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Abstract
We consider a nonlinear Cauchy problem involving the Ψ -Hilfer stochastic fractional
derivative with uncertainty, and we give a stability result. Using fixed point theory, we
are able to provide a fuzzy Ulam–Hyers–Rassias stability for the considered nonlinear
stochastic fractional differential equations.
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1 Introduction
Fractional analysis is a generalization of classical integer-order differentiation and integra-
tion to arbitrary noninteger order. Sousa and Oliveira [1] have recently proposed a frac-
tional differentiation operator, which they called the Ψ -Hilfer operator, unifying several
different fractional operators. Stochastic fractional differential equations naturally arise
in different fields such as biology, engineering, medicine, physics, and mathematics (for
more applications and details, we refer to [2–12]).

We study the nonlinear Ψ -Hilfer stochastic fractional differential equation

⎧
⎪⎨

⎪⎩

HDι,κ ;Ψ
0+ μ(�,ς )

= Aμ(�,ς ) + Bμ(�,ς – h(�,ς )) + f(ς ,μ(�,ς ),μ(�,ς – h(�,ς ))),
μ(�,ς ) = Θ(�,ς ), ς ∈ [–h, 0],

(1.1)

for ς ∈ Ξ5 and � ∈ Υ , where H Dι,κ ;Ψ
0+ (�, ·) is the Ψ -Hilfer stochastic fractional deriva-

tive operator of order ι ∈ (0, 1] for each � ∈ Υ with respect to a random operator Ψ ∈

(Υ × Ξ5,R) (see [1, 13]) and type 0 ≤ κ ≤ 1, μ(�,ς ) ∈ R

n, h(�,ς ) is a continuous map
such that 0 ≤ h(�,ς ) ≤ h, ς ∈ Ξ5 = [0, M] with 0 < M < +∞, Θ(�,ς ) ∈ 
(Υ × [–h, 0],Rn) is
a given function, and f : Υ ×Ξ5 ×R

n ×R
n →R

n, A ∈R
n×n, and B ∈ R

n×n are matrices. In
this paper, we study the uniqueness of solutions for (1.1) and their Ulam–Hyers–Rassias
stability with uncertainty.
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2 Preliminaries
Let Ξ1 = [a, b], Ξ2 = (a, b), Ξ3 = [–h, 0], Ξ4 = [–h, M], Ξ5 = [0, M], Ξ6 = (0, 1], Ξ7 = [0,∞],
and Ξ8 = (0,∞).

Definition 2.1 ([14–18]) Suppose that S is a linear space and η is a fuzzy set from S × Ξ8

to Ξ6. The ordered pair (S,η) is said to be a fuzzy normed space (FN-space) whenever
(FN1) η(ξ , τ ) = 1 for any τ ∈ Ξ8 iff ξ = 0;
(FN2) η(aξ , τ ) = η(ξ , τ

|a| ) for all ξ ∈ S, τ ∈ Ξ8, and a ∈R with a �= 0;
(FN3) η(ξ + ζ , τ + θ ) ≥ min(η(ξ , τ ),η(ζ , θ )) for all ξ , ζ ∈ S and τ , θ ∈ Ξ8;
(FN4) η(ξ , ·) : Ξ8 → Ξ6 is continuous.

Let (S,η) be an FN-space. A sequence {ξn} ⊂ S is fuzzy convergent to ξ ∈ S in (S,η) if for
any τ > 0 and 0 < ε < 1, there exists a positive integer Nε such that η(ξn – ξ , τ ) > 1 – ε for
n ≥ Nε . A sequence {ξn} ⊂ S is fuzzy Cauchy in (S,η) if for any τ > 0 and 0 < ε < 1, there
exists a positive integer Nε such that η(ξn – ξm, τ ) > 1 – ε for n, m ≥ Nε . An FN-space is
Banach if every Cauchy sequence in it is convergent. A Banach FN-space is shortly called
an FB-space. Consider the normed space (S,‖ · ‖). Then

η(ξ , τ ) = exp

(

–
‖ξ‖
τ

)

for τ ∈ Ξ8 defines a fuzzy norm, and the ordered pair (S,η) is an FN-space.
Consider the probability measure space (Υ ,Ξ8, ξ ) and let (T , BT ) and (S, BS) be Borel

measureable spaces, where T and S are FB-spaces. If {� : F (�, ξ ) ∈ B} ∈ Ξ8 for all ξ ∈ T
and B ∈ BS , we say that F : Υ × T → S is a random operator. A random operator F :
Υ × T → S is said to be linear if F (�, aξ1 + bξ2) = aF (�, ξ1) + bF (�, ξ2) almost everywhere
for all ξ1,υ2 ∈ T and scalars a, b, and bounded if there exists a nonnegative real-valued
random variable M(�) such that

η
(
F (�, ξ1) – F (�, ξ2), M(�)τ

) ≥ η(ξ1 – υ2, τ )

almost everywhere for all ξ1, ξ2 ∈ T , τ ∈ Ξ8, and � ∈ Υ .
The subject of approximation of functional equations in several spaces by direct tech-

niques and fixed point techniques have been studied by some researchers, for instance,
fuzzy Menger normed algebras [19], fuzzy metric spaces [20, 21], FN spaces [22], non-
Archimedean random Lie C∗-algebras [23], and random multinormed space [24–29].
Some stability results for fractional differential and integral equations have been discussed
in [26, 30–38].

Theorem 2.2 (The alternative of fixed point) Let (T ,ρ) be a complete Ξ7-valued metric
space, and let Λ : T → T be a strictly contractive function with Lipschitz constant ι < 1.
Then for every given element ξ ∈ T , either

ρ
(
Λnξ ,Λn+1ξ

)
= ∞

for each n ∈ N, or there is n0 ∈N such that
(i) ρ(Λnξ ,Λn+1ξ ) < ∞ for all n ≥ n0;
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(ii) the fixed point ζ ∗ of Λ is the limit point of the sequence {Λnξ};
(iii) in the set V = {ζ ∈ T | ρ(Λn0ξ , ζ ) < ∞}, ζ ∗ is the unique fixed point of Λ;
(iv) (1 – ι)ρ(ζ , ζ ∗) ≤ ρ(ζ ,Λζ ) for every ζ ∈ V .

Definition 2.3 (One-parameter Mittag-Leffler function) The Mittag-Leffler function is
given by the series

Eϑ (� ) =
∞∑

i=0

� i

Γ (ϑ i + 1)
,

where ϑ ∈C, Re(ϑ) > 0, and Γ is the gamma function given by

Γ (� ) =
∫ ∞

0
e–ςς�–1 dς

for Re(� ) > 0. In particular, if ϑ = 1, then we have

E1(� ) =
∞∑

k=0

� k

Γ (k + 1)
=

∞∑

k=0

� k

k!
= e� .

Definition 2.4 ([1, 39]) Consider ι > 0 and the increasing and positive monotone random
operator Ψ (�,ς ) on Υ × (a, b] with continuous derivative random operator Ψ ′(�,ς ) on
Υ × Ξ2. Define the LR (left-right) stochastic fractional integrals of a random operator f
and random operator Ψ on Υ × Ξ1 by

I ι;Ψ
a+ f(�,ς ) :=

1
Γ (ι)

∫ ς

a
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1f(�,υ) dυ

for all ς ∈ Ξ2 and � ∈ Υ .

Definition 2.5 ([1, 40]) Consider n ∈ N
+ and let n – 1 < ι < n. Let Ξ1 be the interval such

that –∞ ≤ a < b ≤ +∞, and let f ,Ψ ∈ 
n(Υ × Ξ1,R) be two random operators, where Ψ

is increasing, and Ψ ′(�,ς ) �= 0 for all ς ∈ Ξ1 and � ∈ Υ . Define the L-Ψ -Hilfer stochastic
fractional derivative operator HDι,κ ;Ψ

a+ (�, ·) of order ι and type 0 ≤ κ ≤ 1 by

HDι,κ ;Ψ
a+ f(�,ς ) := Iκ(n–ι);Ψ

a+

(
1

Ψ ′(�,ς )
d

dς

)n

I (1–κ)(n–ι);Ψ
a+ f(�,ς ).

We define the R-Ψ -Hilfer stochastic fractional derivative operator as in [1].

Lemma 2.6 ([1]) If f ∈ 
1
δ;Ψ (Υ × Ξ1), 0 < ι < 1, 0 ≤ κ ≤ 1, and δ = ι + κ(1 – ι), then

I ι;Ψ
a+

HDι,κ ;Ψ
a+ f(�,ς ) = f(�,ς ) –

(Ψ (�,ς ) – Ψ (�, a))δ–1

Γ (δ)
I (1–κ)(1–ι);Ψ

a+ f(�, a).

Let Ξ1 (–∞ < a < b < +∞), and let η(·, τ )
(Υ ×Ξ1) denote the fuzzy norm of μ =
(μ1(�,ς ),μ2(�,ς ), . . . ,μn(�,ς ))T ∈R

n on Υ × Ξ1 defined by

η
(
μ(�,ς ), τ

)
= min

1≤i≤n
ηE

(
μi(�,ς ), τ

)
,
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where η(·, τ )E denotes the Euclidean fuzzy norm of μi(�,ς ) ∈ R on Υ × Ξ1. Denote the
space of continuous random operators by 
(Υ × Ξ1) and define μ ∈R

n on Υ × Ξ1 by

η
(
μ(�,ς ), τ

)


(Υ ×Ξ1) = min
ς∈Ξ1

η
(
μ(�,ς ), τ

)
.

The weighted space 
1–δ;Ψ (Υ × Ξ1,Rn) of random operators μ on Υ × Ξ1 is defined by


1–δ;Ψ (Υ × Ξ1) =
{
μ : Υ × Ξ1 →R

n :
(
Ψ (�,ς ) – Ψ (�, 0)

)1–δ
μ(�,ς ) ∈ 
(Υ × Ξ1)

}

for δ = ι + κ(1 – ι), with the norm

η
(
μ(�,ς ), τ

)


1–δ;Ψ (Υ ×Ξ1) = η
((

Ψ (�,ς ) – Ψ (�, 0)
)1–δ

μ(�,ς ), τ
)


(Υ ×Ξ1).

Definition 2.7 ([39]) We say that system (1.1) has the Ulam–Hyers–Rassias stability if for
each continuously differentiable random operator ν(�,ς ) ∈ R

n satisfying

η
(HDι,κ ;Ψ

0+ ν(�,ς ) – Aν(�,ς ) – Bν
(
�,ς – h(�,ς )

)
– f

(
�,ς ,ν(�,ς ),ν

(
�,ς – h(�,ς )

))
, τ

)

≥ ϕ(ς , τ ), (2.1)

where ϕ(ς , τ ) ∈ Ξ6 is a continuous fuzzy set for all ς ∈ Ξ1, τ ∈ Ξ8, and � ∈ Υ , there exist
a solution μ(�,ς ) ∈R

n of system (1.1) and a constant C > 0 such that

η
(
μ(�,ς ) – ν(�,ς ), τ

) ≥ ϕ

(

ς ,
τ

C

)

,

where C is independent of μ(�,ς ) and ν(�,ς ). If ϕ(�,ς ) is fixed in the above inequalities,
then we get the Ulam–Hyers stability with uncertainty of system (1.1).

Remark 2.8 A random operator ν(�,ς ) is a solution of (2.1) if and only if there is a random
operator Θ ∈ 
(Υ × Ξ5,Rn) such that

• η(Θ(�,ς ), τ ) ≥ ϕ(ς , τ );
• HDι,κ ;Ψ

0+ ν(�,ς ) = Aν(�,ς ) + Bν(�,ς – h(�,ς )) + f(�,ς ,ν(�,ς ),ν(�,ς – h(�,ς ))) +
Θ(�,ς ).

Lemma 2.9 Let f : Υ × Ξ5 ×R
n ×R

n →R
n be a continuous nonlinear random operator.

Then the solution of system (1.1) is a continuous random operator μ(�,ς ) : Υ × Ξ4 → R
n

satisfying

μ(�,ς ) =

⎧
⎪⎨

⎪⎩

Θ(�,0)
Γ (δ)Γ (2–δ) + 1

Γ (ι)
∫ ς

0 Ψ ′(�,υ)(Ψ (�,ς ) – Ψ (�,υ))ι–1[Aμ(�,υ)
+ Bμ(�,υ – h(�,υ))] + f(�,ς ,μ(�,ς ),μ(�,ς – h(�,ς ))),

Θ(�,ς ), ς ∈ Ξ3.
(2.2)

Proof Let

g(�,ς ) = Aμ(�,ς ) + Bμ
(
�,ς – h(�,ς )

)
+ f

(
�,ς ,μ(�,ς ),μ

(
�,ς – h(�,ς )

))
.
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From Lemma 2.6 and (1.1), for ς ≥ 0 and � ∈ Υ , we get

μ(�,ς ) =
(Ψ (�,ς ) – Ψ (�, 0))�–1

Γ (δ)

× 1
Γ (1 – δ)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)–�
μ(�, 0) dυ + I ι;Ψ

0+ g(ς )

=
Θ(�, 0)

Γ (δ)Γ (2 – δ)

+
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1g(�,υ) dυ, ς ≥ 0 (2.3)

when ς ∈ Ξ3 and μ(�,ς ) = Θ(�,ς ). �

We denote the set of all eigenvalues of A defined as in system (1.1) by λ(A) and set
λmax(A) = max{Re(λ) : λ ∈ λ(A)} and ‖A‖ =

√
λmax(AT A); also, we denote the set of all non-

negative bounded random operators on Υ × Ξ5 by B+(Ξ5).
(H1) For a nonlinear random operator f : Υ × Ξ5 ×R

n ×R
n →R

n, there is a positive
map l(ς ) ∈ B+(Ξ5) such that

η
(

f(�,ς ,μ1,ν1) – f(�,ς ,μ2,ν2), τ
)


(Υ ×Ξ5)

≥ min

(

η

(

μ1 – μ2,
τ

l(ς )

)


(Υ ×Ξ5)
,η

(

ν1 – ν2,
τ

l(ς )

)


(Υ ×Ξ5)

)

;

moreover,

η
(
Aμ(�,ς ), τ

)


(Υ ×Ξ5) ≥ η

(

μ(�,ς ),
τ

a

)


(Υ ×Ξ5)

and

η
(
Bμ

(
�,ς – h(�,ς )

)
, τ

)


(Υ ×Ξ5) ≥ η

(

μ
(
�,ς – h(�,ς )

)
,
τ

b

)


(Υ ×Ξ5)

for all τ ∈ Ξ8 and � ∈ Υ , where ‖A‖ = a, ‖B‖ = b, and supυ∈[0,ς ] l(υ) = l.

3 Ulam–Hyers–Rassias stability with uncertainty
Using Remark 2.8 and Lemma 2.9, for ς ∈ Ξ5, we get

ν(�,ς ) =
Θ(�, 0)

Γ (δ)Γ (2 – δ)
+

1
Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς )

– Ψ (�,υ)
)ι–1(Aν(�,υ) + Bν

(
�,υ – h(�,υ)

)

+ f
(
�,υ,ν(�,υ),ν

(
�,υ – h(�,υ)

)))
dυ. (3.1)

Theorem 3.1 Assume that (H1) holds and

η
((

Ψ (�,ς ) – Ψ (�, 0)
)ι, τ

) ≥ η
(
Θ(�,ς ), τ

)
.
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Then (1.1) has the Ulam–Hyers–Rassias stability with uncertainty on 
(Υ × Ξ4) when
η(Θ(�,ς ), τ ) is increasing on Υ × Ξ5 as in Remark 2.8 .

