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Abstract
Time delay plays a crucial role in p53 dynamic. However, the theoretical
understanding is still lower. Thus we construct a micro-differential equation model
and introduce the time delay τ based on the regulation process. Firstly, we linearize
the system and analyze the associated characteristic equation. We can conclude that
there exists the delay threshold τ0 such that when the delay τ is less than τ0, the
system is asymptotically stable and otherwise stable oscillations occur. Secondly, we
use the normal formmethod and the center manifold theorem to derive the direction
and stability of the Hopf bifurcation. Finally, by numerical simulations we verify our
theoretical results. We also find that the effect of noise on the amplitude is more
severe than that of the period, which well agrees with the experimental results.
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1 Introduction
The tumor suppressor p53 is located in the center of the cellular signaling networks and
stress-activated signals networks [1]. In unstressed cells, wild-type p53 remains at low lev-
els [2]. Upon DNA damage, p53 is stabilized and activated [3, 4]. p53 can induce different
cellular outcomes such as cell cycle arrest and apoptosis [5–12]. It is very crucial to study
the mechanism of p53 network dynamics [13].

Recently, it was experimentally shown that the concentration of p53 undergoes pulses
upon ionization radiation in MCF7 cells [14]. Much work has explored the feedback mech-
anism of p53 oscillations [6, 7, 15, 16]. It has been suggested that the fate of cells between
survival and death can be determined by counting the number of p53 pulses: cells can sur-
vive on the transient p53 pulses, but apoptosis under the action of continuous p53 pulse
[7–10]. This may represent a reliable and flexible mechanism. For example, it can prevent
premature apoptosis caused by drastic unexpected fluctuations in p53 levels [17].

The p53-Mdm2 negative feedback loop is recognized as the basis of p53 oscillation
[6, 18], and the research has shown that the ATM (ataxia telangiectasia mutated)-p53-
WIP1(wild-type p53-induced phosphatase1) negative feedback loop (NFL) is required for
the generation of uniform p53 pulses [16]. Therefore it is important to further clarify how
p53 pulses are regulated.
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Figure 1 Schematic depiction of the model. p53 promotes the
transcription of MDM2, which in turn inhibits p53 through
ubiquitination, forming a negative feedback loop of p53-MDM2;
Activated ATM promotes the stability and activation of p53,
which in turn inactivates ATM, forming a negative feedback loop of p53-ATM. The promotion and inhibition of
state transition are separately denoted by arrow-headed solid lines and bar-headed lines, and τ indicates the
delay of p53 on promoting Mdm2 or inhibiting ATM

Mathematical models are generally used to study dynamic processes [19], including,
from the cell process point of view, a series of regulatory behaviors in biological cells,
such as transcriptional translation, transmembrane transport, and so on [20–23]. All they
possess a certain time delay [6, 10, 24, 25]. We construct p53-MDM2-ATM micro net-
work with time delays to fit the biological facts. Based on the real networks modeling and
theoretical research, we analyze the influence of time delay on the oscillation behavior of
the simplified model and verify the correctness of the theoretical analysis by numerical
simulations.

2 Models and assumptions
In resting cells, p53 is suppressed by MDM2 at low level [26]. When DNA is damaged by
external stimulation, DNA double-strand breaks (DSBs) promote the activation of ATM,
which make p53 transform to active state [6, 27]. Activated p53 is beneficial to the tran-
scription of p53 target protein. WIP1 is one of the proteins that promoted by p53 [5, 9] can
catalyze the dephosphorylation of ATM [28]. WIP1-ATM-p53 forms an NFL. To avoid the
complexity of the model, we hide the WIP1 protein, that is, p53 can directly inhibit ATM
with time delay τ . At the same time, p53 promotes the production of MDM2 in cytoplasm
(MDM2c) [29]. When MDM2c is phosphorylated, it moves to the nucleus [29]. MDM2n
(MDM2 in nucleus) in turn promotes the ubiquitin of p53, accelerates the degradation of
p53 [9], and encloses the p53-MDM2 NFL. Due to the existence of transmembrane trans-
port, here we add a time delay to the effect of p53 on MDM2. To simplify the numerical
calculation and theoretical analysis, we choose the same time delay as shown in Fig. 1.

Through p53 mininetwork, we give system (1), where β is the phosphorylation rate con-
stant of ATM under DSBS, γ and α are the maximum production rate constants of p53 and
MDM2, respectively, ζ is the production rate of noise in protein. For simplicity, we take
ζ = 1 in the next theory study, that is, the ideal cell environment. η is the dephosphoryla-
tion rate constant of ATM dependent on p53, and kη is the basal ATM dephosphorylation
rate. We use A(t), P(t), M(t) to denote the concentrations of ATM, p53, and Mdm2, respec-
tively. All they are dimensionless concentrations. ki (i = 1, 2, 3, 4) are Michaelis constants
of the Michaelis–Menten function or Hill function.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ȧ(t) = β – η(P(t – τ ) + k) A(t)
k1+A(t) ,

Ṗ(t) = ζγ
A(t)

k2+A(t) – uM(t) P(t)
k3+P(t) ,

Ṁ(t) = ζα
P4(t–τ )

k4
4 +P4(t–τ ) – μ

A(t)
k2+A(t) M(t).

(1)

3 Local stability and Hopf bifurcation
In this part, we theoretically analyze the bifurcation and oscillation mechanism of sys-
tem (1) under time delay. The equilibrium point of the system is Ê = (A∗, P∗, M∗). Let
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Ā(t) = A(t) – A∗, P̄(t) = P(t) – P∗, M̄(t) = M(t) – M∗. For simplicity, we still denote Ā, P̄, M̄
by A, P, M. System (1) is deployed using Taylor’s formula. We obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = C1A(t) + C2P(t – τ ) – ηP(t – τ )G′(A∗)A(t)

– η(P(t – τ ) + P∗ + k)
∑∞

i=2
1
i! G

i(A∗)Ai(t),

Ṗ(t) = C3A(t) + C4P(t) + C5M(t) – uP(t)M(t)f ′(P∗)

+ γ
∑∞

i=2
1
i! G1

i(A∗)Ai(t) – u(M(t) + M∗)
∑∞

i=2
1
i! G

i(A∗)Ai(t),

Ṁ(t) = C6A(t) + C7P(t – τ ) + C8M(t) – μA(t)M(t)G1
′(A∗)

+ α
∑∞

i=2
1
i! f2

i(P∗)Pi(t – τ ) + (M(t) + M∗)
∑∞

i=2
1
i! G1

i(A∗)Ai(t),

(2)

where superscript i represents the ith-order derivative, and

C1 = –η
(
P∗ + k

)
G′(A∗), C2 = –ηG

(
A∗), C3 = γ G′(A∗),

C4 = –uM∗f ′(P∗), C5 = –uf
(
P∗), C6 = –μM∗G′(A∗),

C7 = αf2
′(P∗), C8 = –μG1

(
A∗), G′(A) =

k1

(k1 + A∗)2 ,

f ′(P) =
k3

(k3 + P∗)2 , G′
1(A) =

k2

(k2 + A∗)2 ,

f ′
2(P) =

4k4
4P3(t – τ )

(k4
4 + P4(t – τ ))2 .

The stable point Ê of system (1) is transformed into zero E0(0, 0, 0) of system (2), and we
can get the linearized system

⎧
⎪⎪⎨

⎪⎪⎩

Ȧ(t) = C1A(t) + C2P(t – τ ),

Ṗ(t) = C3A(t) + C4P(t) + C5M(t),

Ṁ(t) = C6A(t) + C7P(t – τ ) + C8M(t),

(3)

and then we get the characteristic equation

λ3 + A1λ
2 + A2λ + a0 + a1e–λτ λ + a2e–λτ = 0, (4)

where

A1 = –(C1 + C4 + C8), A2 = –(C1C8 + C4C8 – C1C4), a0 = –C1C4C8,

a1 = –(C2C3 + C5C7), a2 = C2C3C8 + C1C5C7 – C2C5C6.

To obtain all the cases from the theoretical point of view, we assume that iω (ω > 0) is the
root of Eq. (4) and ω satisfies the equation

–iω3 – A1ω
2 + A2iω + a0 + a1iω

(
cos(ωτ ) – i sin(ωτ )

)

+ a2
(
cos(ωτ ) – i sin(ωτ )

)
= 0. (5)
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The real and imaginary parts of Eq. (5) can be separated from each other, and we obtain

⎧
⎨

⎩

–A1ω
2 + a0 + a1ω sin(ωτ ) + a2ω cos(ωτ ) = 0,

–iω3 + A2iω + a1iω cos(ωτ ) – a2iω sin(ωτ ) = 0,
(6)

which leads to

a2
1ω

2 + a2
2ω

2 =
(
A1ω

2 – a0
)2 +

(
ω3 – A2ω

)2. (7)

Then we get the equation

b0 + b1ω
2 + b2ω

4 + ω6 = 0, (8)

where

b0 = a2
0, b1 = A2

2 – a2
1 – a2

2 – 2a0A1, b2 = A2
1 – 2A2.

If there is at least one positive real root of Eq. (8), then Eq. (4) has a pair of purely imaginary
roots at the critical value of τ . We define that the positive root of Eq. (8) is ωl , 1 ≤ l ≤ 6.
For every fixed l, the corresponding critical value of time delay τ is

τ
(j)
l =

2jπ
ωl

+
1
ωl

× arccos

[
(A1ω

2 – a0)a2 + ω3a1 – A2a1ω
2)

a2
1ω

2 + a2
2

]

1 ≤ l ≤ 6, j = 0, 1, 2, . . . . (9)

For simplicity, we record that the minimum value of τ
(j)
l is represented by τ0. When τl =

τ0, the corresponding ωl = ω0. Let λ(τ ) = v(τ ) + iω(τ ) be the root of Eq. (4) that satisfies
v(τ0) = 0 and ω(τ0) = 0. We can prove that [d(Re(λ)/dτ )]|τ=τ0 > 0.. Substituting λ(τ ) into
the left-hand side of the Eq. (4), we obtain

(
d(Re(λ))

dτ

)–1

= Re
[

(3λ2 + 2A1λ + A2)eλτ + a1

–a1λ2 – a2λ

]

=
W0R1 + W 2

0 R2 + W 3
0 R3 + W 4

0 R4

B2
1 + B2

2
,

where

R1 = –A2a2sin(ω0τ0), R2 = A2a1cos(ω0τ0) – 2A1a2cos(ω0τ0) – 2A1a2sin(ω0τ0)

R3 = 3a2sin(ω0τ0), R4 = –3cos(ω0τ0), B1 = a1ω
2
0, B2 = a2ω0.

Obviously, when ω0R1 + ω2
0R2 + ω3

0R3 + ω4
0R4 > 0, we have

sign

{[
d(Re(λ))

dτ

]∣
∣
∣
∣
τ=τ0

}

= sign

{

Re
[

d(λ)
dτ

]–1∣∣
∣
∣
τ=τ0

}

> 0.



Wang et al. Advances in Difference Equations        (2020) 2020:340 Page 5 of 15

Therefore the conclusion is that when 0 ≤ τ < τ0, the equilibrium point Ê of system (1)
is asymptotically stable; when τ > τ0, the system is unstable; obviously, when τ = τ0, the
system experiences Hopf bifurcation at the equilibrium point. From this conclusion we
can clearly realize that τ0 is a very important value; when the system delay is greater than
τ0, the system is oscillatory, and otherwise it remains stable. The influence mechanism of
time delay on the oscillation of p53-MDM2-ATM system can be obtained by studying τ0.

4 Direction and stability of the Hopf bifurcation
In this section, we continue to study the Hopf bifurcation through the normal form theory
and the center manifold reduction theory. Define τ = γ + τ0. When γ = 0, as in the third
part of the study, we normalize the time scale by t → ( t

τ
), rewriting the system as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ȧ(t) = (τ0 + γ )[C1A(t) + C2P(t – τ ) – ηP(t – τ )G′(A∗)A(t)

– η(P(t – τ ) + P∗ + k)
∑∞

i=2
1
i! G

i(A∗)Ai(t)],

Ṗ(t) = (τ0 + γ )[C3A(t) + C4P(t) + C5M(t) – uP(t)M(t)f ′(P∗)

+ γ
∑∞

i=2
1
i! G1

i(A∗)Ai(t) – u(M(t) + M∗)
∑∞

i=2
1
i! G

i(A∗)Ai(t)],

Ṁ(t) = (τ0 + γ )[C6A(t) + C7P(t – τ ) + C8M(t) – μA(t)M(t)G1
′(A∗)

+ α
∑∞

i=2
1
i! f2

i(P∗)Pi(t – τ ) + (M(t) + M∗)
∑∞

i=2
1
i! G1

i(A∗)Ai(t)].

(10)

Let U = (A(t), P(t), M(t))T and Ut = U(t + θ ), θ ∈ [–1, 0]. We denote C = C([–1, 0], R3).
Then system (10) can be transformed to

U̇ = Lγ (Ut) + f (γ , Ut). (11)

Equation (12) can be obtained by defining the linear operator Lγ : C → R3 and the non-
linear operator f : R × C → R3 as follows:

Lγ (φ) = (τ0 + γ )

⎛

⎜
⎝

C1 0 0
C3 C4 C5

C6 0 C8

⎞

⎟
⎠

⎛

⎜
⎝

φ1(0)
φ2(0)
φ3(0)

⎞

⎟
⎠ + (τ0 + γ )

⎛

⎜
⎝

0 C2 0
0 0 0
0 C7 0

⎞

⎟
⎠

⎛

⎜
⎝

φ1(–1)
φ2(–1)
φ3(–1)

⎞

⎟
⎠ , (12)

and

f (γ ,φ) = (τ0 + γ )

⎛

⎜
⎝

F1

F2

F3

⎞

⎟
⎠, (13)

where

F1 = –ηφ2(–1)G′(A∗)φ1(0) – η
(
φ2(–1) + P∗ + k

)
∞∑

i=2

1
i!

Gi(A∗)φ1(0)i,

F2 = γ

∞∑

i=2

1
i!

Gi(A∗)φ1(0)i – uφ2(0)φ3(0)f ′(P∗) – u
(
φ3(0) + M∗)

∞∑

i=2

1
i!

f i(P∗)φ2(0)i,

F3 = α

∞∑

i=2

1
i!

f i
2
(
P∗)φ2(–1)i – μφ3(0)G′

1
(
A∗)φ1(0) +

∞∑

i=2

1
i!

Gi
1
(
A∗)φ1(0)i(φ3(0) + M∗),
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and Ut = φ = (φ1(t),φ2(t),φ3(t))T ∈ C. Through Riesz representation theorem, there is
a coefficient 3 × 3 matrix function η(θ ,γ ), –1 ≤ θ ≤ 0, whose elements are bounded-
variation functions, and

Lγ (φ) =
∫ 0

–1
dη(θ ,γ )φ(θ ). (14)

We can choose

η(θ ,γ ) = (τ0 + γ )

⎛

⎜
⎝

C1 0 0
C3 C4 C5

C6 0 C8

⎞

⎟
⎠ δ(θ ) + (τ0 + γ )

⎛

⎜
⎝

0 C2 0
0 0 0
0 C7 0

⎞

⎟
⎠ δ(θ + 1), (15)

where δ(θ ) is the Dirac function. When φ ∈ C1([–1, 0], R3), we define

A(γ )φ =

⎧
⎨

⎩

dφ(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(γ , θ )φ(θ ), θ = 0,
(16)

and

R(γ )φ =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

f η(γ , θ ), θ = 0.
(17)

Based on the previous steps, to study the Hopf bifurcation problem, we transform Eq. (11)
into an operator equation of the form

U̇ = A(γ )γ Ut + R(γ )γ Ut . (18)

For φ ∈ C1([0, 1], (R3)∗), define

A∗ψ(s) =

⎧
⎨

⎩

– dψ(s)
ds , s ∈ (0, 1],

∫ 0
–1 dη(0, s)φ(s), s = 0,

(19)

and the bilinear inner product

〈
ψ(s),φ(θ )

〉
= ψ(0)φ · q(0) –

∫ 0

–1

∫ θ

ξ=0
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ , (20)

where γ = 0, η(θ ) = η(θ , 0), and A(0) and A∗(0) are adjoint operators. From the previous
part we know that ±iω0τ0 are the eigenvalues of A(0) and A∗(0). Let q(θ ) be the eigenvector
of A(0) corresponding to iω0τ0, and let q∗(s) be the eigenvector of A∗(0) corresponding
to –iω0τ0. When q(θ ) = (1, v1, v2)eiω0τ0θ and q∗(θ ) = (1, v∗

1, v∗
2)eiω0τ0s, we have A(0)q(0) =

iω0τ0q(0) and A∗(0)q∗(0) = –iω0τ0q∗(0). Then we get

q(θ ) = eiω0τ0θ

(

1,
iω0τ0 – C1

C2e–iω0
,

C2C3e–iω0τ0 + (iω0τ0 – C1)(iω0τ0 – C4)
C2C5e–iω0

)

,

q∗(s) = Ge–iω0τ0s
(

1,
–iω0 – C1

C3
,

(iω0τ0 + C1)C5

C3C7
–

C8

C7

)

,
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since

〈
q∗, q

〉
= q∗(0) · q(0) –

∫ 0

–1

∫ θ

ξ=0
q∗(ξ – θ ) dη(θ )q(ξ ) dξ

= G
[(

1 + v1v∗
1 + v2v∗

2
)

+ τ0e–iω0τ0
(
C2v1 + C6v1v∗

2
)]

.

