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Abstract
Mosquitoes play an important role in the spread of mosquito-borne diseases.
Considering the sensitivity of mosquitoes’ aquatic stage to the seasonal shift, in this
paper, we present a seasonally forced mosquito-borne epidemic model by
incorporating mosquitoes’ aquatic stage (eggs, larvae, and pupae) and seasonal shift
factor, which is a periodic discontinuous differential system. Firstly, some sufficient
conditions for the existence and uniqueness of a disease-free solution are obtained.
Further, we define the basic reproduction numberR0, and obtain the stability of the
disease-free solution whenR0 is less than one. And, ifR0 is greater than one, the
mosquito-borne disease is uniformly persistent and the model admits a positive
periodic solution. Finally, some numerical simulations are given to illustrate the main
theoretical results. In addition, simulation results also imply that ignoring the effects
of seasonal succession can overestimate or underestimate mosquito-borne disease
trends.

Keywords: Mosquito-borne disease; Seasonal variation; Periodic solution; Stability
and persistence

1 Introduction
In recent years, the spread of mosquito-borne diseases (such as dengue fever, malaria,
Zika, chikungunya, yellow fever, and so on) has been characterized by high morbidity,
high mortality, rapid growth in the number of cases, etc., which has become the major
public health concern in the tropical and sub-tropical regions of the world. For example,
in 2017, there were estimated 219 million cases of malaria in 87 countries, of which about
435,000 deaths [16]. According to the Philippine ministry of health, in 2019, more than
387,000 dengue cases (including 1452 deaths) have been registered in the Philippines as
of November 2, up 99.3% from the same period last year [14].

Mathematical modeling is an important tool to understand the epidemiology of a
mosquito-borne disease and assist in controlling the mosquito-borne disease. The first
mosquito-borne disease model was developed to study the strategies to control malaria
by Ross [21] in 1911. Subsequently, many scholars extended this model by consider-
ing acquired immunity in human population [5, 24], age structure in human population
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[27, 29], spatial heterogeneity [1, 34], the incubation period of pathogen in the mosquito
[26, 32, 33], the life-cycle of mosquito [11, 12, 35], and so on. In addition, many kinds of
dynamical models of mosquito-borne disease have been developed to put forward rele-
vant strategies for disease control. We refer to some of them [3, 7, 8] and the references
therein.

It is well known that mosquito-borne diseases are influenced by complex demographic,
environmental, and social factors. Temperature and rainfall are key environmental factors
that determine the population size and the range of mosquitoes because they are criti-
cal to the length of mosquitoes’ life cycle, the rate of reproduction and development of
mosquitoes [20]. Therefore, many scholars have established periodic systems to study the
effects of seasonality on mosquito-borne disease transmission (see [9, 17, 31]). Specifically,
Mathieu et al. [4] established a vector-host model accounting for seasonal fluctuation in
vector density and found that the periodic fluctuations of the vector population in phase
with temperature variations suggest a strong climate effect on the vector density and, in
turn, on the transmission of vector-borne. Lou et al. [15] presented and analyzed a mathe-
matical malaria model with periodic environment. They obtained that dynamic behaviors
of the model are determined by its basic reproduction number, and found that even small
changes in temperature could change the prevalence of malaria.

To the best of our knowledge, in the existing models of seasonal mosquito-borne dis-
eases, the effects of seasonality on the transmission of mosquito-borne disease are mainly
characterized by a periodic continuous differential system. However, the periodic contin-
uous differential system may not be appropriate for mosquito-borne disease modeling in
regions with tropical monsoon climate, such as Mumbai (India), Colombo (Sri Lanka),
Bangkok (Thailand), Ho Chi Minh City (Viet Nam), Phnom Penh (Cambodia), and so
on mainly because there are only a dry season (Nov-Apr) and a rainy season (May-Oct)
throughout the year in these areas, and the rainfall in the rainy season is significantly
higher than that in the dry season. In fact, seasonal rainfall can increase the abundance of
mosquitoes with aquatic larval stages, where reproduction depends on the availability of
breeding sites [2]. Therefore, it is of great significance to consider a discontinuous peri-
odic differential model to characterize the seasonal outbreak of mosquito-borne disease
caused by seasonal change between rainy and dry seasons.

Based on the above discussion, in this paper, we propose a mosquito-borne disease
transmission model with seasonal variation, which is a periodic discontinuous differen-
tial system. Applying the calculation method of the basic reproduction number for the
continuous periodic differential system given in Wang and Zhao [30] and the theoretical
analysis method of the discontinuous periodic differential system given in Tang et al. [23],
we calculate the basic reproduction number for this model and discuss the uniform persis-
tence of the disease and threshold dynamics. The organization of this paper is as follows.
In the next section, model formulation, some hypotheses, and the well-posedness of this
model are given. In Sect. 3, the basic reproduction number is calculated, and we show
that it is the threshold value for uniform persistence and global extinction of the disease.
In Sect. 4, we give some numerical simulations and discussion to illustrate our theoretical
results, and we give some concluding remarks in the last section.

2 Model formulation and preliminaries
According to the mosquito-borne epidemic compartmental models in previous studies
[22, 28], the total human population at time t, denoted by Nh(t), is divided into three
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classical classes: the susceptible Sh(t), the infected Ih(t), and the recovered Rh(t). For the
mosquito population, we consider the aquatic mosquitoes (comprising eggs, larvae, and
pupae) and adult mosquitoes, where the adult population at time t, denoted by Nm(t),
is split into two classes: susceptible mosquitoes Sm(t) and infected mosquitoes Im(t), the
aquatic population at time t is denoted by A(t). Further, the following basic assumptions
are introduced for our model.

(H1) Considering the influence of seasonal factors (such as humidity, temperature, etc.)
on mosquitoes’ reproduction rate and breeding sites, we assume that the recruit-
ment rate of the aquatic mosquitoes is governed by a logistic equation, in which
these coefficients are periodic functions on account of seasonal effects.

(H2) For human population, let Λh, μh, dh, γ , and η be the human recruitment rate,
natural death rate, disease induced death rate, recovery rate, and lose immunity
rate, respectively. Denote the seasonal forced transmission coefficient from infected
mosquitoes to a susceptible human by β(t), which is affected by seasonal succession.

(H3) For mosquito population, let k(t), b(t), μa(t), and μm(t) represent the carrying ca-
pacity of aquatic mosquitoes, mosquito birth rate, aquatic mosquito death rate, and
adult mosquito death rate, respectively. The per capita rate of maturation from the
aquatic form to the adult one is denoted by φ(t). Let α(t) denote the transmission
coefficient from the infected human to susceptible mosquitoes.

(H4) Let ω be given as the period of disease transmission. Let J1 and J2 denote the dry
season and the rainy season, respectively, where J1 = [nω, nω + θω) and J2 = [nω +
θω, (n + 1)ω). Here, n ∈ Z+ and θ ∈ (0, 1) is the fraction of the rainy season to the
whole infection cycle.

According to the assumptions above and taking into account the interaction between
human and mosquito population, we give the following ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt = Λh + ηRh(t) – β(t)Sh(t)Im(t) – μhSh(t),

dIh(t)
dt = β(t)Sh(t)Im(t) – (γh + μh + dh)Ih(t),

dRh(t)
dt = γhIh(t) – (μh + η)Rh(t),

dA(t)
dt = b(t)Nm(t)(1 – A(t)

k(t) ) – φ(t)A(t) – μa(t)A(t),
dSm(t)

dt = φ(t)A(t) – α(t)Sm(t)Ih(t) – μm(t)Sm(t),
dIm(t)

dt = α(t)Sm(t)Ih(t) – μm(t)Im(t),

(1)

with the following piecewise constant functions:

β(t) =

⎧
⎨

⎩

β1, t ∈ J1,

β2, t ∈ J2,
b(t) =

⎧
⎨

⎩

b1, t ∈ J1,

b2, t ∈ J2,

k(t) =

⎧
⎨

⎩

k1, t ∈ J1,

k2, t ∈ J2,
φ(t) =

⎧
⎨

⎩

φ1, t ∈ J1,

φ2, t ∈ J2,

and

μa(t) =

⎧
⎨

⎩

μa1, t ∈ J1,

μa2, t ∈ J2,
α(t) =

⎧
⎨

⎩

α1, t ∈ J1,

α2, t ∈ J2,
μm(t) =

⎧
⎨

⎩

μm1, t ∈ J1,

μm2, t ∈ J2,
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where J1 = [nω, nω + θω) and J2 = [nω + θω, (n + 1)ω). Assume β1 ≥ β2 > 0, b1 ≥ b2 > 0,
k1 ≥ k2 > 0, φ1 ≥ φ2 > 0, μa2 ≥ μa1 > 0, α1 ≥ α2 > 0, and μm1 ≥ μm2 > 0.

In view of the biological background of model (1), we only consider the solution of model
(1) with initial conditions (Sh(0), Ih(0), Rh(0), A(0), Sm(0), Im(0)) ∈ R

6
+ = {(x1, . . . , x6) : xi ≥

0, i = 1, . . . , 6}.
Now, we can give the following results about the existence, uniqueness, and bounded-

ness of solutions of model (1).

Theorem 1 For any initial value condition (Sh(0), Ih(0), Rh(0), A(0), Sm(0), Im(0)) ∈ R
6
+,

model (1) has a unique global nonnegative solution (Sh(t), Ih(t), Rh(t), A(t), Sm(t), Im(t)) for
all t ≥ 0, and this solution is ultimately bounded.

The global existence and uniqueness of the solution can be followed by Theorem 2.1 in
[23]. The positivity and boundedness can be easily obtained, here omitted.

Consider the following two disease-free subsystems of model (1):

dSh(t)
dt

= Λh – μhSh(t) (2)

and
⎧
⎨

⎩

dA(t)
dt = b(t)Sm(t)(1 – A(t)

k(t) ) – (φ(t) + μa(t))A(t),
dSm(t)

dt = φ(t)A(t) – μm(t)Sm(t).
(3)

On the global dynamics of models (2) and (3), we have the following lemmas.

Lemma 1 Model (2) has a unique positive globally asymptotically stable equilibrium
S∗

h(t) = Λh/μh.

The proof of Lemma 1 is obvious, so it is omitted.

Lemma 2 If φ2b2 > (φ1 +μa1)μm1, then model (3) is persistent and has a positive ω-periodic
solution (A∗(t), S∗

m(t)). Further, the positive ω-periodic solution (A∗(t), S∗
m(t)) is globally uni-

formly attractive when lim inft→∞ Θ(t) > 0, where

Θ(t) = μm(t) – b(t)
∣
∣
∣
∣1 –

A∗(t)
k(t)

∣
∣
∣
∣. (4)

Proof By the similarly method of Theorem 3 and Theorem 4 given in Ref. [10], it can
be obtained that when φ2b2 > (φ1 + μa1)μm1, model (3) is persistent and has one positive
periodic solution (A∗(t), S∗

m(t)). Now, we will prove global uniform attractiveness of this
periodic solution.

Let (A(t), Sm(t)) be any positive solution of model (3). Defining a function V (t) = |A(t) –
A∗(t)|+ |Sm(t)–S∗

m(t)| and calculating the upper right derivative of V (t) along the solutions
of model (3), it follows that

D+V (t) = sign
(
A(t) – A∗(t)

)
{

b(t)
(
Sm(t) – S∗

m(t)
)

–
(
φ(t) + μa(t)

)(
A(t) – A∗(t)

)

–
b(t)
k(t)

[
Sm(t)

(
A(t) – A∗(t)

)
+ A∗(t)

(
Sm(t) – S∗

m(t)
)]

}
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+ sign
(
Sm(t) – S∗

m(t)
)[

φ(t)
(
A(t) – A∗(t)

)
– μm(t)

(
Sm(t) – S∗

m(t)
)]

≤
{

b(t) –
b(t)
k(t)

A∗(t)
}

sign
(
A(t) – A∗(t)

)(
Sm(t) – S∗

m(t)
)

–
{

b(t)
k(t)

Sm(t) + μa(t)
}
∣
∣A(t) – A∗(t)

∣
∣ – μm(t)

∣
∣Sm(t) – S∗

m(t)
∣
∣

≤ –Θ(t)
∣
∣Sm(t) – S∗

m(t)
∣
∣ –

{
b(t)
k(t)

Sm(t) + μa(t)
}
∣
∣A(t) – A∗(t)

∣
∣.

Obviously, there exist positive constants �1, �2 and T1 ≥ 0 such that

Θ(t) ≥ �1 > 0,
b(t)
k(t)

Sm(t) + μa(t) ≥ �2 > 0 for all t ≥ T1.

Integrating both sides of the above inequality on interval [T1, t] yields that

V (T1) ≥ V (t) +
∫ t

T1

{

Θ(s)
∣
∣Sm(s) – S∗

m(s)
∣
∣ +

(
b(s)
k(s)

Sm(s) + μa(s)
)

∣
∣A(s) – A∗(s)

∣
∣

}

ds

≥ V (t) +
∫ t

T1

{
�1

∣
∣Sm(s) – S∗

m(s)
∣
∣ + �2

∣
∣A(s) – A∗(s)

∣
∣
}

ds.

Therefore, V (t) is bounded on [T1,∞] and

∫ ∞

T1

∣
∣A(s) – A∗(s)

∣
∣ds < ∞,

∫ ∞

T1

∣
∣Sm(s) – S∗

m(s)
∣
∣ds < ∞.

By Theorem 1, |A(s) – A∗(s)| and |Sm(s) – S∗
m(s)| are bounded on [T1,∞]. On the other

hand, it is easy to see that dA(t)/dt, dA∗(t)/dt, dSm(t)/dt, and dS∗
m(t)/dt are bounded for

t ≥ T1. Therefore, |A(s)–A∗(s)| and |Sm(s)–S∗
m(s)| are uniformly continuous on [T1,∞]. By

Barbalat’s lemma [13], we conclude that limt→∞ |A(t) – A∗(t)| = 0, limt→∞ |Sm(t) – S∗
m(t)| =

0. This completes the proof. �

As consequence of Lemmas 1 and 2, we can obtain that if φ2b2 > μm1(φ1 + μa1) and
lim inft→∞ Θ(t) > 0, then model (1) has a unique solution (S∗

h(t), 0, 0, A∗(t), S∗
m(t), 0), which

implies that the disease is extinct.

3 Basic reproduction number and threshold dynamics
In this section, we introduce the threshold quantity for the piecewise periodic model (1)
and analyze its properties. First, we need to define the next infection operator for model
(1), which arises from the combination with the idea in Ref. [30] for periodic ordinary
differential models.

Let x(t) = (Ih(t), Im(t), Sh(t), Rh(t), A(t), Sm(t))T , x∗(t) = (0, 0, S∗
h(t), 0, A∗(t), S∗

m(t)) and

Fi(t, x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βiShIm

αiSmIh

0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Vi(t, x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(γh + μh + dh)Ih

μmiIm

–Λh – ηRh + βiShIm + μhSh

–γhIh + (η + μh)Rh

–biNm(1 – A
ki

) + (φi + μai)A
–φiA + αiSmIh + μmiSm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, i = 1, 2.
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Then model (1) can be rewritten as

dx
dt

= F (t, x) – V(t, x), (5)

where F (t, x) = IJ1F1(t, x) + IJ2F2(t, x), V(t, x) = IJ1V1(t, x) + IJ2V2(t, x), and

IJi =

⎧
⎨

⎩

1, as t ∈ Ji,

0, as t /∈ Ji.

Denote

Fi(t) =
(

∂Fij(t, x∗(t))
∂xk

)

1≤i,j,k≤2
, Vi(t) =

(
∂Vij(t, x∗(t))

∂xk

)

1≤i,j,k≤2
,

where Fij(t, x(t)) and Vij(t, x(t)) are the jth components of Fi(t, x(t)) and Vi(t, x(t)), respec-
tively. Then, by simple computations, it follows that

Fi(t) =

(
0 βiΛh/μh

αiS∗
m(t) 0

)

and Vi(t) =

(
γh + μh + dh 0

0 μmi

)

, i = 1, 2.

Now, we extend t ∈ R+ to t ∈R and introduce some new notations. When t ∈ ⋃+∞
n=–∞(J1 ∪

J2) = (–∞, +∞) and

F(t) = IJ1 F1(t) + IJ2 F2(t) =

(
0 β(t)Λh/μh

α(t)S∗
m(t) 0

)

,

V (t) = IJ1 V1(t) + IJ2 V2(t) =

(
γh + μh + dh 0

0 μm(t)

)

.

Obviously, F and V are 2 × 2 piecewise continuous periodic matrices with period ω in R,
and –V (t) is cooperative.

Let Y(t, s), t ≥ s, be the evolution operator of the linear system

dy
dt

= –V (t)y. (6)

Then the 2 × 2 matrix Y(t, s) satisfies

dY(t, s)
dt

= –V (t)Y(t, s), ∀t ≥ s, s ∈R, Y(s, s) = E,

where E is the 2 × 2 identity matrix. Therefore, the monodromy matrix Φ–V (t) of model
(6) equals Y(t, 0), t ≥ 0. According to Remark 3.5 in Sect. III.7 of Ref. [6], there exist K1 > 0
and K2 > 0 such that

∥
∥Y(t, s)

∥
∥ ≤ K1e–K2(t–s), ∀t ≥ s, s ∈ R.

Obviously, there exists a constant K3 > 0 such that ‖F(t)‖ < K3 followed by the bounded-
ness of F(t). Therefore,

∥
∥Y(t, t – a)F(t, t – a)

∥
∥ ≤ K1K3e–K2a, ∀t ∈R, a ∈ [0, +∞).



Zheng et al. Advances in Difference Equations        (2020) 2020:469 Page 7 of 16

Let Cω be the ordered Banach space of all ω-periodic continuous functions from R to R
2

with the maximum norm ‖ ·‖c, and C
+
ω = {I ∈Cω : I(s) ≥ 0, s ∈R}. Assume that I(s) ∈C

+
ω is

the initial distribution of infectious individuals in this periodic environment, then F(s)I(s)
is the rate of new infectious produced by the infected individuals who were introduced
at time s, and Y(t, s)F(s)I(s) represents the distributions of those infected individuals who
were newly infected at time s and remain in the infected compartment at time t for t ≥ s.

It follows that
∫ t

–∞
Y(t, s)F(s)I(s) ds =

∫ ∞

0
Y(t, t – a)F(t – a)I(t – a) da,

which denotes the distribution of accumulative new infections at time t produced by all
those infected individuals I(s) introduced at previous time to t. Define a linear operator
L : Cω →Cω by

(LI)(t) =
∫ t

–∞
Y(t, s)F(s)I(s) ds =

∫ ∞

0
Y(t, t – a)F(t – a)I(t – a) da.

Similar to Lemma 3.1 given in Ref. [23], the linear operator L is well defined.

Lemma 3 The operator L is positive, continuous, and compact on Cω .

Therefore, following Wang and Zhao in [30], we call L the next infection operator and
define the basic reproduction number R0 for model (1) by

R0 = ρ(L),

where ρ(L) is the spectral radius of L. Similar to the analysis of Ref. [23], it is easy to follow
the argument in [29] to characterize R0. Set Uλ(t, s)(t ≥ s, s ∈R) be the evolution operator
of the following auxiliary ω-periodic switching model:

dU(t)
dt

=
{

–V (t) +
F(t)
λ

}

U(t), λ ∈ (0, +∞).

Then U(ω, 0,λ) = ΦF–V (ω). Following the ideas in Ref. [30], we have the following result.

Lemma 4
(i) If ρ(ΦF–V (ω)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of L, and so

R0 > 0.
(ii) If R0 > 0, then λ = R0 is the unique solution of ρ(ΦF–V (ω)) = 1.

(iii) R0 > 0 if and only if ρ(ΦF–V (ω)) < 1 for all λ > 0.

Applying Lemma 4 directly, we can obtain the following result on basic reproduction
number R0.

Theorem 2
(a) R0 = 1 if and only if ρ(ΦF–V (ω)) = 1;
(b) R0 > 1 if and only if ρ(ΦF–V (ω)) > 1;
(c) R0 < 1 if and only if ρ(ΦF–V (ω)) < 1.
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Furthermore, the disease-free solution (S∗
h(t), 0, 0, A∗(t), S∗

m(t), 0) is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

Next, we explore the threshold condition, which determines the extinction and persis-
tence of the disease.

Theorem 3 If R0 < 1, φ2b2 > μm1(φ1 + μa1), and lim inft→∞ Θ(t) > 0, then solution
(S∗

h(t), 0, 0, A∗(t), S∗
m(t), 0) is globally asymptotically stable, where Θ(t) is given by (4).

Proof From Theorem 2, we obtain that if R0 < 1, solution (S∗
h(t), 0, 0, A∗(t), S∗

m(t), 0) is lo-
cally asymptotically stable. Now, it suffices to prove the global attractiveness of solution
(S∗

h(t), 0, 0, A∗(t), S∗
m(t), 0) for R0 < 1. It follows from conclusion (c) of Theorem 2 that we

can choose a small enough constant ε > 0 such that ρ(ΦF–V +εN (ω)) < 1, where

N(t) =

(
0 β(t)

α(t) 0

)

.

It can be shown, by Lemma 1 and Lemma 2, that if φ2b2 > μm1(φ1 + μa1) and
lim inft→∞ Θ(t) > 0, then there exists t1 > 0 such that

Sh(t) ≤ Λh/μh + ε and Sm(t) ≤ S∗
m(t) + ε for all t > t1. (7)

Substituting the inequalities in (7) into model (1), we have
⎧
⎨

⎩

dIh(t)
dt ≤ β(t)(Λh/μh + ε)Im(t) – (γh + μh + dh)Ih(t),

dIm(t)
dt ≤ α(t)(S∗

m(t) + ε)Ih(t) – μm(t)Im(t)

for all t > t1. Consider the following auxiliary system:
⎧
⎨

⎩

d̃Ih(t)
dt = β(t)(Λh/μh + ε )̃Im(t) – (γh + μh + dh )̃I(t),

d̃Im(t)
dt = α(t)(S∗

m(t) + ε )̃Ih(t) – μm(t)̃Im(t),
(8)

which is a periodic linear discontinuous model with period ω. For the convenience, we
will rewrite it as follows:

d
dt

(
Ĩh(t)
Ĩm(t)

)

=
(
F(t) – V (t) – εN(t)

)
(

Ĩh(t)
Ĩm(t)

)

. (9)

When R0 < 1, we have ρ(ΦF–V +εN (ω)) < 1, which implies that (0, 0) is a globally
asymptotically stable solution of model (8). By the comparison principle, we have
limt→∞(Ih(t), Im(t)) = (0, 0). By the equations of Sh, Rh, A, and Sm of model (1), Lemmas 1
and 2, we also obtain limt→∞(Sh(t), Rh(t), A(t), Sm(t)) = (S∗

h(t), 0, A∗(t), S∗
m(t)). Hence, the

disease-free solution (S∗(t), 0, 0, A∗(t), S∗
m(t), 0) is globally attractive. Therefore, solution

(S∗
h(t), 0, 0, A∗(t), S∗

m(t), 0) of model (1) is globally asymptotically stable. �

It follows from an epidemiological concept that if R0 < 1 the number of infected human
and infectious mosquitoes tends to zero with the increase of time and the disease is ex-
tinct. However, the disease-free periodic solution is unstable, that is, no matter how small
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the number of infected hosts or infectious vectors in the initial state, the disease will oc-
cur repeatedly in the region and become endemic due to its long-term prevalence. In the
following, we show that when R0 > 1, the disease is uniformly persistent.

Theorem 4 If R0 > 1, φ2b2 > μm1(φ1 + μa1) and lim inft→∞ Θ(t) > 0, then there exists a
constant ϑ > 0 such that every solution (Sh(t), Ih(t), Rh(t), A(t), Sm(t), Im(t)) of model (1) sat-
isfies

lim inf
t→+∞ Ih(t) ≥ ϑ , lim inf

t→+∞ Im(t) ≥ ϑ .

Proof Define

X =
{

(Sh, Ih, Rh, A, Sm, Im) : Sh > 0, Ih ≥ 0, Rh ≥ 0, A > 0, Sm > 0, Im ≥ 0
}

,

X0 =
{

(Sh, Ih, Rh, A, Sm, Im) ∈X : Ih > 0, Im > 0
}

,

and

∂X0 = X \X0 =
{

(Sh, Ih, Rh, A, Sm, Im) ∈X : IhIm = 0
}

.

From model (1), it is easy to see that X and X0 are positively invariant and ∂X0 is also a
relatively closed set in X.

Let P : X→ X be the Poincaré map associated with model (1), that is,

P(P0) = u(ω, P0) = u2
(
ω, θω, u1(θω, 0, P0)

)
,

where u(t, P0) is a solution of model (1) under the initial value P0 ∈ R
5
+, and ui(t, t∗, P∗)

(i = 1, 2) is the solution semi-flow of the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt = Λh + ηRh(t) – βiSh(t)Im(t) – μhSh(t),

dIh(t)
dt = βiSh(t)Im(t) – (γh + μh + dh)Ih(t),

dRh(t)
dt = γhI(t) – (μh + η)Rh(t),

dA(t)
dt = biNm(t)(1 – A(t)

ki
) – (φi + μai)A(t),

dSm(t)
dt = φiA(t) – αiSm(t)Ih(t) – μmiSm(t),

dIm(t)
dt = αiSm(t)Ih(t) – μmiIm(t),

ui(t∗, t∗, P∗) = P∗, P∗ ∈R
5
+.

(10)

It follows from the continuity of solution of model (1) with respect to the initial value P0

that P is compact. Moreover, by Theorem 1, we obtain that P is point dissipative on X.
Define

M∂ =
{

P0 ∈ ∂X0 : Pk(P0) ∈ ∂X0,∀k ≥ 0
}

.

It is a positive invariant set of P in ∂X0. Now, we claim

M∂ =
{

(Sh, 0, 0, A, Sm, 0) : Sh > 0, A > 0, Sm > 0
}

. (11)



Zheng et al. Advances in Difference Equations        (2020) 2020:469 Page 10 of 16

In fact, {(Sh, 0, 0, A, Sm, 0) : Sh > 0, A > 0, Sm > 0} ⊂ M∂ . On the other hand, if M∂ \
{(Sh, 0, 0, A, Sm, 0) : Sh > 0, A > 0, Sm > 0} �= ∅, that is, there exists at least a point (Sh0, Ih0, Rh0,
A0, Sm0, Im0) ∈ M∂ satisfying Ih0 > 0 or Im0 > 0. If Ih0 = 0 and Im0 > 0, then

Im(t) ≥ Im0e–μ2t > 0 for all t > 0.

Because Sh0 > 0, it can be shown from the first equation of model (1) that Sh(t) > 0 for all
t > 0. Hence,

Ih(t) = e–(γh+μh+dh)s
[

Ih0 +
∫ t

0
β(s)Sh(s)Im(s)e(γh+μh+dh)s

]

> 0 for all t > 0.

Similarly, if Ih0 > 0 and Im0 = 0, then Ih(t) > 0 and Im(t) > 0 for all t > 0.
This shows that (Sh(t), Ih(t), Rh(t), A(t), Sm(t), Im(t)) /∈ ∂X0. Hence, (Sh0, Ih0, Rh0, A0, Sm0,

Im0) /∈ M∂ , which leads to a contradiction. It indicates that M∂ ⊆ {(Sh, 0, 0, A, Sm, 0) : Sh >
0, A > 0, Sm > 0}. Hence, (11) is proved. In M∂ , model (1) degenerates to

⎧
⎪⎪⎨

⎪⎪⎩

dSh(t)
dt = Λh – μhSh(t),

dA(t)
dt = b(t)Sm(t)(1 – A(t)

k(t) ) – (φ(t) + μa(t))A(t),
dSm(t)

dt = φ(t)A(t) – μm(t)Sm(t).

(12)

Clearly, if φ2b2 > μm1(φ1 + μa1) and lim inft→∞ Θ(t) > 0, model (12) has a globally stable
ω-periodic solution (Λh/μh, A∗(t), S∗

m(t)). Therefore, the map P has a unique globally at-
tractive fixed point restricted in M∂ , which is M1 = (Λh/μh, 0, 0, A∗(t), S∗

m(0), 0).
Define W s(M1) = {x0 : Pn(x0) → M1, n → ∞}, which is said to be a stable set of M1.

Since R0 > 1, the stable set W s(M1) of M1 satisfies that W s(M1) ∩X0 = ∅. It follows from
Lemmas 1 and 2 that {M1} is globally attractive in M∂ when φ2b2 > μm1(φ1 + μa1) and
lim inft→∞ Θ(t) > 0. Therefore, {M1} is isolated in M∂ , and hence in X. Furthermore, {M1}
is also invariant and {M1} does not form a cycle in M∂ , and hence in X. By Theorem 1.3.1
in [34], we finally obtain that P is uniformly persistent with respect to (X0, ∂X0), which
implies that model (1) is uniformly persistent. The proof is completed. �

As a consequence of Theorem 4, we have the following result.

Corollary 1 If R0 > 1, φ2b2 > μm1(φ1 + μa1) and lim inft→∞ Θ(t) > 0, then model (1) pos-
sesses at least a positive ω-periodic solution.

Particularly, when model (1) degenerates into the autonomous model with β(t) = β ,
b(t) = b, k(t) = k, φ(t) = φ, μa(t) = μa, α(t) = α, and μm(t) = μm for all t ≥ 0, it is easy
to calculate that the autonomous model always has a disease-free equilibrium E01 =
(Λh/μh, 0, 0, 0, 0, 0). This implies that the mosquito population is eliminated. Notice that
if bφ > μm(φ + μa), then the autonomous model has one more disease-free equilibrium
E02 = (Λh/μh, 0, 0, A∗, S∗

m, 0), where

A∗ =
k(bφ – μmφ – μmμa)

bφ
, S∗

m =
k(bφ – μmφ – μmμa)

bμm
.
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In this case,

F =

(
0 βΛh/μh

αS∗
m 0

)

and V =

(
γh + μh + dh 0

0 μm

)

.

Using the method given in Ref. [25] (see also Lemma 2.2(ii) in Ref. [30]), we obtain the
basic reproduction number of the autonomous model as follows:

R̃0 =

√
Λh

μh
· β

γh + μh + dh
· α

μm
· k(bφ – μmφ – μmμa)

bμm

=

√
αβΛhk(bφ – μmφ – μmμa)

bμhμ2
m(γh + μh + dh)

.

From the above expressions, we can see that α, β , k, and φ are proportional to R̃0, while
μm and μa are inversely proportional to R̃0. Using the sensitiveness analytical method
[18], it is easily obtained that μm is the most sensitive parameter about the basic repro-
duction number R̃0, followed by α, β , k and φ, b, and μa are the least. Therefore, in order
to effectively control the spread of the disease, during the rainy season, we can spray adult
and larval insecticides, reduce contact rates, and reduce mosquito breeding sites at the
same time. On the other hand, in view of pesticides causing environmental pollution, we
can avoid the use of pesticides as much as possible in the dry season and control the spread
of disease by reducing contact rates and reducing mosquito breeding sites.

4 Numerical simulation and discussion
In this section, some numerical simulations are presented to confirm the above theoretical
analysis. Moreover, in order to illustrate the effect of seasonal succession on the dynam-
ics of mosquito-borne disease, some numerical simulations are carried out. To this end,
we choose some parameter values from Ref. [19, 36] and fix these parameters values as
follows: Λh = 4, η = 0.004, μh = 1/(70 × 365), γh = 0.07, dh = 3.0 × 10–6, k1 = 6.0 × 105,
k2 = 1.5 × 104, b1 = 4, b2 = 3 φ1 = 0.06, φ2 = 0.04, μa1 = 0.04, μa2 = 0.02 μm1 = 0.1, and
μm2 = 0.07.

For model (1), we choose, firstly, rainy season parameters β1 = 5.15 × 10–7, α1 =
5.65 × 10–7 and dry season ones β2 = 1.75 × 10–7, α2 = 1.88 × 10–7. Clearly, φ2b2 >
μm1(φ1 +μa1), and lim inft→∞ Θ(t) > 0 by numerical calculations. Further, the basic repro-
duction number is R0 ≈ 0.9177 < 1. Therefore, by Theorem 3, the disease-free solution
(Λh/μh, 0, 0, A∗(t), S∗

m(t), 0) of model (1) is globally asymptotically stable. The correspond-
ing numerical simulations are given in Fig. 1(a)–(c), in which the blue lines and red lines
represent the solution curves of model (1) in the dry and rainy seasons, respectively. Nu-
merical simulations show that the quantities of the infectious human and the infectious
mosquitoes tend to zero from different initial values, which means that the disease is elim-
inated from this area eventually.

In order to investigate the effect of the seasonal succession on the disease-free periodic
solution of model (1), we choose parameters β = 2.15 × 10–7, α = 4.65 × 10–7, i.e., there
is no seasonal variation. By direct calculation, we obtain the basic reproduction number
R̃0 ≈ 0.9143 of the autonomous model, which is close to the basic reproduction number
R0 ≈ 0.9177 < 1 of model (1) with rainy season and dry season. The solution curves of two
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Figure 1 The global dynamics of disease-free solution of model (1) whenR0 < 1

models are denoted by black dotted line and red-blue solid line in Fig. 1(d), respectively.
By contrast of the trend of the black dotted line and the red-blue solid line, we find that
the black dotted line undergoes a little bit of growth and then goes down very quickly and
goes to zero; while the red-blue solid line has a relatively long growth and then gradually
approaches zero after several disease cycles. These results indicate that even when the
basic reproduction numbers are close to each other, it is easy to cause misjudgment for
disease control departments without considering the seasonal succession. At the same
time, we choose the above rainy season parameters for the autonomous model: β = 5.15×
10–7, α = 5.65×10–7, i.e., there is no seasonal variation. The simulation results are denoted
by green chain dotted line in Fig. 1(d). Comparing the seasonal succession of rainy and dry,
we find the basic reproduction number R̃0 ≈ 1.5597 and the disease will not be extinct.
That is to say, the disease will be overestimated without considering the dry season. The
numerical simulation implies that considering the mosquito-borne epidemic model with
seasonal change can more accurately describe the epidemic law of the mosquito-borne
disease.

Furthermore, we choose rainy season parameters β1 = 1.35 × 10–6, α1 = 2.15 × 10–6

and dry season parameters β2 = 5.5 × 10–7, α2 = 8.75 × 10–7 in model (1). Clearly, φ2b2 >
μm1(φ1 + μa1), and by numerical calculations, one has lim inft→∞ Θ(t) > 0 and obtains
the basic reproduction number R0 ≈ 2.2678 > 1. According to Theorem 4, model (1) is
uniformly persistent, as shown in Fig. 2. In addition, the plots in Fig. 2(a) and Fig. 2(b) show
that model (1) has a positive periodic solution, which is in accordance with the obtained
conclusion in Corollary 1. It seems that this positive periodic solution is globally attractive
from the trend of solution curves with different initial values in Fig. 2(c) and Fig. 2(d).
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Figure 2 The uniform persistence of disease in model (1) and the existence of positive periodic solution of
model (1) whenR0 > 1: (a) and (b) the existence of positive periodic solution; (c) and (d) the persistence and
stability of this periodic solution

Figure 3 The effect of seasonal succession on the persistence of mosquito-borne disease

Finally, in order to investigate the effect of seasonal succession on the persistence of
mosquito-borne disease, we take the autonomous model parameters β = 8.25 × 10–7,
α = 1.23 × 10–6, i.e., there is no seasonal succession. By calculating, we obtain the ba-
sic reproduction number R̃0 ≈ 2.2784, which is close to the basic reproduction number
R0 ≈ 2.2678 > 1 in Fig. 2, where the seasonal succession is considered. This is shown in
the black dotted line and the red-blue solid line in Fig. 3. It is not hard to find that the black
dotted line undergoes a little bit of growth and then gradually goes to one value, while the
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red-blue solid line has a relatively big growth and then gradually forms a stable state of
periodic fluctuation. Numerical simulations indicate that although the basic regeneration
numbers of the two cases are very close, the prevalence of the disease is completely differ-
ent. Further, we take only the rainy season parameters β = 1.35 × 10–6, α = 2.15 × 10–6 in
the autonomous model and get R̃0 ≈ 3.8224 in this case. A similar result can be obtained,
as shown by the green chain dotted line in Fig. 3. Theoretical results and numerical simu-
lations show that neglecting the effect of seasonality on mosquitoes can lead to overesti-
mating or underestimating the epidemic trend of mosquito-borne infectious diseases and
cause waste of medical resources to a certain extent.

5 Conclusion
In this paper, we establish a mosquito-borne disease transmission model with seasonal
succession, which is different from the existing work due to the discussion of the dynamics
of transmission of mosquito-borne diseases in certain areas. These areas have a tropical
monsoon climate, year-round high temperatures (suitable for mosquito growth), and only
two seasons a year: the dry season and the rainy season. The rainfall difference between the
two seasons is very obvious. Therefore, we use piecewise constant functions to describe
the seasonal succession rather than the continuous periodic function. All in all, we can
conclude our work and findings in the following two aspects:

(a) The main results obtained in this work: combined with the analysis methods in
Refs. [30] and [23], the existence and uniqueness of the disease-free periodic
solutions of this model are discussed, and the basic regeneration number of our
model is obtained. On the premise of the existence of disease-free periodic solution,
the basic regeneration number is the threshold that determines the extinction and
persistence of the disease. Specifically, if R0 < 1, then the disease-free periodic
solution of this model is globally asymptotically stable; if R0 > 1, the disease in the
model is persistent and the model has a positive periodic solution.

(b) The effect of seasonal succession on the dynamics of the disease: in order to
investigate the effect of seasonal succession on the dynamics of mosquito-borne
disease, we give two other simulations to illustrate the effect of seasonal succession
on the disease-free periodic solution and the persistence of the disease. These are
shown in Fig. 1(d) and Fig. 3, respectively. Numerical simulations show that
regardless of whether the disease is extinct or persistent, ignoring the effects of
seasonal transitions, especially the cycle alternation of the dry and rainy seasons, on
the total population of mosquito populations and their behavior inevitably
overestimates or underestimates the disease trend. Therefore, the establishment of a
reasonable seasonal mosquito-borne disease model to accurately predict the
epidemic trend of the disease has very important guiding significance for the
reasonable allocation and use of limited medical resources.
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