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1 Introduction

Along with the evolution of the theory and application of classical calculus, quantum cal-
culus (calculus without limit) has also received more intense attention in the last three
decades. In this article, we study the development of g-calculus which is one type of quan-
tum calculus. The g-calculus was first introduced by Jackson [1, 2] in 1910. In recent years,
the extension of this topic has been studied by many researchers and has many new results
in [3-9] and their references. The knowledge of g-calculus was used in physical problems,
see [10—27] and the references cited therein.

Later, the study of quantum calculus based on two-parameter (p,q)-integer was pre-
sented. The (p, g)-calculus was presented by Chakrabarti and Jagannathan [27]. The ex-
tension of studies of (p,q)-calculus was given in [28-39]. In addition, it is used in many
branches such as physical sciences, hypergeometric series, Lie group, special functions,
approximation theory, Bézier curves and surfaces, etc. [40-47].

Then, the study of fractional quantum calculus was initiated [48—50]. Agarwal [48] and
Al-Salam [49] studied fractional g-calculus, whilst Diaz and Osler [50] proposed fractional
difference calculus. In 2017, Brikshavana and Sitthiwirattham [51] introduced fractional
Hahn difference calculus. Recently, Patanarapeelert and Sitthiwirattham [52] studied frac-
tional symmetric Hahn difference calculus. Presently, Soontharanon and Sitthiwirattham
[53] introduced the fractional (p, q)-difference operators and their properties.

There are some recent papers studying the boundary value problem for (p, ¢)-difference
equations [54—56]. However, the boundary value problem for fractional (p, g)-difference
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equations has not been studied since fractional (p, g)-operators have been defined lately.
These motivate the authors for this research. This article investigates the existence re-
sults of a fractional (p, g)-integrodifference equation with nonlocal Robin boundary value
conditions of the form

D5 u(t) = F[t,u(t), ¥ u(t),D, ut)], tel,,

T
)+ 2aDfutn) = nt), ity fo. ) w

T T
u1u<—> + ,udzDﬁyqu<—> = ¢y (u),
p p

where I;q = pZ—:T:k eNgJU{0};0<g<p=<1lae(1,2],B,y,ve(0,1], Ay, Ao, pt1, U2 €
R*; Fe C(I}Z:q x R x R x R,R) is a given function; ¢1, ¢, : C(ng,R) — R are given func-
tionals; and for ¢ € C(I;q X I;:q,
product of functions ¢ and u as

[0, 00)), we define an operator of the (p, g)-integral of the

_1/t_v1 <L>
l,lfpyqu(t) = (Ip'q(pu)(t)_p(g)l"p,q(y) o(t qs)pq ¢t s)u o Ay gs.

We aim to prove the existence and uniqueness of a solution for this problem by using
Banach’s fixed point theorem, and the existence of at least one solution by using Schauder’s

fixed point theorem. In addition, we provide an example to illustrate our results.

2 Preliminaries
In this section, we recall some basic definitions, notations, and lemmas. Letting 0 < g <

p <1, we define the notations

L keN
(k] =1 ' ’
1, k=0,
M — k—1 k k N
[k]p,q =] ra )zl ]%, c
1, k=0,
[k] 1.— [k]p,q[k— l]p,q . [l]p,q _ 1—[?:1 %, keN
I 207

1, k=0.
The (p, g)-forward jump and the (p, g)-backward jump operators are defined as

k k
Ulf’q(t) = (Z) t and p;"q(t) = (‘g) t for k € N, respectively.

The g-analogue of the power function (a — b)g with n € Ny :={0,1,2,...} is given by

n-1

(a-b)2:=1, (a—b)gzzn(a—bq"), a,beR.

q
i=0
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The (p, q)-analogue of the power function (a — b)y,, with n € Ny is given by

n-1

@-b5,:=1,  (a-bpr,:=[[(a"-bq), abeRr

k=0
For o € R, we define a general form:

[e’¢] b i
(a-b=a “Hl_(();’jﬂ a0.

1 1=k
(@=0=pa-0fs =a T[T | aro
i p a(p)Ha
Note that ag = a®, a,,; = (1‘—;)"‘ and (0)7 = (0)%,51 =0fora>0.
The (p, g)-gamma and (p, q)-beta functions are defined by

-dpg _ =3pa
-1 x—17 xGR\{O,—L—Z,...}
Fp,q(x) = (p-q) (l—g) 1
[x - l]p,q!; X € N

Ipg®) Iy, q(y)

1
-1 1

B, 4(x, ):=/ N1 = gt dy t = pr0 D@D

g\ XY A pa Gpq g+ )

respectively.

Lemma 2.1 ([53]) Fora,B,y,A €R,

@) (VB-yNe, =v (BN

aty 1 o o o
O) (B =)o = B = )50~ a3
(© (t-9)5,=0, aéNot>s andtse ng.

Lemma 2.2 ([53]) Form,ne Ny, a €eR,and0<q<p <1,

) . i ) z n\ o
(a) (t qu(t))p_q £ (1 (p) )p,q,

o s () 0-(0) )
pq

Definition 2.1 For0<g<p <1andf:[0,T] - R, we define the (p, q)-difference of f as

fpt)-f(qt)
R fort#0

D, f(t):=] @
rf () f'(0), fort=0

provided that f is differentiable at 0. f is called (p, q)-differentiable on Ig g 1 Dpqf (2) exists
forallze ) .
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Lemma 2.3 ([31]) Letf, g be (p,q)-differentiable on IT The properties of (p, q)-difference

operator are as follows:

(a) Dp,q[f( )+ ] Dy,of (£) + Dygg(t)
(b) Dpy [af(t)] =aD,f(t) foraeR,
(©) Dpg[f(Dg(®)] =f 01)Dpqg(t) + g(qt)Dyof () = gPt)Dyof (£) + f(q1)Dy,og (),

@ b [@ ] 4Dy f (1) ~FGDpg(®) _ gpD)Dgf () ~f(1)Dg (1)
P g(t) g(pt)g(qt) 2(pt)g(qt)
Jor g(pt)g(qt) #0

Lemma 2.4 ([53]) Lett eIl

pq,0<q<p§1,azl,andae]R. Then

() Dp,q(t_d) =[o] pq(pt ay,= pq )

(b) Dp,q(a - t)%,q = _[a]p,q(a - qt)ﬁ

Definition 2.2 Let I be any closed interval of R containing «, b, and 0. Assuming that
f:I— Risa given function, we define (p, g)-integral of f from a to b by

b b a
Lf(t)dp,qt:=Af(t)dp,qt—/of(t)dp,qt,

where

x o k
:A f(t)dp’qtz(p qxz k+1 ( k+1 )’ XEI,
k:O

provided that the series converges at x = a and x = b. f is called (p, g)-integrable on [a, b]
ifit is (p, q)-integrable on [a,b] for alla,b € I.

Next, we define an operator Iﬁfq as
Ig,qf(x) =f(x) and Iﬁqu(x) 7, IN_ fx), NeN.
The relations between (p, g)-difference and (p, q)-integral operators are given by

Dy gL, f (%) =f(x) and I,,D,.f(x)=f(x)—f(0).

Lemma 2.5 ([31]) Let O<g<p<1l,abel) ,andf,g be (p,q)-integrable on I, . Then
the following formulas hold:

(@) / FO) gt =0,
b b
(b) / af (O) dyyt = / f(©)dpgt, €,

b a
© / FO dyt = /b FO)dpat,
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b b c

(d) / FO) dygt = / SO dygt + / SO dyt, cell a<c<b,
b b b

(@) / [F(0) + ()] dpat = f FO)dygt + / dO)dyt,

b b
(9 / (0 Dypag(®)] gt = [f()g(®)] - / (€D )] dpat.

Lemma 2.6 ([31], Fundamental theorem of (p, g)-calculus) Letting f : I — R be continu-
ous at 0 and

F(x):= f f@O)dpqt, x€l,
0
then F is continuous at 0 and D, ,F(x) exists for every x € I where
Dp,qF(x) =f(x)
Conversely,
b
/ D, f(t)dpgt =f(b)—f(a) foralla,bel

. . . 7T T
Lemma 2.7 ([53], Leibniz formula of (p, g)-calculus) Letting f L,x1,,— R,

t qt
D,, |:/0 f(ts) dp,qs] = /0 tDpof (t,8) dpgs + f(pL, 1),

where D, , is (p,q)-difference with respect to t.

Next we introduce fractional (p, g)-integral and fractional (p, q)-difference of Riemann—
Liouville type as follows.

Definition 2.3 For « >0,0< g <p <1, and f defined on I;q, the fractional (p, g)-integral
is defined by

o« fop 1 ‘ ate S
Ip’qf‘(t) L p(c2t) Fp’q(a) ‘/0‘ (t - qs)p,q f(pal ) dpiqs

G A
= T I t),
p(z) &,q(a) gpk-d P p,qf pk+a

and (Z2,/)(6) =£(0).

Definition 2.4 For o >0, 0 < g < p <1, and f defined on ng, the fractional (p,q)-
difference operator of Riemann-Liouville type of order « is defined by
AP

1 /‘t(t )—0(—1 < S ) d
= —— —qgs _ S
p( 2 )Fp,q(—ot) 0 Tlpa p! P

and DY f(¢) = f(t), where N-1<a <N, N € N.

Dg f(t) := Dy Tf ()
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Lemma 2.8 ([53]) Lettinga € (N-1,N),NeN,0<g<p<1, andf:lgq — R,
Iy Do f (8) = f(2) + Crt* 4+ Gt 2 4+ Cut*™N

forsome C;eR,i=1,2,...,N.

Lemma 2.9 ([53]) LettingO<g<p<landf: ng — R be continuous at 0,

x ps ;‘—7 x
/ / f(D)dy vt dpys = / f(T)dygsdy,t.

0o Jo 0 pqr
Lemma 2.10 ([53]) Letw,8>0,0<g<p <1.Then

(a) /t(t qs)y.7 L d S = t“*ﬁBp,q(ﬁ +1,a),

Bpq(B + 1’0‘)ta+ﬁ

(b)//(t qx) Hx — qs)pq Ap,qS dp g% = (8]
pa

Lemma 2.11 Leto,$>0,0<g<p <1,and n e Z. Then

@) _Tra@)

a) /(t qS)pq pas =P pq(a+1)t
// o (t- qx_ﬂ1< : _qs)a_ld Sy %= p(Q)(ﬁ)i() teth
"\ pa Lgla+1)”

an _ (/3) pq(C\! n+1)qu( -B) a—p-n
(c) /(t qS)pq (pﬂ1> dpgs =P T a—B-—n+1) t

Proof From Lemma 2.10(a) and the definition of (p, g)-beta function, we have

t
oy T
/ (t qs)a ld paS = taBp,q(l,(X) :p(Z)L(a)ta’

Tyglo +1)
R e p-1{ x el
/ / " (t-qw)pg (ﬁ —015> Ap.qS Ap.g%
o Jo p P
Byq(La) [* -p-1
= D) /0 (¢ = qu)pq 2" dpgx
B B,,(1,@)

= 4p—a(ﬁ+l) B, (a+1, —p)teF

_p® (ﬁ)M ap.
q(a B+1)

For n € Z, we have

t o—n
--1 S _ Bqu(a’ _ﬂ) a—B-n+l
/0 (t=as)pq ( p—ﬁ—1> bas = amipn !

(‘/3) Tpgla—n+ 1)1 ,(- lB)ta -B-n_
Iygla-B-n+1)

The proof is complete. d
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We next provide a lemma showing a result of the linear variant of problem (1.1).

Lemma 2.12 Let 2 #0, « € (1,2], B €(0,1], 0<g<p <1, A, o, u1, 02 € RY, B €
C(L!,R) is a given function; ¢1, ¢z : C(I) ,R) — R are given functionals. The linear vari-
ant problem of (1.1)

o _ T
Dy u(t)=h(t), tel,,

T
au(n) +2aDf u(n) = (W), nely, - {wo, » } (2.1)

T T
,ulu(—) + /‘*ZDfZ,q”(_) = ¢o(u)
p p

has the unique solution

1 ¢ » ( s )
ult) PO T (@) /0 = h\ e ) Aas

-1

tg (B, (g1, 1] — B, D7, h])

a-2

L —{Ar®, (1,5 - A, @r(a, ]} (22)

where the functionals ®,[¢1, ], @1po, h] are defined by

)\'1 /n ) ( s )
[0 Jh) = Il — gy | —= )4 )
77[¢1 ] ¢1(M) p(Z) 1_}74(0[) o (77 qs)qu pa—l pqS

p(;)*'(}ﬁ) prq(a)rp,q(_ﬁ)

U g1 x a=1 s
p
x (7 — qu)pat (—— s) h(—)d,sd,x, (2.3)
/0/0 qX)pq P q e pot ) PpadGra

T a-1
1 v (T )— < S )
P Jh) = Il e - = h ) ,
2, 1] := ¢a(u) p(Z)Fp,q(oz)/o‘ <p qs v p.aS

~ W2
p(g)+(_2ﬁ) Fp,q(‘x)rp,q(_ﬂ)

5 SFT(T Py el
X — —gqx 51 qs
0 0 p »q p pq

x I ( %) Ay g dy o, (2.4)

and the constants A, Ar, B, Br, and 2 are defined by

o Ao " _p-1 s -l
Ay i=hn® e 7/5)7/ (n- qs)p,q(ﬁ) dpqs
P, (=p) Jo p

-l AT q(@) —ﬂ)
=1 (/\1 + 71}9,(,(01 _ﬁ)n ) (2.5)

Page 7 of 17
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e [ )
Ar=( = __m (I ) 4
! m(p) +¢fn;A¢DA p ), \prr)
ot MZqu(a) < > ﬁ)
) 2.6
< ) ( T4l —B) e

a- A ! g1l s\
B, =7 24 (,ﬁ)iz / (n- qs)m(ﬁ) dp,qs
b2 I, q(_lg) 0 p

_ Mol (0 —1) )
- pa n ), (2.7)
! (1 Lge—f-1"
T\ 2 (T NP5\
Gl o) ) e
\r oD plo \p ), o)
T\ uﬂ}Aa—1)<T>ﬂ)
(L 70 (2 ), 2.8
(P) (M1+Fp,q(a—ﬂ_1) p 28)
2 := ATBn - AnBT' (29)

Proof To obtain the solution, we first take a fractional (p, g)-integral of order « for (2.1).

Then we have
u(t) = Cre* ' + Cyt* 2 + I" h(t)

=Ct* 4 G2 4 )F (a)/ (t- qs)“ lh( )dpqs (2.10)
pq

Next, we take fractional p, g-difference of order g for (2.10) to get

1 s a-1 s -2
DP u(t) = _—(t—qs)‘H[c1<—) +c2(—> ]d p
pq ]9( zﬁ) Fp,q(—,B) )24 po:—l pa—l Pq

RN :
p(z)*( 2 )I}'q(a)f},,q(—ﬂ)

t x
P —B-1 X
X (t—qx)ps— <
/0 /0 P \ppt

Substituting ¢ = 7 into (2.10) and (2.11) and employing the first condition of (2.1), we have

a-1
- qs) h(#) Ay S dpgx. (2.11)

pq

A,] C1 + B’I C2 = @n [¢1, h] (212)
Taking ¢ = T into (2.10) and (2.11) and employing the second condition of (2.1), we have
ATC1 + BTC2 = @T[¢2,h]. (213)

Solving (2.12) — —(2.13), we find that

B,®r - Bro, Ard, - A,®
C1=% and CZ:%,

where @, [¢1, k], @72, h], Ay, Ar, By, Br, §2 are defined by (2.3)—(2.9), respectively.

Page 8 of 17
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Substituting the constants C;, C, into (2.10), we obtain (2.2). This completes the
proof. d

3 Existence and uniqueness result

In this section, we use Banach’s fixed point theorem to prove the existence and uniqueness
result for problem (1.1). LetC = C(I;q, R) be a Banach space of all function # with the norm
defined by

b

lulic = maX{\u(
telpq

D’ qu(

where @ € (1,2], B,y,v € (0,1], 0 < g < p <1, A1, Ay, 41, 2 € R*. Define an operator F :
C— Cby

1 t
F .= _ a—1
( M)(t) p(%)]}’q(a)‘/(; (t qs)p,q
S

Fl——u( =)’ u( —),D? u ——)|d
pa—l’u pa—l ? quu put—l ’ quu poz—l p’qs

o—-1
_Q {Br®;[$1,F.] - B, @52, Ful}

{AT¢ ¢1, ] An(p;[(t)Z:Fu]}’ (31)

where the functionals @ [¢1, F,], @7[#», F,] are defined by

" — M o agesl
e | o-ao;

s s ’ s
) F[p 1'M<p“‘1>’w’”y"’u(p"‘l> D”M(p ‘1>]d"”s

P&+ (@) Tyg(=P)

/ / hT _,3 1( x )”‘"1
(n—qx)pq 51 48
r? pa
X F|: 1,14(%),!1/}3"114(%) D;qz,t(%)]dpyqsdp,qx, (3.2)
e P P e

Z a-1
* uw r (T =
% [p2 F,) 1= o(ut) — —a—— / (_ _ qs)
PO L@ lo \p "/,
S S s , s
X Fl:p_a_l ) M(p‘ 1 ), wp}qul(pT) quu(p—_):l dp'qs
MH2

PO DL, (@) g(-B)
G o)
X — 5
o Jo “ p 4 pa
s s s , s
FI:F,M<F), 'I/P}fqu<lﬁ),Dp,qu(F)]dp,qsdp,qx, (33)

and the constants A,, Ar, B, Br, £2 are defined by (2.5)—(2.9), respectively.

Page9of 17
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Theorem 3.1 Assume that F ng x R x R x R — R is continuous, ¢ :ng X I}Z:q — [0,00)
is continuous with gy = max{p(t,s) : (t,s) € I} x I,
hold:

(H1) There exist constants £1,€3,€3 > 0 such that, for each t € I;q and u;,v; € R,i=1,2,3,

1)+ Suppose that the following conditions

|Flt, w1, t2, u3] = F[t,v1,v2,v3]| < €1luy = vi] + Lotz — va| + £3]uz — v3].
(Hy) There exist constants wy,wy > 0 such that, for each u,v € C,
|$1(u) -1 (V)| < @rllu—vie and  |¢s(u) - g2(v)] < allu vl

(Hg) X = (,C +€3)@ +0)er +a)2Tn <1,

where
L=t +¢ G (34)
=L+ 2¢0Fp’q(y+1)’ B
(L)
O=—L O+ 0,7, 35
Fp,q(a+1)+ 147 +0Ush 1y, (3.5)

Ty i[mﬂ(Z)H + |AT|(Z)H], (3.6)
21 P\ »

T, = i[|13,,|(z>a_1 + |A,,|<Z>H], (3.7)
ELaV »

An% A a—p
O =2 * , (3.8)
Fogla+1)  Tygla—-p+1)
M) ha(5)*7F
Oyie v’ " (3.9)

Dygle+1) T le-B+1)
Then problem (1.1) has a unique solution in ng.

Proof Foreachte ng and u,v € C, we have

Y Wyl < %o ‘ y-1
’ pa% p,qv} = ( (t - qs)p,
q y) Jo

dy.S.
p(g) Fp, P

()(55)

T -1
@ 7 (T Y=

< (V)—0|u—v|/ (— —qs) dp gs.
p 2 Fp,q(y) 0 p y2U

‘Po(%)y
=2 -y
Iy +1)

Denote that

Hlu —v|(2) := |F[t,u(t), W), u(t), D, u(t)] - F[£,v(2), ¥ v(), Dy, v(8)]].

Page 10 of 17
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Then we obtain
|¢;[¢1;Fu] - ¢;[¢1;Fv”

< |1 (w) ¢1(V)‘ /(77 qs), 7‘”” V|( )dpqs

+ b /W/W(n—qx)ﬁl<—x —qS>ﬂ
PO, (@) y(-p) Jo Jo "\ pt g

7-[|u—v|< )dpqsdpqx

<willu—vlle + (1lu—v| + b| W2 u— W) v| +45|D)_u—D} v])

Arn® don P
+
g la+1) T(a-pB+1)

Tyy
__r
[}m](y +1)

< [o1 + (L +£3)O1 ]l - vlc.

<willu—-vlc+ <[£1 + Ly ]|u -V + £3|D;,qu —D;,qV|>(’)1

Similarly,

| @5 (¢, Ful = D512, F| < [ + (L +£3)Ox] e = vllc.
Next, we have

|[(Fu)(®) - (Fv)(@)]

1 v (T
< — Hlu— dp,
- p(Z) IL,q(a) A (p qs)pq |u V|< ) pqs

SN

T a—1
|9| {IBr|| @} (1, Ful - @) [d1, F)| + 1B, || @762, ] — @7 (ho, Fo|}
T -2
+ |_Q| {|A7||®[¢1,F] - D) [¢1, Fl| + |A,||@F o, Ful — D5, F|}
< |:(£+ZS)(%)Q N [Cl)l + (£+Z3)01] {|BT|<Z)01—1 N |AT|<Z>0(—2}
Tq(a+1) 2 p p
a1 -2
. [a)2+(£+€3)(92]{|Bn|(Z) +|An|<z> }:|||M_V”C
[$2] p p
=X|u-vlc. (3.10)

Taking fractional (p, q)-difference of order v for (3.1), we get

(D;ﬂ]-' u) ()

a1
PO L@ Tyg(=) Jo Jo

a-1
v-1 x
pq p—v—l
pq
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s s s ) s
) F[p“‘l ’M(p‘“ ) w”y"’u(p“‘l )’D’”"’M <p"‘1 ﬂ @pas dpq

1
B ,Qp(_zu) Fp'q(—v)

t s a-1
x/(t—qs);“;_l( —v—l) dpgs
0 p
1

{AT¢;[¢1’FM] - An¢;[¢2:Fu]}

{BT(D:;[(bl:Fu] - Bn¢;[¢2:Fu]}

" _Qp(_zv) Fp,q(—v)

t s a-2
X / (t — qs);“;_l (ﬁ) dp,qs. (3.11)
0 p

Similarly, we have

(D}, Fu)(t) - (D} ,Fv)®)| < Xllu-vlc. (3.12)
From (3.10) and (3.12), we obtain
|Fu—-Fviec < Xlu-vlc.

By (H3) we can conclude that F is a contraction. Therefore, by using Banach’s fixed point

theorem, F has a fixed point which is a unique solution of problem (1.1) on I; 7 d

4 Existence of at least one solution
In this section, we present the existence of a solution to (1.1) by using Schauder’s fixed

point theorem.

Lemma 4.1 ([57]) (Arzeld—Ascoli theorem) A collection of functions in Cla,b] with the
sup norm is relatively compact if and only if it is uniformly bounded and equicontinuous

on [a,b].
Lemma 4.2 ([57]) Ifa set is closed and relatively compact, then it is compact.

Lemma 4.3 ([58] (Schauder’s fixed point theorem)) Let (D, d) be a complete metric space,
U be a closed convex subset of D, and T : D — D be the map such that the set Tu:u € U is

relatively compact in D. Then the operator T has at least one fixed point u* € U: Tu* = u*.

Theorem 4.1 Suppose that (Hy) and (Hs3) hold. Then problem (1.1) has at least one solu-
tion on I; o

Proof We organize the proof into three steps as follows.
Step 1. Verify that F maps bounded sets into bounded setsin B, = {u € C : |lu||¢c < L}. Set
max, .t |F(£,0,0,0)| = M, sup,cc |¢1(u)| = N1, sup,.c |¢2(4)| = Nz and choose a constant

_ MO+ NiTr + No T,y
= 1-(L+ )0

(4.1)
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Denote that |S(t, u,0)| = |F[¢, u(t), Wp}fqu(t),D;’qu(t)] — F[t,0,0,0]| + |F[¢,0,0,0]|. For each
te I;q and u € B;, we obtain

|1, Ful|
A2
PONE (@) Ty g(=P)

a-1
ﬁ I _ﬂ 1
/ / (1 - gx) < qs) |S(s, 14, 0)| dp,gs dp, g

pq

A /’7 X
t— | h—aqs),7 |S(s,u,0)|d S+
p(z) Fp,q(a) 0 P4

<N 6+ L G €3] Dy u| + M | Oy
< 1+<[1+ 2¢0Fp,q(y+1)i||ul+ 3|1D, 1| + )

<N; + MO + (L +£3)Olulic

<N +[M+(L+€5)L]0;. (4.2)
Similarly,
| @5 [¢2, Ful| < Na + [M + (L + £5)L] O, (4.3)

From (4.2)—(4.3), we find that

1 1% T L s
F < —_ —_— S ,u,0 — )d
I( ”)(t”—p(“z)];,,q(a)fo (p qs),,,,,‘ (tu )|(p°“1> rad

T a-1
|9| {IB7]| @} [¢1, Ful| + By || @512, F|}
T a2

+ |_Q| {|A7]|@} (91, Fu]| + 1A, || @5 (2, Fu |}

<O[L(L+3) + M)+ N1 1+ Na Y,

<L. (4.4)
In addition, we obtain
(D Fu) ()] < L. (4.5)

Therefore, || Full¢ < L, which implies that F is uniformly bounded.

Step 11. The operator F is continuous on B; because of the continuity of F.

Step I11. We examine that F is equicontinuous on B;. For any t;, £, € Il{ a with # < £, we
have

I(fu)(tz)—(fu)(tl)l_r( il
12
lt5~" — 17 i )
o) \Bri®jl6uE + B, @7lgn Fl}
|t!¥—2_ta—2|

T{'AT|¢;[¢1!FM] +|Ay @7 (¢, Ful} (4.6)
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and

| (D;’q]-'u)(tg) - (D;'q]-"u)(tl)]
IF]l

tﬂt*l) _tﬂt*l)
_I},q(a—v+1)|2 1 |
Tpq(@) 1 1
—————\IBr|®;[¢1, Fu] + B, | P71, Bl |17 — 17"
121 (o - oL nl 1 e =
Ty gla - 1)

m{mm [p1, Ful + |A, | @5 [, FuI} 52 = 65772 (47)
bq

Since the right-hand side of (4.6) and (4.7) tends to be zero when |t, — t;| — 0, F is rela-
tively compact on B;.

This implies that F(By) is an equicontinuous set. From Steps I to III together with the
Arzeld—Ascoli theorem, we see that F : C — C is completely continuous. By Schauder’s

fixed point theorem, we can conclude that problem (1.1) has at least one solution. d

5 Anexample

Consider the following fractional (p, g)-integrodifference equation:

1

b (20003 + £3)(1 + |u(t)])

M(t) _ [e—Zt(u2 + 2|M|) +e—(2n+c052nt)‘l[/ t)’

ETSYHTS
G g

1u
72
10(3)"

(%)1«1

+eé

—(2+sin? 7t) |

], teI“:{ :keNo}U{O}

w\N 318
M\'—'

with the nonlocal Robin boundary condition

1 /1215 3 1215\ < Ciluly )
—u| === +200eD? , u => i l)l, ti=10 (22)
20e \ 256 33\256 ) & 1+ u(t)] (2t

D)l G
M(ls)—zom, t,-lO(%)i+l,

1
D

100w u(15) + —
107

IR M

1
2

and

where ¢(t,s) = t 20)3 and C;, D; are given constants with = 500 <3G <

Zz ODl — 2000

()
Lettlnga—g,ﬁ % :%,v:%,p:%,q:l T=10,7 :10%:%,)\1 206 , Ay =

2006, 43 = 1007, 12 = s 6100 = 7% TG 02 = X7 R and FLb(o), v (o)
o [e—2t(u2 + 2|u|) + e (27 +cos? ’”)III/%Z,%u(tH +e ¢ (2+sin2 7t) D

1
— 1000 1000 =

i=0 1+|u(t;)]
_ 1
Dy, ul)] = (200063 +3) (L+ult u(®)],

we find that

wu\: (51}

l
’2

|A,| =574.6570,  |Ar|=-23.8344,  |B,|=774.8145,  |Br|=51.6518,

o =0.000125, and [§2|=-48,149.3072.

Page 14 of 17
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Forall £ € I}°, and u,v € R, we have
g:

ST

|F[t, u, Wp}fqu, D;,qu] - F[t, v, lI/p’fqv, D;,qv] |

%

1
_ —— D
=l 20005 e

1
Y _ Y _ v
= 2000e2 * 2000e2ﬂ+2|%vq” VoVl + u~Djvl.

Thus, (H;) holds with £; = 6.767 x 107>, £, = 1.264 x 1077, and £5 = 9.158 x 107°. For all
u,vecC,

|1 (10) — 1 ()] < ﬁllu—vﬂc,

|a11) - o(v)| < Feoouu— Ve

So, (H3) holds with w; = 0.003142 and w, = 0.001571. Since

L =0.0000677, 07 =1415.89969, 0, =2770.8547,
T =0.005291, 7,=0.003183, and © =51,3459,

(H3) holds with
X ~0.00397 < 1.

Hence, by Theorem 3.1 this problem has a unique solution. Moreover, by Theorem 4.1
this problem has at least one solution.
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