To ensure 〈q∗, q〉 = 1, we get the values of Ḡ and G:

G =
1

(1 + v1v∗
1 + v2v∗

2) + τ0e–iω0τ0 (C2v1 + C6v1v∗
2)

,

G =
1

(1 + v1v∗
1 + v2v∗

2) + τ0eiω0τ0 (C2v1 + C6v1v∗
2)

.
(21)

Furthermore, the coordinates of the center manifold C0 at γ = 0 can be calculated. Let Ut

be the solution of the Eq. (11) and define

z(t) =
〈
q∗, xt

〉
, W (t, θ ) = Ut(θ ) – 2Re

{
z(t)q(θ )

}
. (22)

On the center manifold C0, we have W (t, θ ) = W (z(t), z(t), θ ), where

W (t, θ ) = W20(θ )
z2

2
+ W11(θ )zz + W02(θ )

z2

2
+ · · · . (23)

In fact, z(t) and z̄(t) are the local coordinates for the center manifold C0 in the directions
of q∗ and q̄∗, respectively. It is worth noting that W (t, θ ) is treated as a real part, and the
solution of the Eq. (11) is ut ∈ C0. Because γ = 0, by (22) we obtain

ż(t) = iω0τ0z(t) + q∗(0)f
(
0, W (z, z, θ ) + 2Re

{
z(t)q(θ )

})

= iω0τ0z(t) + q∗(0)f0. (24)

We rewrite it as

ż(t) = iω0τ0z(t) + g(z, z). (25)

According to the nature of W , we can define

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z
2

+ · · · . (26)

By (22) and (23) we have

Ut = W20(θ )
z2

2
+ W11(θ )zz + W02(θ )

z2

2

+ (1, v1, v2)eiω0τ0θ z + (1, v1, v2)e–iω0τ0θ z. (27)

Substituting (13) and (27) into (26), we have

g(z, z) = q∗f0(z, z) = q∗f (0, Ut) = Gτ0
(
1, v∗

1, v∗
2
)

⎛

⎜
⎝

T1

T2

T3

⎞

⎟
⎠ , (28)
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where

T1 = –ηφ2(–1)G′(A∗)φ1(0) – η
(
φ2(–1) + P∗ + k

)
∞∑

i=2

1
i!

Gi(A∗)φ1(0)i,

T2 = γ

∞∑

i=2

1
i!

Gi(A∗)φ1(0)i – uφ2(0)φ3(0)f ′(P∗) – u
(
φ3(0) + M∗)

∞∑

i=2

1
i!

f i(P∗)φ2(0)i,

T3 = α

∞∑

i=2

1
i!

f i
2
(
P∗)φ2(–1)i – μφ3(0)G′

1
(
A∗)φ1(0) +

∞∑

i=2

1
i!

Gi
1
(
A∗)φ1(0)i(φ3(0) + M∗).

Comparing the coefficients with (26), we obtain

g20 = Ḡτ0
(
–Gτ0η

(
P∗ + k

)
G′′

1
(
A∗) – 2ηG′

1
(
A∗)e–iω0τ0 v1 +

[
γ G′′

1
(
A∗) – 2uv1v2f ′(P∗)]v∗

1

– uM∗f ′′(P∗)v∗
1 +

[
αf ′′

2
(
P∗)e–2iω0τ0 v1 – 2μv2 + G′′

1
(
A∗)M∗]v∗

2
)
,

g11 = Ḡτ0
(
–Gτ0η

(
P∗ + k

)
G′′

1
(
A∗) – 2ηG′

1
(
A∗)(v1 + v1) +

[
γ G′′

1
(
A∗) – 2u(v1v2)f ′(P∗)]v∗

1

– 2u(v1v2)f ′(P∗)v∗
1 – uM∗f ′′(P∗)v1v∗

1 +
[
αv1v1f ′′

2
(
P∗)

