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1 Introduction
Many problems in real life involve Gronwall’s inequality [23]. It has had an important role
in the research of differential and integral equations for nearly 100 years. Its first gener-
alization proved by Richard Bellman [7] motivated many researchers to obtain various
generalizations and extensions [2, 3, 6, 31, 34, 35]. The Gronwall–Bellman type inequali-
ties enable critical insight into the uniqueness of solutions, a priori and error estimate in
the Galerkin method [41, Ch. 3].

Several research papers in the interval analysis (IA) are based on the demonstration of
an uncertain variable as an interval [22, 30, 32, 38]. The relevant formulations of interval
calculus on time scales, including some general approaches to differential theory, have
been systematized in recent paper [29]. The interval-valued functions and sequences have
been recently studied by many authors in various aspects (see [16–21]).

Inequalities are used as a tool for almost all mathematical branches and other subjects
of applied and engineering sciences. A detailed study of various inequalities is found in
[4, 24, 28, 42]. Some of the differential integral inequalities have been prolonged into set-
valued function [5, 10, 14, 15, 36]. Among the more recent investigations on interval-
valued Gronwall type inequalities, let us mention the work of Younus et al. [39, 40], where
the authors obtain Gronwall inequalities for the interval-valued functions under the no-
tion of Kulish–Mirankor partial order on a set of compact intervals. However, there are
many other partial orders, which cannot be covered by Kulish–Mirankor partial order.

In the study of Gronwall type inequalities, an important notion is an exponential func-
tion on time scales. A difficult situation has accrued in the case of trigonometric, expo-
nential, hyperbolic, and parabolic functions, where Hilger’s technique [25, 26] differs from
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Bohner and Peterson’s technique [8, 9]. A newly improved trigonometric, hyperbolic, and
parabolic functions base on Cayley transformation has been defined by Cieśliński [12, 13].

In the main part of the proposed study, we firstly discuss some new variants of Gronwall
type inequalities on time scale by using the concept of Cayley exponential function, which
is the generalization of some inequalities from [1, 11, 27]. Also, by defining an efficient
partial order on a set of compact intervals, we obtain new variants of Gronwall type in-
equality for interval-valued functions, which gives more general than existing results of
[39, 40].

2 Preliminary notation
For time scales calculus, we refer to [8, 29].

In order to define Cayley-exponential (shortly, C-exponential) function, Cieśliński [13],
redefined a notion of regressivity as follows:

Crd := {f : T →R : f is rd-continuous ∀ t ∈ T},
R :=

{
f ∈ Crd : μ(t)f (t) �= ±2 ∀ t ∈ T

k}

and

R+ :=
{

f ∈ Crd :
∣∣μ(t)f (t)

∣∣ < 2 ∀ t ∈ T
k}.

Under the binary operation ⊕, defined by α ⊕ β = α+β

1+ 1
4 μ2αβ

, R+ is an Abelian group [13,
Theorem 3.14]. However, the set R is not closed with respect to ⊕.

For f ∈R and s ∈ T, consider the subsequent initial value problem (IVP)

⎧
⎨

⎩
x�(t) = f (t)〈x(t)〉,
x(s) = 1,

(2.1)

where

〈
x(t)

〉
:=

x(t) + x(σ (t))
2

.

For h ∈R
+, the Cayley transformation ξh is defined as

ξh(z) : =

⎧
⎨

⎩

z, h = 0,
1
h Log( 1+ zh

2
1– zh

2
), h > 0,

and the Cayley-exponential function for f ∈R is defined by

Ef (t, s) : = exp

{∫ t

s
ξμ(τ )

(
f (τ )

)
�τ

}
for s, t ∈ T.

It is easy to see that Ef (·, s) on T is the unique solution of IVP (2.1).

Lemma 2.1 ([13]) If α,β ∈R, then the subsequent properties hold:
1. Eα(tσ , t0) = 1+ 1

2 α(t)μ(t)
1– 1

2 α(t)μ(t)
Eα(t, t0),
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2. (Eα(t, t0))–1 = E–α(t, t0) = 1
Eα (t,t0) ,

3. Eα(t, t0) = Eᾱ(t, t0),
4. Eα(t, t0)Eα(t0, t1) = Eα(t, t1),
5. Eα(t, t0)Eβ (t, t0) = Eα⊕β (t, t0).

Lemma 2.2 ([13]) If α ∈R+, then Eα > 0.

Lemma 2.3 ([13]) Eα(t, t0) = eβ (t, t0) if α(t) = β(t)
1+ 1

2 β(t)μ(t)
, β(t) = α(t)

1– 1
2 α(t)μ(t)

, with αμ �= ±2
and βμ �= –1.

