

B for B/r < Xt < z,

ξt for z ≤ Xt < z,

B for Xt ≥ z,

π∗
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

– θ
σ (m2–1) (x – B

r ) for B/r < Xt < z,
θ

σγ
(–γ n1D1ξ

–γ n1
t – γ n2D2ξ

–γ n2
t + 1

K ξt) for z ≤ Xt < z,
θ

σ (m1–1) ( B
r – x) for z ≤ Xt < B/r,

0 for Xt ≥ B/r,

where ξt(ξ0 = ξ ) is determined by the algebraic equation as follows:

Xt = D1ξ
–γ n1
t + D2ξ

–γ n2
t +

1
K

ξt .

4 Numerical implications
In this section, we take the numerical results about the optimal consumption and portfolio
into account. The baseline parameter values from Bensoussan et al. [1] are given as follows:

β = 0.0371, b = 0.1123, r = 0.0371, σ = 0.1954, γ = 2.
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Figure 1 The optimal consumption/portfolio when lower bound on consumption B increases

Figure 2 The optimal consumption/portfolio when upper bound on consumption B increases

In Figs. 1(a) and 1(b), we fix B = 10. As shown in Fig. 1(a), the optimal consumption be-
comes lower as the subsistence consumption level rises; that is, as the constraint becomes
stronger, the agent’s consumption shrinks. Similarly, as shown in Fig. 1(b), the optimal
portfolio becomes lower as the subsistence consumption level rises; that is, as the con-
straint becomes stronger, the agent’s investment shrinks. In addition, the critical wealth
level z becomes higher as the subsistence consumption level rises. Since the investment
is lower when the subsistence consumption level is higher, a higher critical wealth level is
required for the same upper bound on consumption.

In Figs. 2(a) and 2(b), we fix B = 0.5. As shown in Fig. 2(a), the optimal consumption
and critical wealth level z become higher as the upper bound on consumption rises. This
is because the agent consumes more in order to reach the higher upper bound on con-
sumption and a higher critical wealth level. As shown in Fig. 2(b), the peak of the optimal
portfolio becomes higher as the upper bound on consumption rises. This is because the
agent invests more in order to reach the critical wealth level z quickly when the upper
bound on consumption is higher.

From Figs. 1(b) and 2(b), we can observe the decreasing aspect of the optimal portfolio
after a certain wealth level. Thus, we can see that the upper bound on consumption pro-
vides a bliss level in a quadratic utility model (see [6, 12]). The decreasing features of the
optimal portfolio are remarkable effects of an upper bound on consumption.
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5 Concluding remarks
Since we have previously taken the optimal consumption and portfolio choice problem
into account with quadratic utility [12], we can observe the aspect of the bliss level of con-
sumption. This motivated us to consider an upper bound on consumption with CRRA util-
ity. By investigating the optimal consumption/investment problem under the consump-
tion constraints, we obtain that the upper bound on consumption acts like a bliss level
in a quadratic utility model. Furthermore, we consider two boundaries, lower and upper
bounds, on consumption and use the dynamic programming method to derive closed-
form solutions. We also observe the effects of the optimal consumption and portfolio on
consumption constraints and present some numerical implications.
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