
Zhao and Du Advances in Difference Equations        (2020) 2020:341 
https://doi.org/10.1186/s13662-020-02804-9

R E S E A R C H Open Access

Stability and bifurcation analysis of an
amensalism system with Allee effect
Ming Zhao1* and Yunfei Du2

*Correspondence:
mingzhao@cugb.edu.cn
1School of Science, China University
of Geosciences (Beijing), 100083
Beijing, China
Full list of author information is
available at the end of the article

Abstract
In this work, we propose and study a new amensalism system with Allee effect on the
first species. First, we investigate the existence and stability of all possible coexistence
equilibrium points and boundary equilibrium points of this system. Then, applying
the Sotomayor theorem, we prove that there exists a saddle-node bifurcation under
some suitable parameter conditions. Finally, we provide a specific example with
corresponding numerical simulations to further demonstrate our theoretical results.
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1 Introduction
The interaction between two or more species has been a central problem in ecology and
biology since the famous Lotka–Volterra model was proposed. The interaction between
different species generates a complicated dynamics of biological species and exhibits the
complexity and diversity. Amensalism, a typical type of interaction between the species,
has been intensively considered in the last decades. Amensalism describes a basic bio-
logical interaction in nature, where one species inflicts harm on another not affected by
the former, which means that it does not receive any costs or benefits to itself. The first
pioneer work for the investigations of amensalism model is due to Sun [1], who, in 2003,
proposed the following two-species amensalism model:

⎧
⎨

⎩

dx
dt = r1x( k1–x–Ty

k1
),

dy
dt = r2y( k2–y

k2
),

(1)

where x = x(t) and y = y(t) represent the population densities of two species at time t, re-
spectively, and r1, r2, k1, k2, and T are positive real numbers. In [1] the author investigated
the stability properties of the equilibrium points of this system.

By rescaling we can see that model (1) can be rewritten as
⎧
⎨

⎩

dx
dt = x(r1 – a11x – a12y),
dy
dt = y(r2 – a22y),

(2)

where the parameters r1, r2, a11, a12, and a22 are positive constants.
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Since the first amensalism model was presented, there are numerous relevant works
that focus on the complicated dynamics of amensalism models from different aspects [2–
12]. For example, in [6] the author discussed the dynamical properties of a two-species
amensalism system with nonmonotonic function response. Guan et al. [11] considered
a two-species amensalism model with Beddington–DeAngelis functional response. The
two-species amensalism model with Michaelis–Menten-type harvesting and a cover for
the first species was proposed in [9], where the stability and bifurcation of this system were
investigated.

In the nature world the dynamics of population is inevitably affected by difficulties in
finding mate, predator avoidance, the evading natural enemies, and resource defense [13–
16], where the Allee effect on species occurs. The Allee effect, as a significant phenomenon
in population dynamics, was intensively investigated in the last decades. It was found that
the Allee effect has a very important impact on the biological system and exhibits com-
plex dynamics. Generally speaking, a population is said to have the Allee effect if the per
capita population growth rate and population density have a positive correlation in a small
population [17, 18]. Moreover, the Allee effect has two types, weak and strong[19, 20].
The weak Allee effect indicates that per capita growth rate is smaller at low species den-
sity, but not negative. The strong Allee effect means that the per capita growth rate is
negative at low species density. Nowadays, a lot of efforts have been made to investigate
the influence of the Allee effect on the dynamical behavior of biological systems [12, 21–
26]. Especially, according to system (2), Wei et al. [12] recently proposed an amensalism
model with weak Allee effect for the second species and studied its stability and bifurca-
tion.

Inspired by the previous works, we naturally want to know: for an amensalism system,
what about its dynamical properties when an Allee effect is introduced to the first species?
Hence, based on system (2), we consider the following amensalism system with a weak
Allee effect on the first species:

⎧
⎨

⎩

dx
dt = x( r1x

m+x – a11x – a12y),
dy
dt = y(r2 – a22y),

(3)

where all parameters r1, r2, a11, a12, a22, and m are positive constants, and the term K(x) =
x

m+x represents a weak Allee effect, where m describes the intense of Allee effect on the
first species; this function satisfies the following properties [24]:

(i) limx→0 K(x) = 0, that is, there is no reproduction without partners;
(ii) K ′(x) > 0 for all x ∈ (0,∞), that is, the Allee effect decreases as population density

increases;
(iii) limx→∞ K(x) = 1, which means that the Allee effect disappears at high population

densities.
Setting

t = r2t, x =
a11

r2
x, y =

a22

r2
y
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and dropping the bars, we transform system (3) into

⎧
⎨

⎩

dx
dt = x( αx

γ +x – x – βy),
dy
dt = y(1 – y),

(4)

where α = r1
r2

, β = a12
a22

, and γ = ma11
r2

.
Our main purpose in this paper is investigating the local stability property of the possi-

ble equilibrium points and the saddle-node bifurcation of system (4). The rest of this paper
is arranged as follows. In Sect. 2, we present the local dynamical behaviors, including the
distribution of possible equilibrium points of system (4) and their stability. In Sect. 3, we
prove the existence of saddle-node bifurcation when the coefficient α is chosen as a bifur-
cation parameter. In Sect. 4, we give an example with specific parameter values and the
corresponding numerical simulations to further illustrate the validity of the main results.
Finally, we end this paper with a brief conclusion in Sect. 5.

2 Existence and stability of equilibrium points
2.1 Existence of equilibrium points
The equilibrium points of system (4) satisfy the following equations:

⎧
⎨

⎩

x( αx
γ +x – x – βy) = 0,

y(1 – y) = 0.
(5)

By a simple computation we derive that system (4) has boundary equilibrium points
P0(0, 0) and P1(0, 1). When α > γ , there exists another boundary equilibrium point P2(α –
γ , 0). Moreover, if x �= 0 and y �= 0, then there exists a coexistence (positive) equilibrium
point P3(x3, 1), where x3 is the root of the following equation:

f (x) = x2 + (β + γ – α)x + βγ = 0.

Set the discriminant of this equation,

�(α) = (β + γ – α)2 – 4βγ = α2 – 2(β + γ )α + (β – γ )2, (6)

and denote the roots of �(α) = 0 by α1 and α2. Then

α1 = β + γ – 2
√

βγ , α2 = β + γ + 2
√

βγ . (7)

Because the parameters β and γ are positive, using the mean value theorem, we can get
that α2 > α1 ≥ 0.

Considering all possible coexistence and boundary equilibria, we obtain the following
results.

Theorem 2.1 For system (4), there always are the boundary equilibrium points P0(0, 0)
and P1(0, 1). Furthermore, we have:

(1) if α > γ , then system (4) has another boundary equilibrium point P2(α – γ , 0);
(2) For the possible coexistence equilibrium points,
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(i) if α < α2, then system (4) has no coexistence equilibrium point;
(ii) if α = α2, then there is a unique coexistence equilibrium point P31(x31, 1), where

x31 =
√

βγ ;
(iii) if α > α2, then there are two coexistence equilibrium points P32(x32, 1) and

P33(x33, 1), where x32,33 = α–β–γ∓√
�

2 .

Proof It is obvious that (1) holds. If α1 < α < α2, then �(α) < 0, which implies that f (x) has
no real roots; if α ≤ α1, then f (0) = βγ > 0, and the symmetry axis of f (x) is x = α–β–γ

2 ≤
α1–β–γ

2 = –
√

βγ < 0, so there is no positive real solution for f (x) = 0. Thus we complete the
proof of (2)(i).

When α = α2, then �(α) = 0, which means that f (x) = 0 has a unique positive solution
x31 =

√
βγ . Hence the proof of (2)(ii) is completed.

When α > α2, then �(α) > 0. Combing this with f (0) = βγ > 0 and the symmetry axis x =
α–β–γ

2 ≥ α2–β–γ

2 =
√

βγ > 0, we can get that f (x) = 0 has two positive roots x32 = α–β–γ –
√

�

2

and x33 = α–β–γ +
√

�

2 . Thus the proof of (2)(iii) is finished, and we complete the proof of
Theorem 2.1. �

2.2 Stability of the equilibrium points
The Jacobian matrix of system (4) evaluated at any equilibrium point is

J(x, y) =

(
H(x, y) –βx

0 1 – 2y

)

, (8)

where

H(x, y) =
2αγ x + αx2

(γ + x)2 – 2x – βy.

Consider the stability of boundary equilibria P0, P1, and P2, we have the following results.

Theorem 2.2 For system (4), the following statements are true.
(1) For the equilibrium point P0:

(i) If α �= γ , then P0 is a saddle node. That is, Sε(P0) is divided into two parts by two
separatrices that tend to P0 along the upside and the underneath of P0, where
Sε(P0) is a neighborhood of P0 with sufficient small radius ε. One part consists of
two hyperbolic sectors, and the other part is a parabolic sector. Moreover, if α > γ

(or α < γ ), then the parabolic sector is on the right (or left) half-plane.
(ii) If α = γ , then P0 is a nonhyperbolic saddle.

(2) The equilibrium point P1 is a hyperbolic stable node. Moreover, P1 is globally
asymptotically stable for α < γ .

(3) If α > γ , then the equilibrium point P2 is a hyperbolic saddle.

Proof (1) The Jacobian matrix of system (4) evaluated at the equilibrium point P0 is given
by

J(P0) =

(
0 0
0 1

)

, (9)
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and the two eigenvalues of J(P0) are λ1(P0) = 0 and λ2(P0) = 1 > 0. Obviously, the equilib-
rium P0 is nonhyperbolic, so it is hard to directly judge its type from the eigenvalues. We
further discuss its stability properties by applying Theorem 7.1 in Chap. 2 in [27].

To change system (4) into a standard form, we expand system (4) in power series up to
the fourth order around the origin:

⎧
⎨

⎩

dx
dt = ( α

γ
– 1)x2 – βxy – α

γ 2 x3 + α

γ 3 x4 + Q0(x) = P(x, y),
dy
dt = y – y2 = y + Q(x, y),

(10)

where Q0(x) represents a power series with terms xi (i ≥ 5).
Combining the implicit function theorem with the second equation of (10), we get that

there is a unique function y = ϕ(x) = 0 such that ϕ(x) + Q(x,ϕ(x)) = 0 and ϕ(0) = ϕ′(0) = 0.
Then substituting y = ϕ(x) = 0 into the first equation of (10), we get that

dx
dt

=
(

α

γ
– 1

)

x2 –
α

γ 2 x3 +
α

γ 3 x4 + Q0(x). (11)

When α �= γ , we obtain that the coefficient at x2 is α
γ

– 1 �= 0. So, based on Theorem 7.1 in
Chap. 2 in [27], the equilibrium point P0 is a saddle node. This means that a neighborhood
Sε(P0) (ε is a sufficiently small radius) is divided into two parts by two separatrices that tend
to P0 along the upside and the underneath of P0. One part is a parabolic sector, and the
other part consists of two hyperbolic sectors. Furthermore, if α > γ (or α < γ ), then the
parabolic sector is on the right (or left) half-plane.

When α = γ , (11) becomes

dx
dt

= –
1
γ

x3 +
1
γ 2 x4 + Q0(x). (12)

Applying the notations of Theorem 7.1 in Chap. 2 in [27], we have m = 3 and am = 1
γ

< 0,
so the equilibrium point P0 is a nonhyperbolic saddle.

(2) For the equilibrium point P1, the Jacobian matrix is

J(P1) =

(
–β 0
0 –1

)

. (13)

The two eigenvalues of this matrix J(P1) are λ1(P1) = –β < 0 and λ2(P1) = –1 < 0, and thus
P1 is a hyperbolic stable node.

When α < γ , there are two equilibrium points P0, which is unstable, and P1, which is lo-
cally asymptotically stable. To ensure that P1 is globally asymptotically stable, we consider
the Lyapunov function V (x, y) = x. Then

dV
dt

= x
(

αx
γ + x

– x – βy
)

=
α – γ – x

γ + x
x2 – βxy.

Obviously, if α < γ , then dV
dt < 0 for all x > 0, y > 0. So P1 is globally asymptotically stable

for α < γ .
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(3) The Jacobian matrix of system (4) at equilibrium point P2 is

J(P2) =

(
– α2–2αγ +γ 2

α
–β(α – γ )

0 1

)

. (14)

When α > γ , it is obvious that J(P1) has two characteristic roots λ1(P1) = – α2–2αγ +γ 2

α
< 0

and λ2(P1) = 1 > 0, so the equilibrium point P2 is a hyperbolic saddle.
This ends the proof of Theorem 2.2. �

Discussing the stability of the coexistence equilibria P31, P32, and P33, we have the fol-
lowing results.

Theorem 2.3 For system (4), we have the following statements.
(1) If α = α2, then the equilibrium point P31 is a saddle node, that is, Sε(P31) is divided

into two parts by two separatrices that tend to P31 along the upside and the
underneath of P31, where Sε(P31) is a neighborhood of P31 with sufficient small
radius ε. One part consists of two hyperbolic sectors, and the other part is a parabolic
sector. Moreover, the parabolic sector is on the right half-plane.

(2) If α > α2, then the equilibrium point P32 is a hyperbolic saddle, and the equilibrium
point P33 is a hyperbolic stable node.

Proof (1) The Jacobian matrix of system (4) at the equilibrium point P31 is given by

J(P31) =

(
H(x31, 1) –β

√
βγ

0 –1

)

. (15)

Note that P31(
√

βγ , 1) satisfies the equation αx31
γ +x31

= x31 + β . By some calculations we
can derive that H(x31, 1) = α2γ x31

(γ +x31)2 – x31 = 0. Then two characteristic roots of J(P31) are
λ1(P31) = 0 and λ2(P31) = –1 < 0, so the equilibrium point P31 is nonhyperbolic, and its
stability cannot be given directly from the eigenvalues. We next analyze its stability be-
havior by using Theorem 7.1 in Chap. 2 in [27].

Letting X = x – x31 and Y = y – 1, we translate the equilibrium point P31 to the origin
and then expand the corresponding system in power series up to the third order around
the origin, which makes system (4) to be the following form:

⎧
⎨

⎩

dX
dt = c0 + c1X – βx31Y + c2X2 – βXY + c3X3 + Q1(X),
dY
dt = –Y – Y 2,

(16)

where

c0 =
α2γ

2

γ + x31
+ α2(x31 – γ ) – βx31 – x2

31 = 0,

c1 =
1

γ + x31

(
βγ – x2

31
)

= 0, c2 =
α2γ

2

(γ + x31)3 – 1, c3 = –
α2γ

2

(γ + x31)4 ,

and Q1(X) represents a power series with terms Xi (i ≥ 4).
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To transform the Jacobian matrix into a standard form, we use the invertible translation

(
u
v

)

=

(
1 –βx31

0 1

)(
X
Y

)

. (17)

Then system (16) becomes

⎧
⎪⎪⎨

⎪⎪⎩

du
dt = d20u2 + d11uv + d02v2 + d30u3 + d21u2v + d12uv2 + d03v3

+ Q2(u, v),
dv
dt = –v – v2,

(18)

where

d20 = –1 +
α2γ

2

(γ + x31)3 , d11 = –β

(

1 + 2x31 –
2α2γ

2x31

(γ + x31)3

)

,

d02 = βx31

(

1 – β – βx31 +
α2βγ 2x31

(γ + x31)3

)

, d30 = –
α2γ

2

(γ + x31)4 ,

d21 = –
3α2βx31γ

2

(γ + x31)4 , d12 = –
3α2γ

2β2x2
31

(γ + x31)4 , d03 = –
α2γ

2β3x3
31

(γ + x31)4 ,

and Q2(u, v) is a power series with terms uivj (i + j ≥ 4).
By introducing a new time variable T = –t we get

⎧
⎪⎪⎨

⎪⎪⎩

du
dT = –d20u2 – d11uv – d02v2 – d30u3 – d21u2v – d12uv2 – d03v3

– Q2(u, v) = P(u, v),
dv
dT = v + v2 = v + Q(u, v).

(19)

Based on the implicit function theorem, from dv
dT = 0 we can deduce a unique function

v = φ(u) = 0 satisfying φ(0) = φ′(0) = 0 and φ(u) + Q(u,φ(u)) = 0. Then substituting it into
the first equation of (19), we have that

du
dT

= –d20u2 – d30u3 + Q3(u),

where Q3(u) is a power series with terms ui (i ≥ 4).
Thus we can derive that the coefficient at the term u2 is

–d20 = –
α2γ

2

(γ + x31)3 + 1 = –
γ 2

(γ + x31)3

(
β

x31
–

2x31

γ
–

x2
31

γ 2

)

> 0.

Then, according to Theorem 7.1 in Chap. 2 in [27], we obtain that the equilibrium point P31

is a saddle node. This means that a neighborhood Sε(P31) (ε is a sufficiently small radius)
of P31 is divided into two parts by two separatrices that tend to P31 along the upside and
the underneath of P31. One part consists of two hyperbolic sectors, and the other part is
a parabolic sector. Moreover, the parabolic sector is on the right half-plane because the
coefficient at the term u2 is greater than zero.
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(2) If α > α2, then we have f (
√

βγ ) = βγ + (β + γ – α)
√

βγ + βγ < 0. Hence x32 <
√

βγ

and x33 >
√

βγ .
The Jacobian matrix of system (4) evaluated at the equilibrium P32 is calculated as

J(P32) =

(
H(x32, 1) –β

√
βγ

0 –1

)

. (20)

Then from αx32
γ +x32

= x32 + β it follows that

H(x32, 1) =
2αγ x32 + αx2

32
(γ + x32)2 – 2x32 – β =

βγ – x2
32

γ + x32
> 0.

Therefore we get that two characteristic roots of the matrix J(P32) are λ1(P32) = βγ –x2
32

γ +x32
> 0

and λ2(P32) = –1 < 0, implying that P32 is a hyperbolic saddle.
Similarly to the proof of the former P32, we can deduce that the two eigenvalues of J(P33)

are λ1(P33) = βγ –x2
33

γ +x33
< 0 and λ2(P33) = –1 < 0, which means that P33 is a hyperbolic stable

node.
This completes the proof of Theorem 2.3. �

3 Saddle-node bifurcation
In Sect. 2.1, we have derived the parameter conditions for the existence of the coexis-
tence equilibrium point P31. We next show that system (4) experiences a saddle-node
bifurcation at equilibrium P31 as the parameter α passes through the bifurcation value
α = αSN = β + γ + 2

√
βγ by applying the Sotomayor theorem [28]. For saddle-node bifur-

cation, we formulate the following results.

Theorem 3.1 System (4) undergoes a saddle-node bifurcation at the equilibrium point
P31 if α = αSN = β + γ + 2

√
βγ . Moreover, two equilibrium points bifurcate from P31 for

α > αSN , coalesce as the equilibrium point P31 for α = αSN , and disappear for α < αSN .

Proof Now we will prove the transversality condition for the occurrence of a saddle-node
bifurcation at α = αSN by utilizing the Sotomayor theorem. From Sect. 2.1 we see that the
two eigenvalues of J(P31) are λ1(P31) = 0 and λ2(P31) = –1 < 0. Denote by V and W the
eigenvectors corresponding to the eigenvalue λ1(P31) for the matrices J(P31) and J(P31)T ,
respectively. Some computations yield

V =

(
v1

v2

)

=

(
1
0

)

; W =

(
w1

w2

)

=

(
1

–β
√

βγ

)

.

Furthermore, we obtain

Fα(P31;αSN ) =

(
x2

γ +x
0

)

(P31;αSN )

=

(
x2

31
γ +x31

0

)

(21)
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and

D2F(P31;αSN )(V , V ) =

⎛

⎝

∂2F1
∂x2 v2

1 + 2 ∂2F1
∂x ∂y v1v2 + ∂2F1

∂y2 v2
2

∂2F2
∂x2 v2

1 + 2 ∂2F2
∂x ∂y v1v2 + ∂2F2

∂y2 v2
2

⎞

⎠

(P31;αSN )

=

(
2αSN γ 2

(γ +x31)3 – 2
0

)

. (22)

Obviously, the vectors V and W satisfy

W T Fα(P31;αSN ) =
x2

31
γ + x31

�= 0

and

W T[
D2F(P31;αSN )(V , V )

]
=

2αSNγ 2

(γ + x31)3 – 2 = –
2
√

βγ

γ +
√

βγ
�= 0.

Hence, by the Sotomayor theorem, when α = αSN , system (4) undergoes a saddle-node
bifurcation at nonhyperbolic critical point P31. The number of positive equilibrium points
of system (4) changes from zero to two as α passes from the left of α = αSN to the right.
More concretely, there are no equilibrium points when α < αSN , there is one equilibrium
point P31 when α = αSN , and there are two equilibrium points P32 and P33 when α > αSN .
Thus the proof of Theorem 3.1 is completed. �

4 Numerical simulations
In this section, by numerical simulations we give some phase portraits of the amensalism
model (4) to further illustrate the previous theoretical analysis. Without loss of generality,
we consider the following example.

Example 4.1 Consider the system

⎧
⎨

⎩

dx
dt = x( αx

0.2+x – x – 0.8y),
dy
dt = y(1 – y).

(23)

In system (4), we give specific parameter values β = 0.8 and γ = 0.2. Then we get system
(23). By some calculations we have α1 = β + γ – 2

√
βγ = 0.2 and α2 = β + γ + 2

√
βγ = 1.8.

According to Theorems 2.1 and 2.2, for system (4), there exist two boundary equilibrium
points P0(0, 0) and P1(0, 1) for all positive parameters; P0(0, 0) is a saddle node, and P1(0, 1)
is a stable node. Next, we consider the following four cases by choosing various parameters
α.

Case 1. Fix α = 0.12. Then for system (23), there is no other equilibrium point, as
shown in Fig. 1(a). Furthermore, we choose the initial condition (x(0), y(0)) = (1, 0.6).
From Fig. 3(a) we can see that as t increases, the trajectories tend to P1, which is a sta-
ble node.
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Figure 1 Phase portraits of system (4) for (a) α = 0.12, β = 0.8, and γ = 0.2; (b) α = 1.2, β = 0.8, and γ = 0.2;
(c) α = 1.8, β = 0.8, and γ = 0.2; (d) α = 2.4, β = 0.8, and γ = 0.2

Case 2. Fix α = 1.2. Then for system (23), there is a boundary equilibrium point
P2 = (1, 0) that is a saddle depicted in Fig. 1(b). Furthermore, we take the initial value
(x(0), y(0)) = (0.3, 0.2), and from Fig. 3(b) it follows that the orbits converge to the stable
node P1 as t increases.

Case 3. Fix α = 1.8. Then system (23) has one boundary equilibrium point P2 = (1.6, 0),
which is a saddle, and one coexistence equilibrium point P31 = (0.4, 1). From Theo-
rem 2.3(1) we know that P31 is a saddle node, and the above dynamical behaviors are
shown in Fig. 1(c). From Theorem 3.1 we have that system (4) undergoes a saddle-node
bifurcation at the equilibrium P31 for α = αSN = 1.8; the corresponding illustrative bi-
furcation diagram is depicted in Fig. 2. Moreover, we take the initial value (x(0), y(0)) =
(1, 0.6), it follows from Fig. 3(c) that the trajectories approach the saddle node P31 as t
increases.

Case 4. Fix α = 2.4. Then system (23) has one boundary equilibrium point P2 = (2.2, 0),
which is a saddle, and two positive equilibrium points P32 ≈ (0.1255, 1) and P33 ≈
(1.2745, 1). According to Theorem 2.3(2), we have that P32 is a saddle, P33 is a stable
node, as displayed in Fig. 1(d). Moreover, we choose the initial value (x(0), y(0)) = (0.3, 0.2).
From Fig. 3(d) we can observe that the orbits tend to the stable node P33 as t in-
creases.

Figs. 3(a)–(d) display the trajectories of system (4) corresponding to Figs. 1(a)–(d) with
the different initial values.
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Figure 2 Saddle-node bifurcation (which is labeled as “SN”) diagram at the equilibrium point P31; the blue
dotted curve represents the unstable equilibrium point, and the red solid curve represents the stable
equilibrium point. α = 1.8 represents for the saddle-node bifurcation value

Figure 3 (a)–(d) The trajectories of the two species of system (4) corresponding to Figs. 1(a)–(d) with the
initial conditions (x(0), y(0)) = (1, 0.6), (0.3, 0.2), (1, 0.6), and (0.3, 0.2), respectively

5 Conclusions
In this paper, we proposed a new amensalism system with Allee effect on the first species
and studied the stability and bifurcation of this model. We discussed the distribution and
stability of all boundary equilibrium points and the coexistence equilibrium points. The
dynamical properties of the amensalism model become complex when the amensalism
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system subjects to the Allee effect. By comparing with system (1), we can see the system
(4) possesses some new dynamical phenomena as follows.

(i) There exist at most five equilibrium points for system (4), including two distinct
interior points, whereas for system (1), there are at most four equilibrium points,
including one interior point.

(ii) As the number of equilibrium points increases, the dynamical properties of the
system (4) become more complicated; for example, system (4) undergoes a
saddle-node bifurcation at equilibrium point P31.

(iii) The stability of coexistence equilibrium points is more complex. In [1] the
coexistence equilibrium point (if it exists) of system (1) is globally stable, whereas
for system (4), the equilibrium point P31 is a saddle node when α = α2.
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