These lemmas are Theorem 3.10 and 3.13 in [13] and Theorem 3.2 in [12], respectively.
Let

KC :=
{

[a, b] : a, b ∈R
}

.

For [x̄, x], [ȳ, y] ∈KC ,

[x̄, x] + [ȳ, y] = [x̄ + ȳ, x + y]

and

λ[x̄, x] =

⎧
⎪⎪⎨

⎪⎪⎩

[λx̄,λx] if λ > 0,

{0} if λ = 0,

[λx,λx̄] if λ < 0,

respectively. By definition, we have λX = Xλ ∀ λ ∈R.
Moreover,

[x̄, x] 	g [ȳ, y] =
[
min{x̄ – ȳ, x – y}, max{x̄ – ȳ, x – y}], (2.2)

where “	g ” is called gH-difference [30, 37].
For X = [x̄, x] ∈KC , width of X is defined as w(X) = x – x̄. By using w(·), we can write

X 	g Y =

⎧
⎨

⎩
[x̄ – ȳ, x – y], if w(X) ≥ w(Y ),

[x – y, x̄ – ȳ], if w(X) < w(Y ).
(2.3)

More explicitly, for X, Y , C ∈KC , we have

X 	g Y = C ⇐⇒
⎧
⎨

⎩
X = Y + C, if w(X) ≥ w(Y ),

Y = X + (–C), if w(X) < w(Y ).
(2.4)

Since KC is not totally order set (e.g., see [10, 30, 33, 39]). To compare the images of IVFs
in the context of inequalities, several partial order relations exist over KC , which are sum-
marized as follows.

For X, Y ∈KC , such that X = [x̄, x], Y = [ȳ, y], we say that:
1. “X 
LU Y (or X 
LR Y ), ⇔ x̄ ≤ ȳ and x ≤ y, X ≺LU Y if X 
LU Y and X �= Y ”.
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2. “X 
LC Y ⇔ x̄ ≤ ȳ and m(X) ≤ m(Y ), X ≺LC Y if X 
LC Y and X �= Y , where
m(X) = x̄+x

2 ”.
3. “X 
UC Y ⇔ x ≤ y and m(X) ≤ m(Y ), X ≺UC Y if X 
UC Y and X �= Y ”.
4. “X 
CW Y ⇔ m(X) ≤ m(Y ) and w(X) ≤ w(Y ), X ≺CW Y if X 
CW Y and X �= Y ,

where w(X) = x – x̄”.
5. “X 
LW Y ⇔ x̄ ≤ ȳ and w(X) ≤ w(Y ), X ≺LW Y if X 
LW Y and X �= Y ”.
6. “X 
UW Y ⇔ x ≤ y and w(X) ≤ w(Y ), X ≺UW Y if X 
UW Y and X �= Y ”.
Let P = {
LU,
LC,
UC,
CW,
LW,
UW} be the set of these partial orders on KC .
Some properties of these partial orders are examined in the following results.

Lemma 2.4 Let P1 : ={
LU,
LC,
UC,
CW,
UW}. If X 
LW Y , then X 
∗ Y ∀ 
∗∈ P1.

Proof For X, Y ∈ KC , with X = [x̄, x], Y = [ȳ, y], it implies that x̄ ≤ ȳ and x – x̄ ≤ y – ȳ.
By adding these two inequalities, we have x ≤ y and, furthermore, m(X) ≤ m(Y ). Hence
X 
∗ Y , ∀ 
∗∈ P1. �

Lemma 2.5 Let P2 : ={
UC,
UW}. If X 
CW Y , then X 
∗ Y ∀ 
∗∈ P2.

Proof For X, Y ∈ KC , with X = [x̄, x], Y = [ȳ, y], we have x̄ + x ≤ ȳ + y and x – x̄ ≤ y – ȳ. By
adding these two inequalities, we have x ≤ y. Hence X 
∗ Y , ∀ 
∗∈ P2. �

Lemma 2.6 Let X, Y , C ∈KC . If X 
LW Y and w(X) ≥ w(C), then X 	g C 
LW Y 	g C.

Proof For X, Y , C ∈ Ic with X = [x̄, x], Y = [ȳ, y] and C = [c̄, c+], LW partial order implies
that x̄ ≤ ȳ and x – x̄ ≤ y – ȳ. Since w(X) ≥ w(C), moreover w(Y ) ≥ w(X) ≥ w(C), it follows
that X 	g C = [x̄ – c̄, x – c+] and Y 	g C = [ȳ – c̄, y – c+]. By using the fact x̄ ≤ ȳ and x – x̄ ≤
y – ȳ implies that x̄ – c̄ ≤ ȳ – c̄ and x – x̄ – (c – c̄) ≤ y – ȳ – (c – c̄). Hence, we obtain that
X 	g C 
LW Y 	g C. �

The subsequent corollaries are direct implications of Lemma 2.4 and 2.5.

Corollary 2.7 If X 
LU Y , then X 
LC Y and X 
UC Y .

Corollary 2.8 If X 
CW Y , then X 
UC Y and X 
UW Y .

Corollary 2.9 If X 
UW Y , then X 
UC Y .

However, the converse of the above implications may not be true. To demonstrate this,
we provide the following examples.

Example 2.10 For X = [1, 4] and Y = [3, 5], X 
LU Y , but X �CW Y , X �LW Y and
X �UW Y .

If X = [1, 4] and Y = [3, 3.5], then X 
LC Y , but X �∗ Y for all {
LU,
LW,
UC,

CW,
UW}.

[1, 2] 
UC [ 1
2 , 4], but [1, 2] �LU [ 1

2 , 4] and [1, 2] �LC [ 1
2 , 4], furthermore, [2, 7

2 ] 
UC [3, 4],
[2, 7

2 ] �∗ [3, 4], ∀ {
LW,
CW,
UW}.
Moreover, for X = [1, 2] and Y = [ 1

2 , 5], X 
CW Y , X �LU Y , X �LC Y , and X �LW Y .
Finally, let X = [3, 4] and Y = [ 1

2 , 5], then X 
UW Y , X �LU Y , X �LC Y , X �LW Y , and
X �CW Y .
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It is noted that the partial order 
LC does not imply other partial orders as shown in
Example 2.10.

For the interval-valued calculus on time scales, we refer to [29].

3 Main results
Throughout this section, assume that ς0 ∈ T, T0 = [ς0,∞) ∩T and T

–
0 = (–∞,ς0] ∩T.

Lemma 3.1 ([40]) Let f , x ∈ Crd and a ∈R+. Then

x�(ς ) ≤ a(ς )
〈
x(ς )

〉
+ f (ς ) ∀ ς ∈ T0 (3.1)

implies

x(ς ) ≤ x(ς0)Ea(ς ,ς0) +
∫ ς

ς0

f (s)
〈
E–a(s,ς )

〉
�s (3.2)

∀ ς ∈ T0.

Lemma 3.2 ([40]) Let f , x ∈ Crd and a ∈R+. Then

x�(ς ) ≤ –a(ς )
〈
x(ς )

〉
+ f (ς ) ∀ ς ∈ T0 (3.3)

implies

x(ς ) ≤ x(ς0)E–a(ς ,ς0) +
∫ ς

ς0

f (s)
〈
Ea(s,ς )

〉
�s ∀ ς ∈ T0 (3.4)

and

x�(ς ) ≤ –a(ς )
〈
x(ς )

〉
+ f (ς ) ∀ ς ∈ T

–
0 (3.5)

implies

x(ς ) ≥ x(ς0)E–a(ς ,ς0) +
∫ ς

ς0

f (s)
〈
Ea(s,ς )

〉
�s ∀ ς ∈ T

–
0 . (3.6)

Theorem 3.3 ([40]) Suppose that f , x ∈ Crd , a ∈R+, and a ≥ 0. Then

x(ς ) ≤ f (ς ) +
∫ ς

ς0

a(s)
〈
x(s)

〉
�s ∀ ς ∈ T0 (3.7)

implies

x(ς ) ≤ f (ς ) +
∫ ς

ς0

a(s)
〈
f (s)

〉〈
E–a(s,ς )

〉
�s ∀ ς ∈ T0. (3.8)

Corollary 3.4 ([40]) Suppose that x ∈ Crd , a ∈R+, and a ≥ 0. Then

x(ς ) ≤
∫ ς

ς0

a(s)
〈
x(s)

〉
�s ∀ ς ∈ T0 (3.9)
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implies

x(ς ) ≤ 0 ∀ ς ∈ T0. (3.10)

Corollary 3.5 ([40]) Suppose that x ∈ Crd , f0 ∈R, a ∈R+, and a ≥ 0. Then

x(ς ) ≤ f0 +
∫ ς

ς0

a(s)
〈
x(s)

〉
�s ∀ ς ∈ T0 (3.11)

implies

x(ς ) ≤ f0Ea(ς ,ς0) ∀ ς ∈ T0. (3.12)

Corollary 3.6 ([40]) If a, q ∈R+ with a(ς ) ≤ q(ς ) ∀ ς ∈ T, then

Ea(ς ,ς0) ≤ Eq(ς ,ς0) ∀ ς ∈ T0. (3.13)

Moreover,

〈
Ea(ς ,ς0)

〉 ≤ 〈
Eq(ς ,ς0)

〉 ∀ ς ∈ T0. (3.14)

Similar to Theorem 3.3, one can get the following results.

Theorem 3.7 ([40]) Suppose that f , g, x ∈ Crd , α0 ∈R, q ∈R+, and q ≥ 0. Then

x(ς ) ≤ f (ς ) + α0

∫ ς

ς0

[
q(s)

〈
x(s)

〉
+ g(s)

]
�s ∀ ς ∈ T0 (3.15)

implies

x(ς ) ≤ f (ς ) + α0

∫ ς

ς0

[
q(s)

〈
f (s)

〉
+ g(s)

]〈
E–α0q(s,ς )

〉
�s ∀ ς ∈ T0. (3.16)

An important consequence of Lemma 3.2 is as follows.

Theorem 3.8 ([40]) Suppose that f , g, x ∈ Crd , α0 ∈R, q ∈R+, and q ≥ 0. Then

x(ς ) ≤ f (ς ) + α0

∫ ς0

ς

[
q(s)

〈
x(s)

〉
+ g(s)

]
�s ∀ ς ∈ T

–
0 (3.17)

implies

x(ς ) ≤ f (ς ) + α0

∫ ς0

ς

[
q(s)

〈
f (s)

〉
+ g(s)

]〈
Eα0q(s,ς )

〉
�s ∀ ς ∈ T

–
0 . (3.18)

3.1 Interval-valued case
For IVF F : T→KC , define

〈
F(ς )

〉
=

F(ς ) + F(ςσ )
2

. (3.19)
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If F : T →KC such that F(ς ) = [f –(ς ), f +(ς )], then (3.19) implies that

〈
F(ς )

〉
=

[〈
f –(ς )

〉
,
〈
f +(ς )

〉]
. (3.20)

By the definition of midpoint function, we can get

m
(〈

F(ς )
〉)

=
〈
m

(
F(ς )

)〉
. (3.21)

By using “
LC” and (3.19), one can easily get the following result.

Lemma 3.9 Let F , G : T→KC . If F(ς ) 
LC G(ς ) ∀ ς ∈ T, then 〈F(ς )〉 
LC 〈G(ς )〉.

Let us start this section with comparison results for IVFs under LC-partial order. For
further discussion, let us consider some function classes:

CKC
rd := {F : T →KC : F is rd-continuous ∀ t ∈ T},

C1,1st
gH :=

{
F : T →KC : F is �1,gH-differentiable ∀ t ∈ T

k
0
}

,

C1,2nd
gH :=

{
F : T →KC : F is �2,gH-differentiable ∀ t ∈ T

k
0
}

.

Lemma 3.10 Let F , X ∈ CKC
rd and a ∈R+. (a) If X ∈ C1,1st

gH �

X�(ς ) 
LC a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0, (3.22)

then

X(ς ) 
LC Ea(ς ,ς0)X(ς0) +
∫ ς

ς0

〈
E–a(τ ,ς )

〉
F(τ )�τ (3.23)

∀ ς ∈ T0.
(b) If X ∈ C1,2nd

gH �

–X�(ς ) 
LC a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0, (3.24)

then

X(ς ) �LC E–a(ς ,ς0)X(ς0) –
∫ ς

ς0

〈
Ea(τ ,ς )

〉
F(τ )�τ (3.25)

∀ ς ∈ T0.

Proof Let F , X ∈ CKC
rd with X(ς ) = [x̄(ς ), x(ς )] and F(ς ) = [f –(ς ), f +(ς )].

(a) If X ∈ C1,1st
gH , then X�(ς ) = [(x̄)�(ς ), (x)�(ς )]. First, we consider the case if a(ς ) ≥ 0

on T0, we have a(ς )〈X(ς )〉 = [a(ς )〈x̄(ς )〉, a(ς )〈x(ς )〉]. By using inequality (3.22), we obtain

[
(x̄)�(ς ), (x)�(ς )

] 
LC
[
a(ς )

〈
x̄(ς )

〉
+ f –(ς ), a(ς )

〈
x(ς )

〉
+ f +(ς )

]
.

Applying LC-order, we obtain

(x̄)�(ς ) ≤ a(ς )
〈
x̄(ς )

〉
+ f –(ς ) (3.26)
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and

(
m

(
X(ς )

))� ