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Abstract
In this paper, we introduce a new iterative algorithm for solving a generalized
Sylvester matrix equation of the form

∑p
t=1 AtXBt = C which includes a class of linear

matrix equations. The objective of the algorithm is to minimize an error at each
iteration by the idea of gradient-descent. We show that the proposed algorithm is
widely applied to any problems with any initial matrices as long as such problem has
a unique solution. The convergence rate and error estimates are given in terms of the
condition number of the associated iteration matrix. Furthermore, we apply the
proposed algorithm to sparse systems arising from discretizations of the
one-dimensional heat equation and the two-dimensional Poisson’s equation.
Numerical simulations illustrate the capability and effectiveness of the proposed
algorithm comparing to well-known methods and recent methods.
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1 Introduction
Linear matrix equations have played a crucial role in control theory and differential equa-
tions; see, e.g., [1–4]. There was much attention given to the following matrix equations:
the equation AXB = C, the Sylvester equation AX +XB = C, the Kalman–Yakubovich equa-
tion AXB + X = C, and, more generally, the equation AXB + CXD = F . Using the notions
of the matrix Kronecker product and the vector operator, we can obtain their exact so-
lutions. However, matrices with high dimensions (e.g., A, B of size 102 × 102) cause their
Kronecker product dimension to be very high (104 × 104, in that case). The dimension
problem leads to a computational difficulty due to exceeding computer memory when
computing an inverse of the large matrix.

In practical applications, we solve the linear matrix equations of large dimensions by
effective iterative methods. There are several ideas to formulate an iterative procedure,
namely, one can use matrix sign function [5], block recursion [6, 7], Krylov subspace [8, 9],
Hermitian and skew-Hermitian splitting [10, 11], and other related research works; see,
e.g., [12–15]. In the recent decade, the ideas of gradients, hierarchical identification and
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minimization of associated norm-error functions have encouraged and brought about
many researches; see, e.g., [16–28]. Such iterative schemes turn out to have wide appli-
cations in many engineering problems, especially in systems identification for parameter
estimation; see, e.g., [29–31].

In 2005, Ding and Chen applied the hierarchical identification principle to develop the
gradient-based iterative (GI) algorithms for solving the equation

∑p
j=1 AjXBj = C, which

includes the Sylvester equation, as follows.

Proposition 1.1 ([32]) If the matrix equation
∑p

j=1 AjXBj = C has a unique solution X,
then the iterative solution X(k) obtained from the gradient-based iterative (GI) algorithm
given by

X(k) =
(
X1(k) + X2(k) + · · · + Xp(k)

)
/p,

Xi(k) = X(k – 1) + μAT
i

(

C –
p∑

j=1

AjX(k – 1)Bj

)

BT
i ,

1
μ

=
p∑

j=1

λmax
(
AjAT

j
)
λmax

(
BT

j Bj
)

or
1
μ

=
p∑

j=1

‖Aj‖2‖Bj‖2

converges to the solution X.

In 2008, Ding, Liu, and Ding derived the following three iterative methods for the equa-
tion AXB = C, and the equation

∑p
j=1 AjXBj = F .

Proposition 1.2 ([33]) If the equation AXB = C has a unique solution X∗, then the
gradient-based iterative (GI) algorithm,

X(k + 1) = X(k) + μAT(
C – AX(k)B

)
BT ,

0 < μ <
2

λmax(AAT )λmax(BT B)
or μ ≤ 2

‖A‖2‖B‖2 ,

is such that X(k) → X∗.

Proposition 1.3 ([33]) If the equation AXB = C has a unique solution X∗, then the least
squares (LS) iterative algorithm,

X(k + 1) = X(k) + μ
(
AT A

)–1AT(
C – AX(k)B

)
BT(

BBT)–1, 0 < μ < 2

is such that X(k) → X∗.

Proposition 1.4 ([33]) If the matrix equation
∑p

j=1 AjXBj = F has a unique solution X,
then the iterative solution X(k) obtained from the least-squares-iterative (LSI) algorithm
given by

X(k) = X(k – 1) + μ

p∑

i=1

(AT
i A–1

) AT
i

(

F –
p∑

j=1

AjX(k – 1)Bj

)

BT
i
(
BiBT

i
)–1,

where 0 < μ < 2p, converges to the solution X.
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There are many variations and modifications of the GI algorithm [32], namely the RGI
algorithm [34], the MGI algorithm [35], the JGI algorithm [36], and the AJGI algorithm
[36].

In this paper, we introduce a gradient-descent iterative algorithm for solving the gener-
alized Sylvester equation that takes the form

p∑

t=1

AtXBt = C. (1)

Note that this equation includes all mentioned matrix equations as special cases. The ob-
tained algorithm is based on the vector representation and the variants of the previous
works in [32, 33]. The algorithm aims to minimize an error at each iteration by the idea of
gradient-descent. We show that the proposed algorithm can be applied to any problems
with any initial matrices as long as such problem has a unique solution. The convergence
rate and error estimates are given in terms of the condition number of the associated it-
eration matrix. Numerical simulations reveal that our proposed algorithm performs well
compared to the mentioned iterative methods. Moreover, our algorithm can be employed
to a discretization of famous partial differential equations namely, the one-dimensional
heat equation and the two-dimensional Poisson’s equation. Both equations are widely used
in many areas of theoretical physics, electrostatic and mechanical engineering; see, e.g.,
[37] and [38]. According to our numerical results, the algorithm is applicable to both heat
and Poisson’s equations comparing to their analytical solutions.

The outline of this paper is as follows. In Sect. 2, we supply auxiliary tools to solve linear
matrix equations and to make a convergence analysis of an iterative method for solving
such equations. We propose new algorithms for the equations AXB = C and

∑p
t=1 AtXBt

in Sects. 3 and 4, respectively. In Sect. 5, we presented numerical simulations for various
kinds of the linear matrix equations. In Sects. 6 and 7, we apply our algorithm to the one-
dimensional heat equation and the two-dimensional Poisson’s equation, respectively. The
numerical simulations for heat and Poisson’s equations are provided in their own sections.
Finally, we present a conclusion in Sect. 8.

2 Preliminaries on matrix analysis
Throughout this paper, all considered matrices are real. Denote the set of m×n matrices by
Mm,n. When m = n, we write Mn instead of Mn,n. Let I be an identity matrix of compatible
dimension. The (i, j)th entry of a matrix A is denoted by A(i, j) or aij.

Recall the Löwner partial order � for real symmetric matrices:

A � B ⇔ B – A is positive definite ⇔ xT Ax ≤ xT Bx, for all x ∈R
n.

The Kronecker (tensor) product of A = [aij] ∈ Mm,n and B ∈ Mp,q is defined by

A ⊗ B = [aijB]ij ∈ Mmp,nq.

The vector operator is defined for each A = [aij] ∈ Mm,n by

Vec(A) =
[
a11 · · · am1 a12 · · · am2 · · · a1n · · · amn

]T
.

It is clear that the vector operator is linear and injective.
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Lemma 2.1 ([39]) The Kronecker product and the vector operator posses the following
properties provided that all matrices are compatible:

(i) (A ⊗ B)T = AT ⊗ BT ,
(ii) (A ⊗ B)(C ⊗ D) = AC ⊗ BD,

(iii) Vec(ABC) = (CT ⊗ A) Vec(B).

To perform convergence analysis, the spectral norm, the Frobenius norm, and the con-
dition number of A ∈ Mm,n are used and respectively defined by

‖A‖2 =
√

λmax
(
AT A

)
, ‖A‖F =

√
tr
(
AT A

)
, κ(A) =

(
λmax(AT A)
λmin(AT A)

)1/2

.

We recall the following properties:

Lemma 2.2 ([40]) For any compatible matrices A and B, we have
(i) ‖AT A‖2 = ‖A‖2

2,
(ii) ‖AT‖2 = ‖A‖2,

(iii) ‖AB‖F ≤ ‖A‖2‖B‖F .

3 The equation AXB = C
Consider the matrix equation

AXB = C, (2)

where A ∈ Mp,m has full column-rank, B ∈ Mn,q has full row-rank, C ∈ Mp,q is a known
constant matrix, and X ∈ Mm,n is unknown. The hypotheses imply the invertibility of AT A
and BBT , and thus we obtain the unique solution to be

X∗ =
(
AT A

)–1AT CBT(
BBT)–1. (3)

However, to compute (AT A)–1 and (BBT )–1 requires a large amount of data storage if the
sizes of matrices are large. Thus, in this section, we shall propose a new iterative method
to solve (2) based on gradients and the steepest descend which provides an appropriate
sequence of convergent factors for minimizing an error at each iteration. Moreover, the
discussion in this section leads to a treatment for a general matrix equation in Sect. 4.

3.1 Proposed algorithm
We consider the Frobenius norm-error ‖AXB – C‖F which can be equally transform into
‖(BT ⊗ A) Vec(X) – Vec(C)‖F via Lemma 2.1(iii). So, we define the quadratic norm-error
function f : Rmn → R by

f (x) :=
1
2
∥
∥
(
BT ⊗ A

)
x – Vec(C)

∥
∥2

F .

We know that a norm function is a convex function, so f is convex. We assume that the
exact solution X∗ of (2) is uniquely determined, hence an optimal matrix X∗ of f exists.
We start by having an arbitrary initial matrix X(0) and then at every step k > 0 we itera-
tively move to the next matrix X(k + 1) along an appropriate direction, i.e., the negative
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gradient of f , together with a suitable step size. In the kth step, the step size τk+1 is changed
appropriately in order to incur the minimum error. The gradient-descent iterative method
thus can be described through the following recursive rule:

X(k + 1) = X(k) – τk+1∇f
(
Vec

(
X(k)

))
.

In order to do that, we recall the following gradient formula:

d
dX

tr(AX) =
d

dX
tr
(
XT AT)

= AT .

Now, we find the gradient of function f and deduce its derivatives in detail. Letting S =
BT ⊗ A, x = Vec(X), and ĉ = Vec(C), we have

∇f (x) =
df (x)

dx
=

1
2

d
dx

tr
(
(Sx – ĉ)T (Sx – ĉ)

)

=
1
2

d
dx

tr
(
SxxT ST – ĉxT ST – Sx̂cT + ĉ̂cT)

= ST (Sx – ĉ). (4)

Thus, our new iterative equation is in the form

Vec
(
X(k + 1)

)
= Vec

(
X(k)

)
+ τk+1

(
BT ⊗ A

)T(
Vec(C) –

(
BT ⊗ A

)
Vec(X)

)
.

Using Lemma 2.1, we have

X(k + 1) = X(k) + τk+1
(
AT(

C – AX(k)B
)
BT)

.

Next, we choose a step size. To generate the best step size at each iteration, we minimize
an error which occurs at the next iteration, X(k + 1). Then, for each k ∈ N ∪ 0, we define
φk+1 : [0,∞) →R by

φk+1(τ ) := f
(
Vec

(
X(k + 1)

))

=
1
2
∥
∥
(
BT ⊗ A

)
Vec

(
X(k) + τk+1

(
AT(

C – AX(k)B
)
BT))

– Vec(C)
∥
∥2

F .

Now, we shall minimize the function φk+1(τ ) by applying the properties of matrix trace.
Before that, we may transform φk+1(τ ) into a convenient form by letting c = ĉ – Sx and
b̃ = SST c, so that

φk+1(τ ) =
1
2
∥
∥S

(
x(k) + τk+1ST(

ĉ – Sx(k)
))

– ĉ
∥
∥2

F

=
1
2
∥
∥τk+1SST(

ĉ – Sx(k)
)

+ Sx(k) – ĉ
∥
∥2

F

=
1
2
‖τk+1b̃ – c‖2

F .

Differentiating both sides, we have

dφk+1(τ )
dτ

=
1
2

d
dτ

tr
(
(τ b̃ – c)T (τ b̃ – c)

)
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=
1
2

d
dτ

tr
(
τ b̃τ b̃T – τ b̃cT – cτ b̃T + ccT)

= τ tr
(
b̃b̃T)

– tr
(
b̃cT)

.

Note that the second derivative of φk+1(τ ) is the constant tr(b̃b̃T ), which is positive. Setting
dφk+1(τ )/dτ = 0 and using Lemma 2.1(iii), we obtain the minimizer of φk+1(τ ) as follows:

τk+1 =
‖(BT ⊗ A)T (Vec(C) – (BT ⊗ A) Vec(X(k)))‖2

F
‖(BT ⊗ A)(BT ⊗ A)T (Vec(C) – (BT ⊗ A) Vec(X(k)))‖2

F

=
‖AT (C – AX(k)B)BT‖2

F
‖AAT (C – AX(k)B)BT B‖2

F
.

Summarizing the direction and the step size altogether, we get:

Algorithm 3.1 The gradient-descent iterative algorithm for solving (2).
Initialization step. Given any small error ε > 0, choose an initial matrix X(0). Set k := 0.

Compute Â = AAT , and B̂ = BT B.
Stopping rule. Compute E(k) = C – AX(k)B. If ‖E(k)‖F < ε, stop. Otherwise, go to the next

step.
Updating step. Compute

τk+1 =
∑m

i=1
∑n

j=1(
∑q

β=1(
∑p

α=1 AT (i,α)E(α,β))BT (β , j))2

∑p
i=1

∑q
j=1(

∑q
β=1(

∑p
α=1 Â(i,α)E(α,β))̂B(β , j))2

,

X(k + 1) = X(k) + τk+1AT E(k)BT .

Set k := k + 1 and return to Stopping rule.

Remark 3.2 In Algorithm 3.1, we introduce the matrices Â, B̂, and E(k) to avoid duplicate
manipulations. The term E(k) or E(α,β) in the denominator of the formula of τk+1 does
not cause a severe propagation of errors when X(k) is close to the exact solution. This is
because the Stopping rule prevents E(α,β) from being a very small number, and there is
also the term E(α,β) in the numerator. A similar comment is applied to any developed
algorithms in this paper.

3.2 Convergence of the algorithm
Here, we will prove that Algorithm 3.1 converges to the exact solution. The following
analysis will hold for strongly convex functions. Recall that a twice-differentiable convex
function f : Rn → R is said to be strongly convex if there exist m, M ∈ [0,∞) such that
mI � ∇2f (x) � MI for all x ∈R

n.

Lemma 3.3 ([41]) If f is strongly convex on R
n, then for any x, y ∈R

n

f (y) ≥ f (x) + ∇f (x)T (y – x) +
m
2

‖y – x‖2
F , (5)

f (y) ≤ f (x) + ∇f (x)T (y – x) +
M
2

‖y – x‖2
F . (6)
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Theorem 3.4 If (2) is consistent and has a unique solution X∗, then the iterative sequence
{X(k)} generated by Algorithm 3.1 converges to X∗ for any initial matrix X(0), i.e., X(k) →
X∗ as k → ∞.

Proof If ∇f (Vec(X(k))) = 0 for some k, then X(k) = X∗ and the result holds. So assume that
∇f (Vec(X(k))) �= 0 for all k. To investigate its convexity, let us find the second derivative.
Indeed, we have from (4) and Lemma 2.1 that

∇2f
(
Vec(X)

)
=

(
BT ⊗ A

)T(
BT ⊗ A

)
= BBT ⊗ AT A.

For convenience, we write λmin and λmax instead of λmin(BBT ⊗AT A) and λmax(BBT ⊗AT A),
respectively. Since BBT ⊗ AT A is symmetric, we have

λminI � ∇2f
(
Vec(X)

) � λmaxI,

meaning that f is strongly convex. Considering φk+1(τ ) = f (Vec(X(k + 1))) and applying (6)
in Lemma 3.3, we obtain

φk+1(τ ) ≤ f
(
Vec

(
X(k)

))
– τ

∥
∥
∥
∥∇f

(
Vec

(
X(k)

))
∥
∥
∥
∥

2

F
+

λmaxτ
2

2

∥
∥
∥
∥∇f

(
Vec

(
X(k)

))
∥
∥
∥
∥

2

F
.

The right-hand side is minimized by τk+1 = 1/λmax, and

f
(
Vec

(
X(k + 1)

))
= φk+1(τk+1)

≤ f
(
Vec

(
X(k)

))
–

1
2λmax

∥
∥∇f

(
Vec

(
X(k)

))∥
∥2

F . (7)

It follows from (5) that

f
(
Vec

(
X(k + 1)

)) ≥ f
(
Vec

(
X(k)

))
– τ

∥
∥∇f

(
Vec

(
X(k)

))∥
∥2

F

+
λminτ

2

2
∥
∥∇f

(
Vec

(
X(k)

))∥
∥2

F . (8)

We find that τ = 1/λmin minimizes the RHS of (8), i.e.,

0 ≥ f
(
Vec

(
X(k)

))
–

1
2λmin

∥
∥∇f

(
Vec

(
X(k)

))∥
∥2

F .

Hence,

∥
∥∇f

(
Vec

(
X(k)

))∥
∥2

F ≥ 2λminf
(
Vec

(
X(k)

))
. (9)

Substituting (9) into (7) and then putting c := 1 – λmin/λmax, we have

f
(
Vec

(
X(k + 1)

)) ≤ cf
(
Vec

(
X(k)

))
.

We obtain inductively that

f
(
Vec

(
X(k)

)) ≤ ckf
(
Vec

(
X(0)

))
.
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Since A has full column-rank and B has full row-rank, BBT ⊗ AT A is invertible. It follows
that BBT ⊗ AT A is positive definite, which implies λmin > 0 and thus 0 < c < 1. Hence,
f (Vec(X(k))) → 0 as k → ∞. �

4 The equation
∑p

t=1 AtXBt

In this section, we consider the generalized Sylvester equation

p∑

t=1

AtXBt = C, (10)

where for each t = 1, . . . , p At ∈ Mq,m is a full column-rank matrix, Bt ∈ Mn,r is a full row-
rank matrix, C ∈ Mq,r is a known constant matrix, and X ∈ Mm,n is an unknown matrix.
An equivalent condition for (10) to have a unique solution is that P =

∑p
t=1 BT

t ⊗ At is
invertible. Its unique solution is given by

Vec
(
X∗) =

(
PT P

)–1PT Vec(C). (11)

We shall introduce a new iterative method for solving (10) based on gradients and the
steepest descend which provides an appropriate sequence of convergent factors for mini-
mizing an error at each iteration.

4.1 Proposed algorithm
We define the quadratic norm-error function f̃ : Rmn →R by

f̃ (x) :=
1
2
∥
∥Px – Vec(C)

∥
∥2

F .

It is obvious that f̃ is convex. For convenience, we let P =
∑p

t=1 BT
t ⊗A. We assume that P is

invertible, then the exact solution exists. The gradient-descent iterative method therefore
can be described through the following recursive rule:

X(k + 1) = X(k) – τ̃k+1∇ f̃
(
Vec

(
X(k)

))
.

To search for the direction, we use the same techniques as in the previous section and then
obtain

∇ f̃
(
Vec(X)

)
= PT(

P Vec(X) – Vec(C)
)
.

Thus, our new iterative equation is in the form

Vec
(
X(k + 1)

)
= Vec

(
X(k)

)
+ τ̃k+1PT(

P Vec(X) – Vec(C)
)
.

Using Lemma 2.1, we obtain

X(k + 1) = X(k) + τ̃

p∑

t=1

(

AT
t

(

C –
p∑

l=1

AlX(k)Bl

)

BT
t

)

.
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Next, we choose a step size. With the same technique as in the previous section, we mini-
mize φ̃ : [0,∞) →R by for each k = 0, 1, . . . , φ̃k+1(τ̃ ) := f̃ (X(k + 1)). Similarly, the minimizer
of function φ̃k+1(τ̃ ) is

τ̃k+1 =
‖∑p

t=1(AT
t (C –

∑p
l=1 AlX(k)Bl)BT

t )‖2
F

‖∑p
t=1

∑p
h=1(AtAT

h (C –
∑p

l=1 AlX(k)Bl)BT
h Bt)‖2

F
.

Summarizing the direction and the step size altogether, we get:

Algorithm 4.1 The gradient-descent iterative algorithm for solving (10).
Initialization step. Given any small error ε > 0, choose an initial matrix X(0). Set k := 0.

Compute Aα,β = AαAT
β , and Bα,β = BT

α Bβ for all α,β = 1, . . . , p.
Stopping rule. Compute E(k) = C –

∑p
t=1 AtX(k)Bt . If ‖E(k)‖F < ε, stop. Otherwise, go to

the next step.
Updating step. Compute

τ̃k+1 =
∑m

i=1
∑n

j=1(
∑p

t=1
∑r

β=1
∑q

α=1 AT
t (i,α)E(α,β)BT

t (β , j))2

∑q
i=1

∑r
j=1(

∑p
t=1

∑p
h=1

∑r
β=1

∑q
α=1 At,h(i,α)E(α,β)Bt,h(β , j))2

,

X(k + 1) = X(k) + τ̃k+1

p∑

t=1

AT
t E(k)BT

t .

Set k := k + 1 and return to the Stopping rule.

4.2 Convergence analysis of the algorithm
In this subsection, we shall show that Algorithm 4.1 is applicable for any choice of the ini-
tial matrix X(0) as long as equation (10) has a unique solution. After that, we shall discuss
error estimates and the asymptotic convergence rate of the algorithm.

Theorem 4.2 If (10) is consistent and has a unique solution X∗, or equivalently, P is in-
vertible, then the iterative sequence {X(k)} generated by Algorithm 4.1 converges to X∗ for
any initial matrix X(0), i.e., X(k) → X∗ as k → ∞.

Proof Convergence of Algorithm 4.1 can be proved similarly as in Theorem 3.4. In this
case, we have

λmin
(
PT P

)
I � ∇2 f̃

(
Vec

(
X(k)

))
= PT P � λmax

(
PT P

)
I,

which implies the strong convexity of f̃ . In a similar manner, we get

f̃
(
Vec

(
X(k + 1)

)) ≤ c̃f̃
(
Vec

(
X(k)

))
, (12)

where c̃ := 1 – λmin(PT P)/λmax(PT P). By induction, we obtain

f̃
(
Vec

(
X(k)

)) ≤ c̃k f̃
(
Vec

(
X(0)

))
. (13)

The uniqueness of the solution implies that P is positive definite, and thus 0 < c̃ < 1. Hence,
f̃ (Vec(X(k))) → 0 as k → ∞. �
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From now on, we denote κ = κ(P), the condition number of P. Observe that c̃ = 1 – κ–2.
According to Lemma 2.1(iii), the bounds (12) and (13) give rise to the following estimates:

∥
∥
∥
∥
∥

p∑

t=1

AtX(k)Bt – C

∥
∥
∥
∥
∥

F

≤ (
1 – κ–2) 1

2

∥
∥
∥
∥
∥

p∑

t=1

AtX(k – 1)Bt – C

∥
∥
∥
∥
∥

F

, (14)

∥
∥
∥
∥
∥

p∑

t=1

AtX(k)Bt – C

∥
∥
∥
∥
∥

F

≤ (
1 – κ–2) k

2

∥
∥
∥
∥
∥

p∑

t=1

AtX(0)Bt – C

∥
∥
∥
∥
∥

F

. (15)

Since 0 < c̃ < 1, it follows that if ‖∑p
t=1 AtX(k – 1)Bt – C‖F are nonzero, then

∥
∥
∥
∥
∥

p∑

t=1

AtX(k)Bt – C

∥
∥
∥
∥
∥

F

<

∥
∥
∥
∥
∥

p∑

t=1

AtX(k – 1)Bt – C

∥
∥
∥
∥
∥

F

. (16)

We can summarize the above discussion as follows:

Theorem 4.3 Suppose the hypothesis of Theorem 4.2 holds. The convergence rate of Algo-
rithm 4.1 (with respect to the certain error ‖∑p

t=1 AtX(k)Bt – C‖F ) is governed by
√

1 – κ–2.
Moreover, the error estimates ‖∑p

t=1 AtX(k)Bt – C‖F compared to the previous iteration
and the first iteration are provided by (14) and (15), respectively. In particular, the relative
error at each iteration gets smaller than the previous (nonzero) error, as in (16).

Theorem 4.4 Suppose the hypothesis of Theorem 4.2 holds. Then the error estimates
‖X(k) – X∗‖F compared to the previous iteration and the first iteration of Algorithm 4.1
are given as follows:

∥
∥X(k) – X∗∥∥

F ≤ κ
√

κ2 – 1
∥
∥X(k – 1) – X∗∥∥

F , (17)
∥
∥X(k) – X∗∥∥

F ≤ κ2(1 – κ–2) k
2
∥
∥X(0) – X∗∥∥

F . (18)

In particular, the convergence rate of the algorithm is governed by
√

1 – κ–2.

Proof Utilizing equation (15) and Lemma 2.2, we have

∥
∥X(k) – X∗∥∥

F =
∥
∥Vec

(
X(k)

)
– Vec

(
X∗)∥∥

F

=
∥
∥
(
PT P

)–1(PT P
)

Vec
(
X(k)

)
–

(
PT P

)–1(PT P
)

Vec
(
X∗)∥∥

F

≤ ∥
∥
(
PT P

)–1∥∥
2

∥
∥PT∥

∥
2

∥
∥P Vec

(
X(k)

)
– P Vec

(
X∗)∥∥

F

≤ (
1 – κ–2) k

2
∥
∥
(
PT P

)–1∥∥
2

∥
∥PT∥

∥
2

∥
∥P Vec

(
X(0)

)
– Vec(C)

∥
∥

F

≤ (
1 – κ–2) k

2
∥
∥
(
PT P

)–1∥∥
2

∥
∥PT∥

∥
2‖P‖2

∥
∥X(0) – X∗∥∥

F

=
(
1 – κ–2) k

2 λmax(PT P)
λmin(PT P)

∥
∥X(0) – X∗∥∥

F

= κ2(1 – κ–2) k
2
∥
∥X(0) – X∗∥∥

F .
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Since the asymptotic behavior of the above error depends on the term (1 – κ–2) k
2 , the

asymptotic convergence rate for the algorithm is governed by
√

1 – κ–2. In a similar man-
ner but making use of (14) instead of (15), we obtain

∥
∥X(k) – X∗∥∥

F ≤ (
1 – κ–2) 1

2
∥
∥
(
PT P

)–1∥∥
2

∥
∥PT∥

∥
2

∥
∥P Vec

(
X(k – 1)

)
– Vec(C)

∥
∥

F

≤ (
1 – κ–2) 1

2
∥
∥
(
PT P

)–1∥∥
2

∥
∥PT∥

∥
2‖P‖2

∥
∥X(k – 1) – X∗∥∥

F

= κ2(1 – κ–2) 1
2
∥
∥X(k – 1) – X∗∥∥

F ,

and hence (17) is reached. �

Thus, the condition number κ determines the asymptotic convergence rate, as well as
how far our initial matrix was from the exact solution. The closer κ gets to 1, the faster
the algorithm converges to the required result.

5 Numerical simulations for a class of the generalized Sylvester matrix
equations

In this section, we present applications of our proposed algorithms to the certain linear
matrix equations. To show the effectiveness and capability of our algorithms, we compare
our proposed algorithms to the mentioned existing algorithms as well as the direct meth-
ods (3) and (11). For convenience, we abbreviate TauOpt to represent our algorithms. To
measure the computational time taken for each program, we apply the tic and toc func-
tions in MATLAB and abbreviate CT for it. The readers are recommended to consider
all reported results, such as errors, CTs, figures, while comparing the performance of any
algorithms. To measure the error at the kth step of the iteration, we consider the following
error:

γk :=
∥
∥X(k) – X∗∥∥

F .

All iterations have been carried out by MATLAB R2018a, Intel(R) Core(TM) i7-6700HQ
CPU @ 2.60 GHz, 8.00 GB RAM, PC environment.

Example 5.1 We consider the equation AXB = C with

A =

⎡

⎢
⎣

1 –1 2 3 1 –3 3 2
2 3 –2 2 2 1 3 3
3 1 1 –1 –3 –2 –1 3

⎤

⎥
⎦

T

and

B =

⎡

⎢
⎣

1 2 –5 9 7 5 1 0 –6 3
2 –7 8 3 0 1 2 3 5 –6
6 –5 2 1 0 3 –9 8 7 6

⎤

⎥
⎦ .

We choose the initial matrix X(0) = 10–6 ones(3, 3) where ones(m, n) denotes the m × n
matrix with contains 1 at every position. After running Algorithm 3.1, the numerical so-
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Table 1 Error and CT for Example 5.1

Method Error CT

TauOpt 7.2231e–14 0.0057
GI 12.1879 0.0004
LS 13.8387 0.0027
direct 0.3051

Figure 1 Errors for Example 5.1

lutions converge to the exact solution

X∗ =

⎡

⎢
⎣

1 5 –9
6 5 4
1 2 3

⎤

⎥
⎦ .

In this example, we compare Algorithm 3.1 with GI (Proposition 1.2) and LS (Proposi-
tion 1.3). All reports are presented after running 100 iterations. Table 1 shows the errors
at the final iteration as well as the computational time. Figure 1 displays the error plot.
Table 1 implies that our algorithm takes significantly less computational time than the di-
rect method. For comparison to other two algorithms, it seems that our algorithm takes a
little more time but both Table 1 and Fig. 1 indicate that ours obtains a highly satisfactory
approximated solution.

Example 5.2 In this example we consider the Sylvester equation with

A = tridiag(3, –9, 1) ∈ M100 and B = tridiag(–1, –2, 5) ∈ M100.

After running Algorithm 4.1 with an initial matrix X(0) = 10–6 ones(100, 100), the numer-
ical solution converges to the exact solution X∗ = tridiag(1, 2, 3) ∈ M100.

We compare Algorithm 4.1 with the following algorithms: GI [32], RGI [34], MGI [35],
JGI (Algorithm 4, [36]) and AJGI (Algorithm 5, [36]). The results after running for 100
iterations are shown in Fig. 2 and Table 2. According to the error and CT in Table 2 and
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Figure 2 Errors for Example 5.2

Table 2 Error and CT for Example 5.2

Method Error CT

TauOpt 0.0891 0.0568
GI 27.9847 0.0341
RGI ω = 0.2 32.9285 0.0300
RGI ω = 0.4 16.5017 0.0288
RGI ω = 0.7 17.6606 0.0261
MGI 35.1852 0.0415
JGI 23.1308 0.0292
AJGI 36.3178 0.0423
direct 71.2048

Table 3 Errors and CT for Example 5.3

Method Error CT

TauOpt 2.0180e–16 0.0496
GI 0.3227 0.0124
LSI 13.1666 0.0242
direct 0.3867

Fig. 2, we find that despite a little longer computational time, our final error outperforms
the other algorithms.

Example 5.3 In this example we consider equation (10) when p = 3 with

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3
–1 3 1
2 –2 1
3 2 –1
1 2 –3

–3 1 –2
3 3 –1
2 3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 6 5
6 9 –4
3 2 –1
1 2 –3

–3 1 –2
3 3 –1
6 –1 0
2 3 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, A3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–2 0 5
6 9 –4
9 5 –4
0 1 6
9 –2 0
3 3 –1

–7 2 0
–8 8 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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Figure 3 Errors for Example 5.3

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 6
2 –7 –5

–5 8 2
9 3 1
7 0 0
5 1 3
1 2 –9
0 3 8

–6 5 7
3 –6 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 6 6
2 –2 –5

–5 0 2
4 5 1
1 0 0
0 1 3
3 2 3

–9 3 –5
–6 5 9
3 –6 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

, B3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 6 6
2 –2 6
1 0 3
1 5 0
1 0 –7
0 1 3
3 0 3

–9 9 –5
–6 –4 9
3 –6 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

.

We choose an initial matrix X(0) = 10–6 ones(3, 3). After running Algorithm 4.1, the nu-
merical solutions converge to the exact solution

X∗ =

⎡

⎢
⎣

6 2 0
–9 4 –2
3 6 0

⎤

⎥
⎦ .

In this example, we compare Algorithm 4.1 with GI (Proposition 1.1) and LSI (Proposi-
tion 1.4). The results after 100 iterations are shown in Fig. 3 and Table 3. We find that
Algorithm 4.1 gives the fastest convergence.

6 An application to a discretization of one-dimensional heat equation
In this section, we apply our proposed algorithm to a discretization of one-dimensional
heat equation:

∂u
∂t

= c2 ∂2u
∂x2 on [0,βt] × [αx,βx] (19)
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subject to the boundary conditions u(αx, t) = gl , u(βx, t) = gr , u(x, 0) = gd where gl , gr , gd are
given functions.

6.1 Discretization of the heat equation
We make discretization at the grid points in the rectangle which are at (xi, tj) with xi =
αx + ihx and tj = jht where

hx =
βx – αx

Nx + 1
and ht =

βt

Nt
. (20)

We denote uij = u(xi, tj). By the Forward Time Central Space (FTCS) method, we obtain

∂u
∂t

=
ui,j+1 – uij

ht
= c2 ui–1,j – 2uij + ui+1,j

h2
x

= c2 ∂2u
∂x2 ,

or equivalently,

ui,j+1 = F
(
ui–1,j + ui+1,j

)
+ (1 – 2F)uij,

where F = htc2/h2
x for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Nt . We transform equation (19) into a linear

system of NxNt equations in NxNt unknowns u11, . . . , uNxNt :

TH Vec(U) = V , (21)

where U = [uij], TH ∈ MNxNt has Nt × Nt blocks of the form INx on its diagonal and
tridiag(–F , –(1 – 2F), –F) under its diagonal. Here is an example of TH where Nt = 3 and
Nx = 2:

TH =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

–(1 – 2F) –F 1
–F –(1 – 2F) 1

–(1 – 2F) –F 1
–F –(1 – 2F) 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The vector V is partitioned in Nx periods as
[
V T

1 V T
2 · · · V T

Ny

]T where

V1 =

⎡

⎢
⎢
⎢
⎢
⎣

Fgd(αx, 0) + (1 – 2F)gd(x1, 0) + Fgd(x2, 0)
Fgd(x1, 0) + (1 – 2F)gd(x2, 0) + Fgd(x3, 0)

...
Fgd(xNt–2, 0) + (1 – 2F)gd(xNt–1, 0) + Fgd(Nt , 0)

⎤

⎥
⎥
⎥
⎥
⎦

and Vi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Fgl(αx, i – 1)
0
...
0

Fgr(βx, i – 1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for i = 2, . . . , Ny.
Equation (21) is formed as AXB = C where A = TH , X = Vec(U), B = I and C = V . Ac-

cording to Algorithm 3.1, we obtain an algorithm for (21) as follows:

Algorithm 6.1 The gradient-descent iterative algorithm for solving one-dimensional heat
equation.



Kittisopaporn and Chansangiam Advances in Difference Equations        (2020) 2020:324 Page 16 of 24

Input step. Input Nx, Nt ∈N as numbers of partition.
Initialization step. Let hx and ht be as in (20) and, for each i = 1, . . . , Nx and j = 1, . . . , Nt ,

xi = αx + ihx and tj = jht , compute s = THV , S = T2
H , ŝ = THs, and Ŝ = THS. Choose

u(0) ∈ R
NxNt and set k := 0.

Updating step. Compute

τk+1 =
∑NxNt

p=1 (sp –
∑NxNt

q=1 Spquq(k))2

∑NxNt
p=1 (̂s –

∑NxNt
q=1 Ŝpquq(k))2

,

u(k + 1) = u(k) + τk+1
(
s – Su(k)

)
.

Set k := k + 1 and repeat the Updating step.

Here, we denote sp the pth entry of a vector s and Spq the (p, q)-entry of S. To stop the
algorithm, an appropriate stopping rule is ‖V – TH u(k)‖2

F < ε where ε is a small positive
number.

6.2 Numerical simulation for the heat equation
To obtain the numerical solutions, we need to partition the rectangular domain. The ac-
curacy of the solution depends on the size of the partition grid. A better accuracy must be
from a finer grid system and it causes the size of the associated matrix TH to be larger.

Example 6.2 Consider the heat equation (19) on {(x, t) : 0 < x < 1, t > 0} with the boundary
and initial conditions given as:

u(0, t) = u(1, t) = 0 and u(x, 0) = sinπx.

Let c = 1, Nx = 4, ht = 0.01. We have hx = 0.2 and F = 0.25. In this case, we consider Nt =
10, so the size of the matrix TH is 40 × 40. We run Algorithm 6.1 with the initial vector
u(0) = 10–6[1 · · · 1]T and the numerical solutions converge to the exact solution

u∗(x, t) = e–π2t sin(πx).

In this example we compare our algorithm to the following algorithms: GI (Proposi-
tion 1.2), RGI [34], MGI [35], LS (Proposition 1.3), JGI (Algorithm 4, [36]) and AJGI (Al-
gorithm 5, [36]). The results after running 500 iterations are shown in Figs. 4 and 5, as well
as Tables 4 and 5.

7 An application to a discretization of two-dimensional Poisson’s equation
In this section, we give an application of the proposed algorithm to a discretization of
two-dimensional Poisson’s equation:

∂2u(x, y)
∂x2 +

∂2u(x, y)
∂y2 = f (x, y) on [αx,βx] × [αy,βy] (22)

with the boundary conditions u(x,βy) = gu, u(x,αy) = gd , u(αx, y) = gl , and u(βx, y) = gr

where gu, gd , gl , gr are given functions. Notice that the two-dimensional Laplace’s equa-
tion is a homogeneous case of the Poisson’s equation when the RHS function is zero, i.e.,
f (x, y) = 0.
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Figure 4 Errors for Example 6.2

Figure 5 The 3D-plot of the analytical solution (left) and the numerical solution (right) for Example 6.2

7.1 Discretization with rectangular grid
We make discretization at the grid points in the rectangle which are at (xi, yj) with xi =
αx + ihx and yj = αy + jhy where

hx =
βx – αx

Nx + 1
and hy =

βy – αy

Ny + 1
. (23)
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Table 4 Comparison of numerical and analytical results for Example 6.2

t u(x, t)

x = 0.2 x = 0.4 x = 0.6 x = 0.8

Numer Exact Numer Exact Numer Exact Numer Exact

0.01 0.5317 0.5325 0.8602 0.8617 0.8602 0.8617 0.5317 0.5325
0.02 0.4809 0.4825 0.7781 0.7807 0.7781 0.7807 0.4809 0.4825
0.03 0.4350 0.4371 0.7038 0.7073 0.7038 0.7073 0.4350 0.4371
0.04 0.3934 0.3961 0.6366 0.6408 0.6366 0.6408 0.3934 0.3961
0.05 0.3559 0.3588 0.5758 0.5806 0.5758 0.5806 0.3559 0.3588
0.06 0.3219 0.3251 0.5208 0.5261 0.5208 0.5261 0.3219 0.3251
0.07 0.2911 0.2946 0.4711 0.4766 0.4711 0.4766 0.2911 0.2946
0.08 0.2633 0.2669 0.4261 0.4318 0.4261 0.4318 0.2633 0.2669
0.09 0.2382 0.2418 0.3854 0.3912 0.3854 0.3912 0.2382 0.2418
0.10 0.2154 0.2191 0.3486 0.3545 0.3486 0.3545 0.2151 0.2191

Table 5 Errors and computational time for Example 6.2

Method Error CT

TauOpt 0.0445 0.0368
GI 2.0528 0.0072
RGI 2.5198 0.0076
MGI 1.6413 0.0078
LSI 3.0821 0.1155
JGI 2.1186 0.0072
AJGI 2.6405 0.0090

We denote uij = u(xi, yj), fij = f (xi, yj), as well as gu, gd , gl , gr . By the standard finite difference
approximation, we obtain

∂2u(x, y)
∂x2 +

∂2u(x, y)
∂y2 =

ui–1,j – 2uij + ui+1,j

h2
x

+
ui,j–1 – 2uij + ui,j+1

h2
y

, (24)

or equivalently,

h2
y(2uij – ui–1,j – ui+1,j) + h2

x(2uij – ui,j+1 – ui,j+1) = –h2
xh2

y fij,

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. Now, we can convert the differential equation (22) to a linear
system of NxNy equations in NxNy unknowns u11, . . . , uNxNy :

(
h2

yT1 + h2
xT2

)
Vec(U) = –h2

xh2
y Vec[fij] + h2

x(gu + gd) + h2
y(gl + gr), (25)

where U = [uij], T1 has Ny × Ny blocks of the form tridiag(–1, 2, –1) of Nx × Nx on its
diagonal and T2 also has Ny × Ny blocks of the form 2INx on its diagonal and –INx blocks
on its off-diagonals. The boundary conditions produce constant vectors gu, gd , gl , gr at the
RHS of (25) as follows:

gu =
[
gux1,βy gux2,βy · · · guxNx ,βy 0 · · · 0

]T
,

gd =
[
0 · · · 0 gdx1,αy gdx2,αy · · · gdxNx ,αy

]T
,

gl =
[

glαx ,yNy
0 · · · 0 glαx ,yNy–1

0 · · · glαx ,y1
0 · · · 0

]T
,

gr =
[
0 · · · 0 grβx ,yNy

0 · · · 0 grβx ,yNy–1
0 · · · grβx ,y1

]T
.
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Note that, for the Laplace’s equation, equation (25) will be reduced to

(
h2

yT1 + h2
xT2

)
Vec(U) = h2

x(gu + gd) + h2
y(gl + gr).

Equation (25) is formed as AXB = C where A = h2
yT1 + h2

xT2, X = Vec(U), B = I and
C = –h2

xh2
y Vec([fij]) + h2

x(gu + gd) + h2
y(gl + gr). According to Algorithm 3.1, we obtain an

algorithm for the rectangular-grid case as follows:

Algorithm 7.1 The gradient-descent iterative algorithm for solving two-dimensional Pois-
son’s equation.

Input step. Input Nx, Ny ∈N as numbers of partition.
Initialization step. Let hx and hy be as in (23) and for each i = 1, . . . , Nx and j = 1, . . . , Ny,

fij = f (xi, yj) where xi = αx + ihx and yj = αy + jhy. Compute c = –h2
xh2

y Vec[fij] + h2
x(gu +

gd) + h2
y(gl + gr), s = TN c, S = T2

N , t = TN s, and T = TN S where TN = h2
yT1 + h2

xT2.
Choose u(0) ∈R

NxNy and set k := 0.
Updating step. Compute

τk+1 =
∑NxNy

p=1 (sp –
∑NxNy

q=1 Spquq(k))2

∑NxNy
p=1 (tp –

∑NxNy
q=1 Tpquq(k))2

,

u(k + 1) = u(k) + τk+1
(
s – Su(k)

)
.

Set k := k + 1 and repeat the Updating step.

Here, we denote by sp the pth entry of a vector s and by Spq the (p, q)-entry of S. In case of
solving the two-dimensional Laplace’s equation, initially compute c = h2

x(gu + gd) + h2
y(gl +

gr). To stop the algorithm, a reasonable stopping rule is ‖c – TN u(k)‖2
F < ε where ε is a

small positive number. Since the coefficient matrix TN is sparse, the error norm can be
described more precisely:

∥
∥c – TN u(k)

∥
∥2

F = ‖c‖2
F – 2 tr

(
cT TN u(k)

)
+

∥
∥TN u(k)

∥
∥2

F

= ‖c‖2
F – 2h2

xh2
y

Nx∑

i=1

Ny∑

j=1

h2
Y fij(–ui–1,j + 2uij – ui+1,j)

+ h2
xfij(–ui,j+1 + 2uij – ui,j–1) +

∥
∥TN u(k)

∥
∥2

F .

7.2 Discretization with square grid
Now, we consider the Poisson’s equation (22) on the square [α,β]× [α,β] with the bound-
ary condition u = 0 on the boundary of the square. In this case, h := hx = hy and N := Nx =
Ny and hence

TN = IN ⊗ Tr + Tr ⊗ IN ,

where Tr = tridiag(–1, 2, –1) ∈ MN . Thereby, (25) can be transformed into

TN Vec(U) = –h2 Vec
(
[fij]

)
+ gu + gd + gl + gr , (26)
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or equivalently, TrU + UTr = G where G = –h2 Vec([fij]) + gu + gd + gl + gr . Thus (26) can be
solved by Algorithm 4.1 where P = TN .

To have the condition number of TN , we consider the smallest and largest eigenvalues
of Tr which are given respectively by (see, e.g., [42])

λ1 = 2
(

1 – cos
π

N + 1

)

≈
(

π

N + 1

)2

, λN = 2
(

1 – cos
Nπ

N + 1

)

≈ 4.

Since TN = IN ⊗ Tr + Tr ⊗ IN , the eigenvalue of TN is λi + λj where λi,λj ∈ σ (Tr). Thus, the
condition number of TN for large N is

κTN =
λN + λN

λ1 + λ1
≈ 4

π2 (N + 1)2. (27)

Corollary 7.2 The discretization (26) of the Poisson’s equation (22) can be solved by using
Algorithm 7.1 in which c = –h2 Vec[fij] + gu + gd + gl + gr so that the approximate solution
u(k) converges to the exact solution u∗ for any initial vector u(0). The convergence rate of the
algorithm is governed by

√
1 – κ–2

TN
, where κTN is given by (27). Moreover, the error estimates

are given as follows:

∥
∥u(k) – u∗∥∥

F ≤ κTN

(
1 – κ–2

TN

) 1
2
∥
∥u(k – 1) – u∗∥∥

F ,
∥
∥u(k) – u∗∥∥

F ≤ κTN

(
1 – κ–2

TN

) k
2
∥
∥u(0) – u∗∥∥

F .

7.3 Numerical simulations for the Poisson’s equation
Example 7.3 We consider an application of our algorithm to the two-dimensional Pois-
son’s equation (22) with

f (x, y) = –2π2 sin(πx) sin(πy), 0 < x < 1, 0 < y < 1,

and the boundary condition u = 0 on the boundary of the rectangle. It is called a Dirichlet
problem. We choose an initial vector u(0) = 10–6[1 · · · 1]T . We run Algorithm 7.1 with the
rectangular grid of 10 × 20 which causes the size of the matrix TN to be 200 × 200. The
analytical solution is

u∗(x, y) = sin(πx) sin(πy).

In this example, we provide only a comparison of numerical and analytical solutions in
Table 6, and a 3D-plot of both solutions in Fig. 6.

Example 7.4 Consider the two-dimensional Laplace’s equation on [0, 1] × [0,π ] with the
boundary conditions:

u(0, y) = sin y, u(1, y) = e sin y, u(x, 0) = 0, u(x,π ) = 0.

We run Algorithm 7.1 with the initial vector u(0) = [1 · · · 1]T . We choose two grid par-
titions: one has hx = 0.25, hy = π/4 and the other has hx = 0.0625, hy = π/32. So the sizes
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Table 6 Comparison of numerical and analytical results for Example 7.3

y u(x, y)

x = 0.3636 x = 0.5454 x = 0.7272 x = 0.9090

Numer Exact Numer Exact Numer Exact Numer Exact

0.1904 0.5136 0.5124 0.5588 0.5576 0.4267 0.4257 0.1587 0.1591
0.3808 0.8488 0.8468 0.9236 0.9214 0.7052 0.7035 0.2629 0.2623
0.5712 0.8889 0.8868 0.9673 0.9650 0.7386 0.7368 0.2753 0.2747
0.7616 0.6202 0.6187 0.6749 0.6732 0.5153 0.5140 0.1921 0.1916
0.9520 0.1359 0.1356 0.1479 0.1475 0.1129 0.1126 0.0423 0.0420

Figure 6 The 3D-plot of the analytical solution (left) and the numerical solution (right) for Example 7.3

Table 7 comparison of numerical and analytical results for Example 7.4

Exact hx = 0.25, hy = π /4 hx = 0.0625, hy = π /32

Numerical Error (%) Numerical Error (%)

u(0.25,π /4) 0.9079 0.9131 0.57 0.9080 0.01
u(0.50,π /2) 1.6487 1.6593 0.64 1.6489 0.01
u(0.75, 3π /4) 1.4969 1.5031 0.41 1.4971 0.01

of the matrix TN are 9 × 9 and 465 × 465, respectively. A comparison of numerical and
analytical results is shown in Table 7. Figure 7 displays a 3D-plot of the numerical and the
analytical results for the latter grid partition. Note that the analytical solution is

u∗(x, y) = ex sin y.

8 Conclusion
The proposed gradient-descent based iterative algorithm is well suited for solving the
generalized Sylvester matrix equation,

∑p
t=1 AtXBt = C. Such matrix equation can be re-

duced to a class of well-known linear matrix equations such as the Sylvester equation,
the Kalman–Yakubovich equation, and so on. The proposed algorithm is applicable for
any problems as long as At and Bt have full column-rank and full row-rank, respectively,
for all t. The convergence rate of the algorithm is governed by

√
1 – κ–2 where κ is the
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Figure 7 The 3D-plot of the analytical solution (left) and the numerical solution (right) for Example 7.4

condition number of
∑p

t=1 BT
t ⊗ At . As applications, our algorithm can be adapted to the

discretization of the one-dimensional heat equation and the two-dimensional Poisson’s
equation. According to numerical simulations, our algorithms converge fast to the exact
solution in spite of a little more computational time compared to other methods. The nu-
merical examples for heat and Poisson’s equations in Sects. 6 and 7 guarantee the capability
and adaptability of our proposed algorithms.
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