– 2μ(v2 + v2) + G′′
1
(
A∗)M∗]v∗

2
)
,

g02 = Ḡτ0
(
–Gτ0η

(
P∗ + k

)
G′′

1
(
A∗) – 2ηG′

1
(
A∗)eiω0τ0 v1 + γ G′′

1
(
A∗)v∗

1 – 2uv1v2f ′(P∗)v∗
1

– uM∗f ′′(P∗)v∗
1 +

[
αf ′′

2
(
P∗)e2iω0τ0 v1 – 2μv2 + G′′

1
(
A∗)M∗]v∗

2
)
,

g21 = Ḡτ0(–Gτ0ηG′(A∗)v1eiω0τ0 – ηG′(A∗)W (2)
20 (–1) – ηW (1)

11 (0)G′′(A∗)v1eiω0τ0

– η
(
P∗ + k

)
G′′

1
(
A∗) – ηG′′(A∗)v1e–iω0τ0 –

2!
3!

η
(
P∗ + k

)
G′′′

1
(
A∗)

+
[

2!
3!

γ G′′′
1
(
A∗) – uf ′′(P∗)v1v2 – uf ′′(P∗)v1v1v2 –

2!
3!

um∗f ′′′(P∗)v2v2

– 2uM∗f ′′(P∗)W (2)
20 (0)v1 + γ G′′

1
(
A∗)W (1)

20 (0) – uW (2)
20 (0)v2f ′(P∗)

]

v∗
1

+
[

1
2
αf ′′

2
(
P∗)W (2)

20 (–1)v1e–iω0τ0 +
2!
3!

αf ′′′
2
(
P∗)W (2)

20 (–1)v1v1e–2iω0τ0

– μ
(
w(3)

20 (0) + w(1)
20 (0)v2

)
+

1
2

G′′
1
(
A∗)M∗W (1)

20 (0)

+ G′′
1
(
A∗)(v2 + v2) +

1
3!

G1′′′(A∗)M∗
]

v∗
2).

Note that there are unknown quantities W20 and W11 in the coefficients, and we continue
to calculate from the Eq. (11) and (22):

Ẇ = Ut – zq̇ – z ˙̄q

=

⎧
⎨

⎩

A(0)W – 2Req∗(0)f0q(θ ), θ ∈ [–1, 0),

A(0)W – 2Req∗(0)f0q(θ ) + f0, θ = 0.

= A(0)W + K(z, z̄, θ ), (29)
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where

K(z, z̄, θ ) = K20(θ )
z2

2
+ K11(θ )zz̄ + K02(θ )

z̄2

2
+ · · · . (30)

From Eq. (23) we have

Ẇ =
(
W20(θ )z + W11(θ )z̄ + · · · )(iω0τ0z(t) + g(z, z̄)

)

+
(
W11(θ )z + W02(θ )z̄ + · · · )(–iω0τ0z̄(t) + g(z, z̄)

)
. (31)

Through the previous calculation of (28), we get

Ẇ =
(
A(0)W20(θ ) + K20(θ )

)z2

2
+
(
A(0)W11(θ )

+ K11(θ )
)
zz̄ +

(
A(0)W02(θ ) + K02(θ )

)
+ · · · . (32)

Comparing the coefficients of (30) and (31), we obtain

(
A(0) – 2iω0τ0

)
W20(θ ) = –K20(θ ), A(0)W11(θ ) = –K11(θ ). (33)

Based on (28), when θ ∈ [–1, 0), we get

K(z, z̄, θ ) = –
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · ·
)

q(θ )

–
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ ḡ21

z̄2z
2

+ · · ·
)

q̄(θ ). (34)

The coefficients at z2 and zz̄ are

K20(θ ) = –g20q(θ ) – ḡ02q̄(θ ) (35)

and

K11(θ ) = –g11q(θ ) – ḡ11q̄(θ ). (36)

From (32) and (34) we get

A(0)W20(θ ) = 2iω0τ0W20(θ ) – H20(θ ).

By the definition of A(0) we have

Ẇ20(θ ) = 2iω0τ0W20(θ ) + g20q(θ ) + ḡ02q̄(θ ).

Note that q(θ ) = q(0)eiω0τ0θ , and therefore

W20(θ ) =
ig20

ω0τ0
q(0)eiω0τ0θ +

iḡ02

ω0τ0
q̄(0)e–iω0τ0θ + D1e2iω0τ0θ , (37)
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where D1 = (D(1)
1 , D(2)

1 , D(3)
1 )T is a constant factor, and from (32) and (35) we obtain

Ẇ11(θ ) = g11q(θ ) + ḡ11q̄(θ )

and

W11(θ ) = –
ig11

ω0τ0
q(0)eiω0τ0θ +

iḡ11

ω0τ0
q̄(0)e–iω0τ0θ + D2, (38)

where D2 = (D(1)
2 , D(2)

2 , D(3)
2 )T is a constant factor. We can find approximate values of D1

and D2 in (36) and (37), respectively. It follows from the form defined by A and (32) that

∫ 0

–1
dη(θ )W20(θ ) = 2iω0W20(θ ) – K20(θ ) (39)

and

∫ 0

–1
dη(θ )W11(θ ) = –K11(θ ), (40)

where η(θ ) = η(0, θ ). From (28) we have

K20(0) = –g20q(θ ) – ḡ02q̄(θ ) + τ0

⎛

⎜
⎝

R11

R12

R13

⎞

⎟
⎠ ,

R11 = –Gτ0η
(
P∗ + k

)
G′′

1
(
A∗) – 2ηG′

1
(
A∗)e–iω0τ0 v1,

R12 = γ G′′
1
(
A∗) – 2uv1v2f ′(P∗) – uM∗f ′′(P∗),

R13 = αf ′′
2
(
P∗)e–2iω0τ0 v1 – 2μv2 + G′′

1
(
A∗)M∗,

(41)

and

K11(0) = –g11q(θ ) – ḡ11q̄(θ ) + 2τ0

⎛

⎜
⎝

R21

R22

R23

⎞

⎟
⎠ , (42)

where

R21 = –Ḡτ0η
(
P∗ + k

)
G′′

1
(
A∗) – 2ηG′

1
(
A∗)v1v̄1,

R22 =
[
γ G′′

1
(
A∗) – 2u(v̄1v2 + v1v̄ – 2)f ′(P∗) – uM∗f ′′(P∗)v̄1

]
v∗

1,

R23 =
[
αv1v1f ′′

2
(
P∗) – 2μ(v2 + v2) + G′′

1
(
A∗)M∗]v∗

2.

Because iω0τ0 is an eigenvalue of A(0) and q(0), we have

(

iω0τ0I –
∫ 0

–1
eiω0τ0θ dη(θ )

)

q(0) = 0 (43)
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and

(

–iω0τ0I –
∫ 0

–1
e–iω0τ0θ dη(θ )

)

q̄(0) = 0. (44)

Therefore we obtain

⎛

⎜
⎝

2iω0 – C1 –C2 0
–C3 2iω – C4 –C5

–C6 –C7 2iω – C8

⎞

⎟
⎠× D1 =

⎛

⎜
⎝

R11

R12

R13

⎞

⎟
⎠ (45)

and

⎛

⎜
⎝

–C1 –C2 0
–C3 –C4 –C5

–C6 –C7 –C8

⎞

⎟
⎠× D2 =

⎛

⎜
⎝

R21

R22

R23

⎞

⎟
⎠ . (46)

From (36), (37), (44), and (45), we can express g21. Furthermore, we can calculate the fol-
lowing values:

C1(0) =
i

2ω0τ0

(

g11g20 – 2|g11|2 – |g02|2
3

)
+

g21

2
,

μ2 =
Re(C1(0))
Re(λ′(τ0))

,

T2 = –
ImC1(0) + μ2Imλ′(τ0)

ω0τ0
,

β2 = 2ReC1(0).

(47)

According to the Hassard theory, we can obtain the following theorem.

Theorem 4.1 The bifurcating periodic solution of (11) from the trivial equilibrium has
the following features:

(1) μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then the Hopf
bifurcation is supercritical (subcritical), and the bifurcating periodic solutions exist
for τ > τ0 (τ < τ0);

(2) β2 determines the stability of the bifurcating periodic solutions: the bifurcating
periodic solutions are stable (unstable) if β2 < 0 (β2 > 0);

(3) T2 determines the period of the bifurcating periodic solutions: the period increases
(decreases) if T2 > 0 (T2 < 0).

5 Numerical simulation
The numerical calculation is carried out by using the software Matlab. We choose the
same proportion set of parameters as those in [9]: β = 0.006, η = 0.04, u = 0.14, μ = 0.01,
α = 0.0048, γ = 0.004, k1 = 1, k2 = 1, k3 = 0.1, k4 = 1, k = 0.1. We can obtain that the steady-
state solution of the equation is Ê(0.352, 0.476, 0.090). By using the derivation in Sect. 3
we conclude that the critical value of Hopf bifurcation τ0 is equal to 23.237. From the
conclusion of Sect. 4 we find that the obtained Hopf bifurcation point is supercritical, and
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Figure 2 The influence of τ on system dynamics. Time occurs of the level of ATM* (blue), p53 (red), and
Mdm2 (green) at τ = 0 min (a), τ = 10 min (b), and τ = 25 min (c). Limit cycles in phase diagrams at
τ = 25 min (d)

the period of oscillation increases with the increase of τ . Next, we use a time evolution
diagram and bifurcation diagram to illustrate our theoretical results.

The units of time is minute, and the units of other parameters ensure that the concen-
trations of proteins are dimensionless. The initial values of the system are A(0) = P(0) =
M(0) = 0. The numerical simulation results of time occurs are shown in Fig. 2. When τ is
equal to 0 or 10 (< τ0) in Fig. 2(a) or (b), the system has damping oscillations and finally
tends to steady state. When the value of τ is 25 (> τ0) in Fig. 2(c), the system has stable
oscillations with a period of 4–7 hours [30]. Therefore the time delay is a necessary con-
dition for p53 to oscillate. The phase diagram in Fig. 2(d) shows that the system finally
converges to a stable limit cycle.

We further draw a bifurcation diagram to study the effect of τ on the p53 pulse. The
functional relationship between p53 level and time delay τ is displayed in bifurcation
graph Fig. 3(a). The coordinates of the Hopf bifurcation point are (23.237, 0.476). With
the increase of τ , the steady state loses its stability. After the supercritical Hopf bifurca-
tion point, system enters the oscillation state. With the increase of τ , the amplitude first
sharply increases and then slowly increases. In Fig. 3(b), the relationship between the pe-
riod of the oscillation and the time delay τ is almost linear after the Hopf bifurcation point.
The results of numerical simulation are consistent with those of our theoretical analysis.

In addition, we theoretically analyze the network dynamics in the deterministic case.
Noise always exists in biological systems [20, 21], and it is essential to explore the effect of
noise on system dynamics. We use the multiplier exponential Gaussian white noise, that is,
ζ = exp(ε), where ε obeys the Gaussian distribution with mean 0 and standard deviation D,



Wang et al. Advances in Difference Equations        (2020) 2020:340 Page 13 of 15

Figure 3 τ regulates p53 pulse. (a) Bifurcation diagram of p53 level vs. τ . The red solid line represents stable
steady state. The black dashed line represents unstable steady state. The green point represents the peak or
trough of p53 oscillation, and the blue point represents the supercritical Hopf bifurcation point. (b) The period
of p53 oscillation as a function of τ

Figure 4 The period of p53 pulse is more stable than the amplitude in noise environment. Time occurs of the
level of p53 at τ = 25 and noise intensity D = 0.1 (a), D = 0.5 (b), D = 1 (c), and D = 1.5 (d)

which characterize the noise intensity; we write this as ε ∼ N(0, D). The system oscillation
is stable under weak noise in Figs. 4(a), 4(b), and 4(c), which indicate that at moderate
noise intensity, the period of oscillation is stable. Figure 4(d) implies that at high noise
intensity, the system amplitude is unstable. Our numerical simulation is consistent with
experimental results, that is, the period of the p53 pulse is more robust than the amplitude,
and not all cells have stable pulses [30].
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6 Discussion
In this paper, we constructed a minimodel to explore how time delay affected the oscilla-
tion behavior of p53 in response to DNA damage. We find that if time delay τ is greater
than τ0, then the system is oscillatory; otherwise, it is asymptotically stable. We also use
the normal form method and the central manifold theorem to further analyze the effect of
parameter τ on the kinetics of p53 and predict the direction and stability of the bifurcation
diagram.

The correctness of the theory is verified by numerical simulation. The bifurcation di-
agram of p53 level versus τ vividly shows that the oscillation of p53 can be regulated by
changing the parameter τ . Our model indicates that the effect of noise on the amplitude is
more severe than the period. Because the p53 pulse is closely related to cell fate decision,
it may be a good idea to consider the time delay in the treatment of cancer.
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