Proof For all ς ∈ Ξ5, τ ∈ Ξ8, and � ∈ Υ , using (2.2) and (3.1), we have

η(ν – μ, τ )
(Υ ×Ξ5)

= η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η
(
A
(
ν(�,υ) – μ(�,υ)

)

+ B
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))

+
(

f
(
�,υ,ν(�,υ),ν

(
�,υ – h(�,υ)

))

– f
(
�,υ,μ(�,υ),μ

(
�,υ – h(�,υ)

)))
, τ

)
dυ, τ

)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
min

{
η
(
A
(
ν(�,υ) – μ(�,υ)

)
, τ

)
,

η
(
B
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))
, τ

)
,

η
((

f
(
�,υ,ν(�,υ),ν

(
�,υ – h(�,υ)

))

– f
(
�,υ,μ(�,υ),μ

(
�,υ – h(�,υ)

)))
, τ

)}
dυ, τ

)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
min

{

η

(
(
ν(�,υ) – μ(�,υ)

)
,
τ

a

)

,

η

(
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))
,
τ

b

)

,

min

{

η

(
(
ν(�,υ) – μ(�,υ)

)
,

τ

l(ς )

)

,

η

(
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))
,

τ

l(ς )

)}}

dυ, τ
)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η

(

(ν – μ),
τ

a + b + l(ς )

)

dυ, τ
)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η

(

(ν – μ),
τ

a + b + l

)

dυ, τ
)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1 dυ,
τ

η((ν – μ), τ

a+b+l
)

)

≥ η

(
(Ψ (�,ς ) – Ψ (�, 0))ι

Γ (ι + 1)
,

τ

η((ν – μ), τ

a+b+l
)

)

= η

(
(
Ψ (�,ς ) – Ψ (�, 0)

)ι,
Γ (ι + 1)τ

η((ν – μ), τ

a+b+l
)

)

.

Hence, if η((Ψ (�,ς ) – Ψ (�, 0))ι, τ ) ≥ η(Θ(�,ς ), τ ) and C =
η((ν–μ), τ

a+b+l
)

Γ (ι+1) , then we have

η(μ – ν, τ )
(Υ ×Ξ5) ≥ ϕ

(

ς ,
τ

C

)

. (3.2)
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Now by Definition 2.7, (1.1) has the Ulam–Hyers–Rassias stability with uncertainty on
Υ × Ξ5. �

Now we consider the new condition for constant ϕ0:

(H2) ϕ(ς , τ ) = ϕ0

for all τ ∈ Ξ8.

Theorem 3.2 Let (H1) and (H2) hold. Suppose that

η
((

Ψ (�,ς ) – Ψ (�, 0)
)ι, τ

) ≥ η
(
Θ(�,ς ), τ

)
.

Then (1.1) has the Ulam–Hyers stability with uncertainty on 
(Υ × Ξ4).

Proof From (2.2) and (3.1), for all ς ∈ Ξ5 and � ∈ Υ , we have

η(ν – μ, τ )
(Υ ×Ξ5)

= η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η
(
A
(
ν(�,υ) – μ(�,υ)

)

+ B
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))

+
(

f
(
�,υ,ν(�,υ),ν

(
�,υ – h(�,υ)

))

– f
(
�,υ,μ(�,υ),μ

(
�,υ – h(�,υ)

)))
, τ

)
dυ, τ

)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
min

{
η
(
A
(
ν(�,υ) – μ(�,υ)

)
, τ

)
,

η
(
B
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))
, τ

)
,

η
((

f
(
�,υ,ν(�,υ),ν

(
�,υ – h(�,υ)

))

– f
(
�,υ,μ(�,υ),μ

(
�,υ – h(�,υ)

)))
, τ

)}
dυ, τ

)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
min

{

η

(
(
ν(�,υ) – μ(�,υ)

)
,
τ

a

)

,

η

(
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))
,
τ

b

)

,

min

{

η

(
(
ν(�,υ) – μ(�,υ)

)
,

τ

l(ς )

)

,

η

(
(
ν
(
�,υ – h(�,υ)

)
– μ

(
�,υ – h(�,υ)

))
,

τ

l(ς )

)}}

dυ, τ
)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η

(

(ν – μ),
τ

a + b + l(ς )

)

dυ, τ
)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η

(

(ν – μ),
τ

a + b + l

)

dυ, τ
)

≥ η

(
1

Γ (ι)

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1 dυ,
τ

η((ν – μ), τ

a+b+l
)

)
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≥ η

(
(Ψ (�,ς ) – Ψ (�, 0))ι

Γ (ι + 1)
,

τ

η((ν – μ), τ

a+b+l
)

)

= η

(
(
Ψ (�,ς ) – Ψ (�, 0)

)ι,
Γ (ι + 1)τ

η((ν – μ), τ

a+b+l
)

)

.

Hence, if η((Ψ (�,ς ) – Ψ (�, 0))ι, τ ) ≥ η(Θ(�,ς ), τ ) and C =
η((ν–μ), τ

a+b+l
)

Γ (ι+1) , then

η(μ – ν, τ )
(Υ ×Ξ5) ≥ ϕ0. (3.3)

Thus (1.1) has the Ulam–Hyers stability with uncertainty on Υ × Ξ5. �

4 Application
Now we apply our result to the following dynamic fractional-order equation systems with
time-varying delay:

⎧
⎪⎨

⎪⎩

HDι,κ ;Ψ
0+ μ(�,ς )

= A(ς )μ(�,ς ) + B(ς )μ(�,ς – h(�,ς )) + D(ς )G(�,ς ) + f(�, ·), ς ∈ Ξ5,
μ(�,ς ) = Θ(�,ς ), ς ∈ Ξ3,

(4.1)

where G(�,ς ) ∈ R
m, and A(ς ), B(ς ) ∈R

n×n, and D(ς ) ∈ R
n×m are random operator matri-

ces such that supς∈Ξ5 (‖A‖ + ‖B‖) < ∞.

Corollary 4.1 Suppose that ‖A‖ = ã, ‖B‖ = b̃, and there is Θ ∈ 
(Υ × Ξ5,Rn) such that

∫ ς

0
Ψ ′(�,υ)

(
Ψ (�,ς ) – Ψ (�,υ)

)ι–1
η
(
Θ(�,υ), τ

)
> ϕ

(

ς ,
τ

M

)

.

Let (H1) hold. Then system (4.1) has the Ulam–Hyers–Rassias stability with uncertainty if

η
((

Ψ (�,ς ) – Ψ (�, 0)
)ι, τ

) ≥ η
(
Θ(�,ς ), τ

)
.

Also, (H2) implies that system (4.1) has the Ulam–Hyers stability with uncertainty.

Example 4.2 Suppose that for each � ∈ Υ , Ψ (�,ς ) = ln(ς + 1), ι = 0.2, κ → 1, M = 20,
and h(�,ς ) = 2 sinς . Let Θ(�,ς ) = (ς ,√ς + 1)T , and let f(�,ς ,μ(�,ς ),μ(�,ς – h(�,ς ))) =
0.1 sinμ(�,ς ) + 0.1 cosμ(�,ς – 2 sinς ) with μ(�,ς ) = (μ1(�,ς ),μ2(�,ς ))T . Consider sys-
tem (1.1) with

A =

(
1
5 0
0 1

6

)

, (4.2)

B =

(
1
3 0
1
6 0

)

. (4.3)

We have ‖A‖ = a = 1
25 , ‖B‖ = b = 5

36 , and l = 0.1. By calculation, (Ψ (�,ς ) – Ψ (�, 0))ι ≈
1.240, so all the conditions in Theorem 3.1 are satisfied. Then (1.1) has the fuzzy Ulam–
Hyers–Rassias stability with uncertainty on Υ × [0, 20]. Moreover, the maximum value of
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η(Θ(�,ς ), τ ) ≈ 0.977 if ϕ(�,ς ) ≤ 0.977 is a constant continuous fuzzy set, and all the con-
ditions in Theorem 3.2 hold, which implies that (1.1) has the fuzzy Ulam–Hyers stability
with uncertainty on Υ × [0, 20].

5 Conclusion
In this paper, we considered a kind of stochastic differential equations involving the Ψ -
Hilfer stochastic fractional derivative operator. A fuzzy control function helped us to make
stable the stochastic differential equation (1.1). Using the fixed point method, we inves-
tigated the Ulam–Hyers–Rassias stability for the nonlinear Ψ -Hilfer stochastic fractional
differential equation (1.1) with uncertainty.
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