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Abstract
This paper is concerned with a delayed tobacco smoking model containing users in
the form of snuffing. Its dynamics is studied in terms of local stability and Hopf
bifurcation by regarding the time delay as a bifurcation parameter and analyzing the
associated characteristic transcendental equation. Specially, specific formulas
determining the stability and direction of the Hopf bifurcation are derived with the
aid of the normal form theory and the center manifold theorem. Using LMI
techniques, global exponential stability results for smoking present equilibrium have
been presented. Computer simulations are implemented to explain the obtained
analytical results.
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1 Introduction
Since the advent of tobacco in 6000 BC, smoking has contributed heavily not only to prob-
lems leading to serious illness or even death, but it has also done harm to the whole soci-
ety [1–3]. According to the third edition of cancer atlas jointly released by International
Agency for Research on Cancer (IARC), American Cancer Society (ACS), and Union for
International Cancer Control (UICC) on October 16, 2019, smoking causes more pre-
ventable cancer deaths than any other risk factor, and in 2017 alone, 2.3 million people
worldwide died from smoking, which accounts for 24% of all cancer deaths. On the other
hand, based on the WHO global report on trends in prevalence of tobacco use 2000–2025
[4], every year more than 8 million people die from tobacco use, accounting for about half
of its users. More than 7 million of them died from direct smoking, while about 1.2 million
were non-smokers who died from being exposed to second-hand smoke.

Owing to these facts, and the astronomical public health burden associated with smok-
ing, smoking has been a prevalent problem all over the world that requires intervention
for eradication urgently. For this goal, some mathematical models have become important
tools to characterize smoking behavior since the smart work of Castello et al. [5]. In the
transmission of smoking epidemics, incidence rate plays a vital role. Thus, in recent years,
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scholars at home and abroad have formulated different forms of smoking models with lin-
ear incidence rate [6–9], saturated incidence rate [10, 11], square root type incidence rate
[12–14], and harmonic mean type incidence rate [15]. Several others presented fractional
smoking models [16–20] and age-structured smoking models [2, 21]. It is worth noting
that all the smoking models above neglect the fact that the use of tobacco also occurs in
the form of snuffing. Due to this fact, Alzahrani and Zeb proposed the following tobacco
smoking model containing snuffing class [22]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt = A – β1X(t)H1(t) – μX(t) + αY (t),

dH1(t)
dt = β1X(t)H1(t) – β2H1(t)H2(t) – (ρ + μ)H1(t),

dH2(t)
dt = β2H1(t)H2(t) – (d + � + μ)H2(t),

dY (t)
dt = �H2(t) – (α + γ + μ)Y (t),

dZ(t)
dt = γ Y (t) – μZ(t),

(1)

for the description of variables and parameters used in model, see Table (1) in [22]. Here,
X(t), H1(t), H2(t), Y (t), and Z(t) stand for the numbers of susceptible smokers, snuffing
class, irregular smokers, regular smokers, and quit smokers at time t, respectively. A is
the recruitment rate of the susceptible population; β1 is the rate at which the susceptible
population becomes the snuffing class; β2 is the rate at which the snuffing class becomes
the irregular smokers; μ is the natural death rate of all the populations; ρ is the death rate
of the snuffing class because of tobacco use; d is the death rate of the irregular smokers
because of the tobacco related diseases; α is the relapse rate of the regular smokers, and γ

is the quitting rate of the regular smokers.
Obviously, system (1) assumes that the regular smokers quit smoking instantaneously,

which is not consistent with the reality, because it usually takes a certain period of time for
a regular smoker to quit smoking once he has been addicted to tobacco. In addition, delay
differential equations exhibit much more complicated dynamics than ordinary differential
equations. Specially, time delay can cause occurrence of Hopf bifurcation and periodic so-
lutions for dynamical systems. And delay differential equations have been used for analysis
in many areas such as population dynamics [23–26], epidemiology [27–29], and computer
networks [30–33]. Thus, to achieve better compatibility with the reality and motivated by
the work above, we investigate the following smoking model with time delay:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt = A – β1X(t)H1(t) – μX(t) + αY (t),

dH1(t)
dt = β1X(t)H1(t) – β2H1(t)H2(t) – (ρ + μ)H1(t),

dH2(t)
dt = β2H1(t)H2(t) – (d + � + μ)H2(t),

dY (t)
dt = �H2(t) – (α + μ)Y (t) – γ Y (t – τ ),

dZ(t)
dt = γ Y (t – τ ) – μZ(t),

(2)

where τ is the time delay due to the period that the regular smokers use to quit smoking.
The flow diagram of system (2) is as shown in Fig. 1.
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Figure 1 The flow diagram of system (2)

The initial conditions for the above system are as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(θ ) = φ1(θ ), φ1(θ ) ≥ 0,φ1(0) > 0,

H1(θ ) = φ2(θ ), φ2(θ ) ≥ 0,φ2(0) > 0,

H2(θ ) = φ3(θ ), φ3(θ ) ≥ 0,φ3(0) > 0,

Y (θ ) = φ4(θ ), φ4(θ ) ≥ 0,φ4(0) > 0,

Z(θ ) = φ5(θ ), φ5(θ ) ≥ 0,φ5(0) > 0, θ ∈ C[–τ , 0],

(3)

where (φ1(θ ),φ2(θ ),φ3(θ ),φ4(θ ),φ5(θ )) ∈ (C[–τ , 0],R5
+0) is the Banach space of continuous

functions mapping the interval [–τ , 0] into R
5
+0. It is easy to show that (2) has positive

solutions with initial conditions (3).
The subsequent parts of this paper are organized as follows. In Sect. 2, the local stability

and existence of Hopf bifurcation are analyzed. Section 3 is about the direction and sta-
bility of Hopf bifurcation. Section 4 is devoted to global exponential stability results for
smoking present equilibrium. Numerical simulation is carried out in Sect. 5, and finally
the conclusions are given in Sect. 6.

2 Local stability and existence of Hopf bifurcation
By solving the following algebraic equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A – β1X∗H∗
1 – μX∗ + αY ∗ = 0,

β1X∗H∗
1 – β2H∗

1 H∗
2 – (ρ + μ)H∗

1 = 0,

β2H∗
1 H∗

2 – (d + � + μ)H∗
2 = 0,

�H∗
2 – (α + γ + μ)Y ∗ = 0,

γ Y ∗ – μZ∗ = 0,

(4)

we know that if

R0 =
Aβ1β2

(ρ + μ)[β1(d + � + μ) + β2μ]
> 1,

then system (2) has the unique smoking present equilibrium E∗(X∗, H∗
1 , H∗

2 , Y ∗, Z∗), where

X∗ =
ρ + μ + β2H∗

2
β1

, H∗
1 =

d + � + μ

β2
,

H∗
2 =

(α + μ + γ )[Aβ1β2 – (ρ + μ)(β1(d + � + μ) + β2μ)]
β1β2� (μ + γ ) + β2(α + μ + γ )[β1(d + μ) + β2μ]

,
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Y ∗ =
�H∗

2
α + μ + γ

, Z∗ =
γ Y ∗

μ
.

The linear equations of system (2) at E∗(X∗, H∗
1 , H∗

2 , Y ∗, Z∗) take the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt = –(β1H∗

1 + μ)X(t) – β1X∗H1(t) + αY (t),
dH1(t)

dt = β1H∗
1 X(t) – β2H∗

1 H2(t),
dH2(t)

dt = β2H∗
2 H1(t),

dY (t)
dt = �H2(t) – (α + μ)Y (t) – γ Y (t – τ ),

dZ(t)
dt = γ Y (t – τ ) – μZ(t).

(5)

Then the associated characteristic equation of system (5) reads

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ + β1H∗
1 + μ β1X∗ 0 –α 0

–β1H1∗ λ β2H∗
1 0 0

0 –β2H∗
2 λ 0 0

0 0 –� λ + α + μ + γ e–λτ 0
0 0 0 –γ e–λτ λ + μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (6)

It follows from Eq. (6) that

λ5 + μ4λ
4 + μ3λ

3 + μ2λ
2 + μ1λ + μ0 +

(
γ4λ

4 + γ3λ
3 + γ2λ

2 + γ1λ + γ0
)
e–λτ = 0, (7)

where

μ0 = b1b2b4μ, μ1 = b4(b1μ + b2μ + b1b2) + b2b3μ,

μ2 = b4(b1 + b2 + μ) + b3(b2 + μ) + b1b2μ,

μ3 = b3 + b4 + μ(b1 + b2) + b1b2, μ4 = b1 + b2 + μ,

γ0 = b1b4μγ , γ1 = b4(b1 + μ)γ + b3μγ ,

γ2 = b4γ + b3γ + b1μγ , γ3 = (b1 + μ)γ , γ4 = γ ,

with

b1 = β1H∗
1 + μ, b2 = α + μ, b3 = β2

1 X∗H∗
1 , b4 = β∗

2 H∗
1 H∗

2 .

For τ = 0, Eq. (7) becomes

λ5 + (μ4 + γ4)λ4 + (μ3 + γ3)λ3 + (μ2 + γ2)λ2 + (μ1 + γ1)λ + μ0 + γ0 = 0. (8)

From the expressions of μ4 and γ4, we can obtain

μ4 + γ4 = b1 + b2 + μ + γ = β1H∗
1 + 2μ + α + γ > 0.

Thus, in view of Routh–Hurwitz criteria, if condition (H1) Eq. (9)–(12) holds,

det1 = μ0 + γ0 > 0, (9)
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det2 =

∣
∣
∣
∣
∣

μ4 + γ4 1
μ2 + γ2 μ3 + γ3

∣
∣
∣
∣
∣

> 0, (10)

det3 =

∣
∣
∣
∣
∣
∣
∣

μ4 + γ4 1 0
μ2 + γ2 μ3 + γ3 μ4 + γ4

0 μ1 + γ1 μ2 + γ2

∣
∣
∣
∣
∣
∣
∣

> 0, (11)

det4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

μ4 + γ4 1 0 0
μ2 + γ2 μ3 + γ3 μ4 + γ4 1
μ0 + γ0 μ1 + γ1 μ2 + γ2 μ3 + γ3

0 0 μ0 + γ0 μ1 + γ1

∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0, (12)

then all roots of Eq. (8) have a negative real part.
For τ > 0, let λ = iω0, τ = τ0 in Eq. (7) and still denote ω0 and τ0 by ω and τ , respectively.

Then we obtain
⎧
⎨

⎩

(γ1ω – γ3ω
3) sin τω + (γ4ω

4 – γ2ω
2 + γ0) cos τω = μ2ω

2 – μ4ω
4 – μ0,

(γ1ω – γ3ω
3) cos τω – (γ4ω

4 – γ2ω
2 + γ0) sin τω = μ3ω

3 – ω5 – μ1ω,
(13)

which leads to

ω10 + γ04ω
8 + γ03ω

6 + γ02ω
4 + γ01ω

2 + γ00 = 0, (14)

with

γ00 = μ2
0 – γ 2

0 ,

γ01 = μ2
1 – 2μ0μ2 – γ 2

1 + 2γ0γ2,

γ02 = μ2 – 2μ1μ3 + 2μ0μ4 + 2γ1γ3 – γ 2
2 – 2γ0γ4,

γ03 = μ2
3 + 2μ1 – 2μ2μ4 – γ 2

3 + 2γ2γ4,

γ04 = μ2
4 – 2μ3 – γ 2

4 .

Let ω2 = χ , then Eq. (14) is equivalent to

χ5 + γ04χ
4 + γ03χ

3 + γ02χ
2 + γ01χ + γ00 = 0. (15)

In what follows, we present some lemmas to establish the distribution of Eq. (15) based
on the discussion about the distribution of the roots of Eq. (15) in [34].

Lemma 1 If γ00 < 0, then Eq. (15) has at least one positive root.

Let

L(χ ) = χ5 + γ04χ
4 + γ03χ

3 + γ02χ
2 + γ01χ + γ00. (16)

Then

L′(χ ) = 5χ4 + 4γ04χ
3 + 3γ03χ

2 + 2γ02χ + γ01. (17)
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Denote

5χ4 + 4γ04χ
3 + 3γ03χ

2 + 2γ02χ + γ01 = 0. (18)

Let χ = y – γ04
5 . Then Eq. (18) becomes

y4 + Φ2y2 + Φ1y + Φ0 = 0, (19)

where

Φ0 = –
3

625
γ 4

04 +
3

125
γ 2

04γ03 –
2

25
γ04γ02 +

1
5
γ01,

Φ1 =
8

125
γ 3

04 +
6

25
γ04γ03 +

2
3
γ02,

Φ2 = –
6

25
γ 2

04 +
3
5
γ03.

If Φ1 = 0, then we obtain four roots of Eq. (19) as follows:

y1 =

√

–Φ2 +
√

Θ0

2
, y2 = –

√

–Φ2 +
√

Θ0

2
,

y3 =

√

–Φ2 –
√

Θ0

2
, y2 = –

√

–Φ2 –
√

Θ0

2
,

where Θ0 = Φ2
2 – 4Φ – 0. Thus, χj = yj – γ04

5 (j = 1, 2, 3, 4) are the roots of Eq. (18). Then we
have the following lemma.

Lemma 2 Assume that γ00 ≥ 0 and Φ1 = 0.
(i) If Θ0 < 0, then Eq. (15) has no positive roots;

(ii) If Θ0 ≥ 0, Φ2 ≥ 0, and Φ0 > 0, then Eq. (15) has no positive roots;
(iii) If (i) and (ii) are not satisfied, then Eq. (15) has positive roots if and only if there

exists at least one χ∗ ∈ {χ1,χ2,χ3,χ4} such that χ∗ > 0 and L(χ∗) ≤ 0.

In what follows, we suppose that Φ1 �= 0 and consider the resolvent of Eq. (19)

Φ2
1 – 4(S – Φ2)

(
S2

4
– Φ0

)

= 0, (20)

which equals to

S3 – Φ2S2 – 4Φ0S1 + 4Φ2Φ0 – Φ2
1 = 0. (21)

Define

Γ1 =
1
3
Φ2

2 – 4Φ0, Υ1 = –
2

27
Φ3

2 +
8
3
Φ2Φ0 – Φ2

1 ,

Θ1 =
1

27
Γ 3

1 +
1
4
Υ 2

1 , Ψ1 =
1
2

+
√

3
2

i.
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By the Cardan formula, Eq. (19) has roots:

S1 = 3

√

–
Γ1

2
+
√

Θ1 + 3

√

–
Γ1

2
–
√

Θ1 +
Φ2

3
,

S2 = Ψ1
3

√

–
Γ1

2
+
√

Θ1 + Ψ 2
1

3

√

–
Γ1

2
–
√

Θ1 +
Φ2

3
,

S3 = Ψ 2
1

3

√

–
Γ1

2
+
√

Θ1 + Ψ1
3

√

–
Γ1

2
–
√

Θ1 +
Φ2

3
.

Let S∗ = S1 �= Φ2. Then Eq. (19) becomes

y4 + S∗y2 +
S2∗
4

–
[

(S∗ – Φ2)y2 – Φ1y +
S2∗
4

– Φ0

]

= 0. (22)

If S∗ > Φ2, then Eq. (22) is

(

y2 +
S∗
2

)2

–
(
√

S∗ – Φ2y –
Φ1

2
√

S∗ – Φ2

)2

= 0. (23)

After factorization, then

y2 +
√

S∗ – Φ2y –
Φ1

S∗ – Φ2
+

S∗
2

= 0 (24)

and

y2 –
√

S∗ – Φ2y +
Φ1

S∗ – Φ2
+

S∗
2

= 0. (25)

Denote

Θ2 = –S∗ – Φ2 +
2Φ1√

S∗ – Φ2
, Θ3 = –S∗ – Φ2 –

2Φ1√
S∗ – Φ2

.

Thus, we obtain the roots of Eq. (19):

y1 =
–
√

S∗ – Φ2 +
√

Θ2

2
, y2 =

–
√

S∗ – Φ2 –
√

Θ2

2
,

y3 =
√

S∗ – Φ2 +
√

Θ3

2
, y4 =

√
S∗ – Φ2 –

√
Θ3

2
.

Then χi = yi – γ04
5 (i = 1, 2, 3, 4) are the roots of Eq. (18). Therefore, we have the following

lemma.

Lemma 3 Suppose that γ00 ≥ 0 and S∗ > Φ2.
(i) If Θ2 < 0 and Θ3 < 0, then Eq. (15) has no positive roots;

(ii) If (i) is not satisfied, then Eq. (15) has positive roots if and only if there exists at least
one χ∗ ∈ {χ1,χ2,χ3,χ4} such that χ∗ > 0 and L(χ∗) ≤ 0.
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At last, if S∗ < Φ2, then Eq. (22) is

(

y2 +
S∗
2

)2

–
(
√

Φ2 – S∗y –
Φ1

2
√

Φ2 – S∗

)2

= 0. (26)

Let χ̄ = Φ1
Φ2–S∗ – γ04

5 . Thus, we have the following lemma.

Lemma 4 Suppose that γ00 ≥ 0, Φ1 �= 0, and S∗ < Φ2. Then Eq. (15) has positive roots if
and only if Φ2

1
4(Φ2–S∗)2 + S∗

2 = 0 and χ̄ > 0, L(χ̄ ) ≤ 0.

Next, we suppose that the coefficients in Eq. (15) satisfy one of the conditions in (H2).
(H2) (a) γ00 < 0; (b) γ00 ≥ 0, Φ1 = 0, and Φ2 < 0 or Φ0 > 0, and there exists at least one

χ∗ ∈ {χ1,χ2,χ3,χ4} such that χ∗ > 0 and L(χ∗) ≤ 0; (c) γ00 ≥ 0, Φ1 �= 0, S∗ > Φ2,
Θ2 ≥ 0, or Θ3 ≥ 0, and there exists at least one χ∗ ∈ {χ1,χ2,χ3,χ4} such that χ∗ > 0
and L(χ∗) ≤ 0; (d) γ00 ≥ 0, Φ1 �= 0, S∗ < Φ2, Φ2

1
4(Φ2–S∗)2 + S∗

2 = 0, and χ̄ > 0, L(χ̄) ≤ 0.
Without loss of generality, we assume that Eq. (15) has five positive roots ωs, (s =

1, 2, . . . , 5). It follows from Eq. (13) that

τ (j)
s =

1
ωs

× arccos

{
S1(ωs)
S2(ωs)

+ 2jπ
}

, (27)

where s = 1, 2, . . . , 5 and j = 0, 1, 2, . . . , and

S1(ωs) = (γ3 – μ4γ4)ω8
s + (μ2γ4 – γ1 – μ3γ3 + μ4γ2)ω6

s

+ (μ3γ1 + μ1γ3 – μ0γ4 – μ2γ2 – μ4γ0)ω4
s

+ (μ0γ2 + μ2γ – 0 – μ1γ1)ω2
s – μ0γ0,

S2(ωs) = γ4ω
8
s +
(
γ 2

3 – 2γ2γ4
)
ω6

s +
(
γ 2

2 + 2γ – 0γ4 – 2γ1γ3
)
ω4

s

+
(
γ 2

1 – 2γ0γ2
)
ω2

s + γ 2
0 .

Define

τ0 = min
{
τ (0)

s
}

, s = 1, 2, . . . , 5, (28)

and when τ = τ0, Eq. (7) has a pair of purely imaginary roots ±iω0. Then one has

[
dλ

dτ

]–1

= –
5λ4 + 4μ4λ

3 + 3μ3λ
2 + 2μ2λ + μ1

λ(λ5 + μ4λ4 + μ3λ3 + μ2λ2 + μ1λ + μ0)

+
4γ4λ

3 + 3γ3λ
2 + 2γ2λ + γ1

λ(γ4λ4 + γ3λ3 + γ2λ2 + γ1λ + γ0)
–

τ

λ
. (29)

Thus,

Re

[
dλ

dτ

]–1

τ=τ0

=
f ′(χ0)
S2(ω0)

, (30)

where f (χ ) = χ5 + γ04χ
4 + γ03χ

3 + γ02χ
2 + γ01χ + γ00 and χ0 = ω2

0.
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Now we make the assumption as follows: (H3) f ′(χ0) �= 0. Under condition (H3), then
Re[dλ/dτ ]–1

τ=τ0 �= 0. In conclusion, we have the following results.

Theorem 1 For system (2), if R0 > 1 and conditions (H1)–(H3) hold, then the smok-
ing present equilibrium point E∗(X∗, H∗

1 , H∗
2 , Y ∗, Z∗) is locally asymptotically stable when

τ ∈ [0, τ0); system (2) undergoes a Hopf bifurcation at E∗(X∗, H∗
1 , H∗

2 , Y ∗, Z∗) when τ = τ0

and a family of periodic solutions bifurcate from E∗(X∗, H∗
1 , H∗

2 , Y ∗, Z∗).

3 Direction and stability of Hopf bifurcation
Let t = sτ , v1(t) = X(t) – X∗, v2(t) = H1(t) – H∗

1 , v3(t) = H2(t) – H∗
2 , v4(t) = Y (t) – Y ∗, v5(t) =

Z(t) – Z∗, and τ = τ0 + �, � ∈ R. Then system (2) becomes

v̇(t) = L�vt + F(�, vt), (31)

where vt = (v1(t), v2(t), v3(t), v4(t), v5(t))T = (X, H1, H2, Y , Z)T ∈ R5, vt(θ ) = v(t + θ ) ∈ C =
C([–1, 0], R5), and L� : C → R5, F(�, ut) → R5 are defined respectively as follows:

L�φ = (τ0 + �)
(
Pφ(0) + Qφ(–1)

)
(32)

and

F(�,φ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1φ1(0)φ2(0)
β1φ1(0)φ2(0) – β2φ2(0)φ3(0)

β2φ2(0)φ3(0)
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (33)

with

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(β1H∗
1 + μ) –β1X∗ 0 α 0

β1H∗
1 0 –β2H∗

1 0 0
0 β2H∗

2 0 0 0
0 0 � –(α + μ) 0
0 0 0 0 –μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 –γ 0
0 0 0 γ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By the Riesz representation theorem, there exists a matrix η(θ ,�) such that

L�φ =
∫ 0

–1
dη(θ ,�)φ(θ ). (34)

In fact, choosing

η(θ ,�) = (τ0 + �)Pδ(θ ) + Qδ(θ + 1)), (35)

where δ(θ ) is Dirac function, then Eq. (34) is fulfilled.
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For φ ∈ C([–1, 0], R5), define

A(�)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,
∫ 0

–1 dη(θ ,�)φ(θ ), θ = 0,

and

R(�)φ =

⎧
⎨

⎩

0, –1 ≤ θ < 0,

F(�,φ), θ = 0.

Then system (31) is equivalent to

v̇(t) = A(�)vt + R(�)vt . (36)

For ϕ ∈ C1([0, 1], (R5)∗), define

A∗(ϕ) =

⎧
⎨

⎩

– dϕ(s)
ds , 0 < s ≤ 1,

∫ 0
–1 dηT (s, 0)ϕ(–s), s = 0.

For φ ∈ C([–1, 0], R5) and ϕ ∈ C1([0, 1], (R5)∗), define

〈
ϕ(s),φ(θ )

〉
= ϕ̄(0)φ(0) –

∫ 0

θ=–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (37)

where η(θ ) = η(θ , 0).
Define the vector ρ(θ ) = (1,ρ2,ρ3,ρ4,ρ5)T eiω0τ0θ , θ ∈ [–1, 0], is the eigenvector of A(0)

corresponding to +iω0τ0, and ρ∗(s) = D(1,ρ∗
2 ,ρ∗

3 ,ρ∗
4 ,ρ∗

5 )eiω0τ0s, s ∈ [0, 1], is the eigenvector
of A∗ corresponding to –iω0τ0. By computations, one has

ρ2 = –
iω0 + β1H∗

1 + μ

β1X∗ , ρ3 = –
iω0ρ2 – β1H∗

1
β2H∗

1
,

ρ4 =
�ρ3

iω0 + α + μ + γ e–iω0τ0
, ρ5 =

γ e–iω0τ0

iω0 + μ
,

ρ∗
2 = –

iω0 – β1H∗
1 – μ

β1H∗
1

, ρ∗
3 =

β1X∗

iω0 + β2H∗
2

,

ρ∗
4 =

β2H∗
1 ρ∗

2 – iω0ρ
∗
3

�
, ρ∗

5 = –
γ eiω0τ0ρ∗

4
iω0 – α – μ – γ eiω0τ0

.

Furthermore, we have

D̄ =
[
1 + ρ2ρ̄

∗
2 + ρ3ρ̄

∗
3 + ρ4ρ̄

∗
4 + ρ5ρ̄

∗
5 + τ0e–iω0τ0γρ4

(
ρ̄∗

5 – ρ̄∗
4
)]–1, (38)

which leads to 〈ρ∗,ρ〉 = 1 and 〈ρ∗, ρ̄〉 = 0.
Next, based on the algorithms in [35] and the similar computation process as that in

[36–38], we obtain

g20 = 2τ0D̄
[(

ρ̄∗
2 – 1

)
β1ρ2 +

(
ρ̄∗

3 – ρ̄∗
2
)
β2ρ2ρ3

]
,
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g11 = τ0D̄
[(

ρ̄∗
2 – 1

)
β1(ρ2 + ρ̄2) +

(
ρ̄∗

3 – ρ̄∗
2
)
(ρ2ρ̄3 + ρ̄2ρ3)

]
,

g02 = 2τ0D̄
[(

ρ̄∗
2 – 1

)
β1ρ̄2 +

(
ρ̄∗

3 – ρ̄∗
2
)
β2ρ̄2ρ̄3

]
,

g21 = 2τ0D̄
{
(
ρ̄∗

2 – 1
)
β1

[

W (1)
11 (0)ρ2 +

1
2

W (1)
11 (0)ρ̄2 + W (2)

11 (0) +
1
2

W (2)
20 (0)

]

+
(
ρ̄∗

3 – ρ̄∗
2
)
β2

[

W (2)
11 (0)ρ3 +

1
2

W (2)
11 (0)ρ̄3 + W (3)

11 (0)ρ2 +
1
2

W (3)
20 (0)ρ̄2

]}

,

where

W20(θ ) =
ig20ρ(0)
τ0ω0

eiτ0ω0θ +
iḡ02ρ̄(0)
3τ0ω0

e–iτ0ω0θ + E1e2iτ0ω0θ ,

W11(θ ) = –
ig11ρ(0)
τ0ω0

eiτ0ω0θ +
iḡ11ρ̄(0)
τ0ω0

e–iτ0ω0θ + E2

with

E1 = 2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2iω0 + β1H∗
1 + μ β1X∗ 0 –α 0

–β1H∗
1 2iω0 β2H∗

1 0 0
0 –β2H∗

2 2iω0 0 0
0 0 –� 2iω0 + α + μ + γ e–2iω0τ0 0
0 0 0 –γ e–2iω0τ0 2iω0 + μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1ρ2

β1ρ2 – β2ρ2ρ3

β2ρ2ρ3

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

E2 = –

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–(β1H∗
1 + μ) –β1X∗ 0 α 0

β1H∗
1 0 –β2H∗

1 0 0
0 β2H∗

2 0 0 0
0 0 � –(α + μ + γ ) 0
0 0 0 γ –μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

–1

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–β1(ρ2 + ρ̄2)
β1(ρ2 + ρ̄2) – β2(ρ2ρ̄3 + ρ̄2ρ3)

β2(ρ2ρ̄3 + ρ̄2ρ3)
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, one has

C1(0) =
i

2τ0ω0

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2

μ2 = –
Re{C1(0)}
Re{λ′(τ0)} , (39)
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β2 = 2 Re
{

C1(0)
}

,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ0)}

τ0ω0
.

In conclusion, we have the following results.

Theorem 2 For system (2), if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical); if β2 < 0 (β2 > 0), then the bifurcating periodic solutions are stable (unstable);
if T2 > 0 (T2 < 0), then the period of the bifurcating periodic solutions increases (decreases).

4 Global stability criteria
Theorem 3 Suppose that there exist positive definite symmetric matrices Ji > 0, i =
1, 2, 3, 4, 5, Pi > 0, i = 1, . . . , 8 L∗ > 0, and scalars μi > 0, i = 1, 2, . . . , 8, such that

Ψ1 =

⎡

⎢
⎣

(–2β1H∗
1 – 2μ)J1 + β1H∗

1 μ3I J1 J1

� – μ1
β1X∗ I 0

� � – μ2
α

I

⎤

⎥
⎦ < 0,

Ψ2 =

⎡

⎢
⎢
⎣

β1X∗μ1I + β2H∗
2 μ5I J2 J2

� – μ3
β1H∗

1
I 0

� � – μ4
β2H∗

1
I

⎤

⎥
⎥
⎦ < 0,

Ψ3 =

[
β2H∗

1 μ4I + �μ6I J3

� – μ5
β2H∗

2
I

]

< 0,

Ψ4 =

⎡

⎢
⎣

(–2α – 2μ)J4 + αμ2I + γ (μ7 + μ8)I + L∗ J4 J4

� – μ6
�

I 0
� � – μ7

γ
I

⎤

⎥
⎦ < 0,

Ψ5 =

[
–2μJ5 J5

� – μ8
γ

I

]

< 0,

where � represents symmetric term in a symmetric matrix and I is the identity matrix with
appropriate dimension. Then the endemic equilibrium E∗(X∗, H∗

1 , H∗
2 , Y ∗, Z∗) of model (5)

is globally exponentially stable.

Proof Consider the following Lyapunov functional:

V (t) = XT (t)J1X(t) + HT
1 (t)J2H1(t) + HT

2 (t)J3H2(t) + Y T (t)J4Y (t) + ZT (t)J5Z(t)

+ γ (μ7 + μ8)
∫ t

t–τ

Y T (ω)Y (ω) dω +
1
τ

∫ 0

–τ

∫ t

t+ω

Y T (κ)L∗Y (κ) dκ dω. (40)

Then the time derivative of V (t) along the trajectories of system (5) yields

V̇ (t) = 2
[
XT (t)J1

(
–
(
β1H∗

1 + μ
)
X(t) – β1X∗H1(t) + αY (t)

)

+ HT
1 (t)J2

(
β1H∗

1 X(t) – β2H∗
1 H2(t)

)
+ HT

2 (t)J3
(
β2H∗

2 H1(t)
)

+ Y T (t)J4
(
�H2(t) – (α + μ)Y (t) – γ Y (t – τ )

)
+ ZT (t)J4

(
γ Y (t – τ ) – μZ(t)

)]
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+ γ (μ7 + μ8)Y T (t)Y (t) – γ (μ7 + μ8)Y T (t – τ )Y (t – τ ) + Y T (t)L∗Y (t)

–
1
τ

∫ t

t–τ

Y T (ω)L∗Y (ω) dω

≤ –2
(
β1H∗

1 + μ
)
XT (t)J1X(t) – 2(α + μ)Y T (t)J4Y (t) – 2μZT (t)J5Z(t)

+ β1X∗[μ–1
1 XT (t)J1JT

1 X(t) + μ1HT
1 (t)H1(t)

]

+ α
[
μ–1

2 XT (t)J1JT
1 X(t) + μ2Y T (t)Y (t)

]

+ β1H∗
1
[
μ–1

3 HT
1 (t)J2JT

2 H1(t) + μ3XT (t)X(t)
]

+ β2H∗
1
[
μ–1

4 HT
1 (t)J2JT

2 H1(t) + μ4HT
2 (t)H2(t)

]

+ β2H∗
2
[
μ–1

5 HT
2 (t)J3JT

3 H2(t) + μ5HT
1 (t)H1(t)

]

+ �
[
μ–1

6 Y T (t)J4JT
4 Y (t) + μ6HT

2 (t)H2(t)
]

+ γ
[
μ–1

7 Y T (t)J4JT
4 Y (t) + μ7Y T (t – τ )Y (t – τ )

]

+ γ
[
μ–1

8 ZT (t)J5JT
5 Z(t) + μ8Y T (t – τ )Y (t – τ )

]

+ γ (μ7 + μ8)Y T (t)Y (t) – γ (μ7 + μ8)Y T (t – τ )Y (t – τ )

+ Y T (t)L∗Y (t) –
1
τ

∫ t

t–τ

Y T (ω)L∗Y (ω) dω

= XT (t)Ψ1X(t) + HT
1 (t)Ψ2H1(t) + HT

2 (t)Ψ3H2(t) + Y T (t)Ψ4Y (t) + ZT (t)Ψ5Z(t)

–
1
τ

∫ t

t–τ

Y T (ω)L∗Y (ω) dω. (41)

It follows from Ψi < 0, i = 1, . . . , 5, that there exists a sufficiently small constant 0 < δ ≤ τ–1

such that

Π = max
{
λM(Ψ1),λM(Ψ2),λM(Ψ3),λM(Ψ4) + γ (μ7 + μ8)δτeδτ ,λM(Ψ5)

}

+ δ max
{
λM(J1),λM(J2),λM(J3),λM(J4),λM(J5)

}≤ 0. (42)

Let us take

G(t) = eδtV (t). (43)

From (40)–(42), we have

Ġ(t) = δeδtV (t) + eδtV̇ (t)

= δeδt
[

XT (t)J1X(t) + HT
1 (t)J2H1(t) + HT

2 (t)J3H2(t) + Y T (t)J4Y (t) + ZT (t)J5Z(t)

+ γ (μ7 + μ8)
∫ t

t–τ

Y T (ω)Y (ω) dω +
∫ t

t–τ

Y T (ω)L∗Y (ω) dω

]

+ eδt
[

XT (t)Ψ1X(t) + HT
1 (t)Ψ2H1(t) + HT

2 (t)Ψ3H2(t) + Y T (t)Ψ4Y (t)

+ ZT (t)Ψ5Z(t) –
1
τ

∫ t

t–τ

Y T (ω)L∗Y (ω) dω

]
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≤ δeδt
[

XT (t)J1X(t) + HT
1 (t)J2H1(t) + HT

2 (t)J3H2(t) + Y T (t)J4Y (t) + ZT (t)J5Z(t)

+ γ (μ7 + μ8)
∫ t

t–τ

Y T (ω)Y (ω) dω

]

+ eδt[XT (t)Ψ1X(t) + HT
1 (t)Ψ2H1(t)

+ HT
2 (t)Ψ3H2(t) + Y T (t)Ψ4Y (t) + ZT (t)Ψ5Z(t)

]
. (44)

Then, by using (42) and integrating both sides of (44) from 0 to t, we obtain

Ġ(t) ≤
[

XT (0)J1X(0) + HT
1 (0)J2H1(0) + HT

2 (0)J3H2(0) + Y T (0)J4Y (0) + ZT (0)J5Z(0)

+ γ (μ7 + μ8)
∫ 0

–τ

Y T (ω)Y (ω) dω +
1
τ

∫ 0

–τ

∫ 0

ω

Y T (κ)L∗Y (κ) dκ dω

]

+
∫ t

0

[

δeδω
[
XT (ω)J1X(ω) + HT

1 (ω)J2H1(ω) + HT
2 (ω)J3H2(ω) + Y T (ω)J4Y (ω)

+ ZT (ω)J5Z(ω)
]

+ eδω
[
XT (ω)Ψ1X(ω) + HT

1 (ω)Ψ2H1(ω) + HT
2 (ω)Ψ3H2(ω)

+ Y T (ω)Ψ4Y (ω) + ZT (ω)Ψ5Z(ω)
]

dω

+ γ (μ7 + μ8)δ
∫ t

0
eδω

∫ ω

ω–τ

Y T (κ)Y (κ) dκ dω

]

≤
[

XT (0)J1X(0) + HT
1 (0)J2H1(0) + HT

2 (0)J3H2(0) + Y T (0)J4Y (0) + ZT (0)J5Z(0)

+ γ τ (μ7 + μ8)‖φ4‖2 +
τ

2
λM
(
L∗)‖φ4‖2 + γ τ (μ7 + μ8)δeδτ‖φ4‖2

]

+
∫ t

0
δeδωΠ

(∥
∥X(ω)

∥
∥2 +

∥
∥H1(ω)

∥
∥2 +

∥
∥H2(ω)

∥
∥2 +

∥
∥Y (ω)

∥
∥2 +

∥
∥Z(ω)

∥
∥2)dω

≤ �
(‖φ1‖2 + ‖φ2‖2 + ‖φ3‖2 + ‖φ4‖2 + ‖φ5‖2), (45)

where

� = max

{

λM(J1),λM(J2),λM(J3),λM(J4) + τγ (μ7 + μ8)
[
1 + δeδτ

]
+

τ

2
λM
(
L∗),λM(J5)

}

.

Also, it is easy to obtain that

G(t) ≥ eδt[min
{
λm(J1),λm(J2),λm(J3),λm(J4),λm(J5)

}]

× (∥∥X(t)
∥
∥2 +

∥
∥H1(t)

∥
∥2 +

∥
∥H2(t)

∥
∥2 +

∥
∥Y (t)

∥
∥2 +

∥
∥Z(t)

∥
∥2). (46)

From (45) and (46), it follows that

∥
∥X(t)

∥
∥2 +

∥
∥H1(t)

∥
∥2 +

∥
∥H2(t)

∥
∥2 +

∥
∥Y (t)

∥
∥2 +

∥
∥Z(t)

∥
∥2

≤ e–δtG(t)
min{λm(J1),λm(J2),λm(J3),λm(J4),λm(J5)}

≤ Λ
(‖φ1‖2 + ‖φ2‖2 + ‖φ3‖2 + ‖φ4‖2 + ‖φ5‖2)e–δt , (47)
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where

Λ =
max{λM(J1),λM(J2),λM(J3),λM(J4) + τγ (μ7 + μ8)[1 + δeδτ ] + τ

2 λM(L∗),λM(J5)}
min{λm(J1),λm(J2),λm(J3),λm(J4),λm(J5)} .

This implies that the endemic equilibrium E∗(X∗, H∗
1 , H∗

2 , Y ∗, Z∗) of model (5) is globally
exponentially stable. This ends the proof. �

5 Numerical simulation
Choosing A = 0.1, β1 = 0.003, β2 = 0.002, μ = 0.002, α = 0.003, ρ = 0.003, d = 0.003, � =
0.004, γ = 0.05.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t)
dt = 0.1 – 0.003X(t)H1(t) – 0.002X(t) + 0.003Y (t),

dH1(t)
dt = 0.003X(t)H1(t) – 0.002H1(t)H2(t) – 0.005H1(t),

dH2(t)
dt = 0.002H1(t)H2(t) – 0.009H2(t),

dY (t)
dt = 0.004H2(t) – 0.005Y (t) – 0.05Y (t – τ ),

dZ(t)
dt = 0.05Y (t – τ ) – 0.002Z(t).

(48)

Calculation reveals that the unique smoking present equilibrium of system (48) is
E∗(6.5548, 4.5, 7.3322, 0.5333, 13.3325). Then we obtain ω0 = 0.7202 and the critical value
of time delay τ0 = 32.0957.

According to Theorem 1, system (48) is locally asymptotically stable at the smoking
present equilibrium E∗(6.5548, 4.5, 7.3322, 0.5333, 13.3325) when τ ∈ [0, τ0 = 32.0957), as
shown in Fig. 2. That is, smoking continuously propagates with a fixed number in pop-
ulations. When we choose τ = 33.5625 > τ0 = 32.0957, system (48) loses its stability and
oscillation occurs, and periodic solutions emerge from the smoking present equilibrium
E∗(6.5548, 4.5, 7.3322, 0.5333, 13.3325), as observed in Fig. 3. This implies that smoking
explosively spreads in populations. In addition, since μ2 = 24.7558 > 0, β2 = –0.4258 < 0,
and T2 = –6.2623 < 0, we can conclude that the Hopf bifurcation is supercritical; the bi-
furcating periodic solutions are stable and decreasing.

6 Conclusions
Over 7000 chemical compounds and toxins are included in cigarettes affecting nearly ev-
ery organ in the body. Therefore, smoking is a sorely destructive problem. What is more
serious is that smoking addiction not only increases the disease burden but also adds an
economic burden on the society. According to the 2019 global tobacco epidemic report
released by the World Health Organization, about 5 billion people have been covered by at
least one tobacco control measure recommended by the organization, reaching the high-
est level of achievement, but 59 countries still have no tobacco control measure reaching
the highest level of implementation. Thus, it is very important to try to simulate and reveal
the nature of smoking addiction. This paper is concerned with a delayed tobacco smok-
ing model containing users in the form of snuffing by incorporating the time delay due to
the period that the regular smokers use to quit smoking into the model formulated in the
literature [22]. Its dynamics is studied in terms of stability and Hopf bifurcation.

It has been shown that when the value of delay is below the critical value τ0, the popu-
lations in system (2) are in ideal stable state. In this case, it is easy to predict and control
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Figure 2 Time plots of X , H1, H2 Y , and Z with τ = 31.0082 < τ0 = 32.0957

smoking addiction. However, once the value of delay is above τ0, populations in system (2)
may coexist in an oscillatory mode under some conditions. Therefore, we should control
and postpone the occurrence of Hopf bifurcation in system (2). From this point of view,
we can conclude that people who would like to quit smoking should quit it as soon as
possible. Specially, specific formulas determining the stability and direction of the Hopf
bifurcation are derived with the aid of the normal form theory and the manifold cen-
ter theorem. Global exponential stability of smoking present equilibrium is presented by
using LMI techniques. Computer simulations are implemented to explain the obtained
analytical results.

It is worth noting that we only consider the effect of time delay on system (2). Very
recently, fractional-order modeling in various fields such as epidemics [39–42], system
control [43–45], and neural network [46–49], has shown more advantage and consistency
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Figure 3 Time plots of X , H1, H2 Y , and Z with τ = 33.5625 > τ0 = 32.0957

compared with integer-order mathematical modeling. Thus, it is more interesting to in-
vestigate the fractional-order smoking model with time delay. We leave this as our near
future research work.
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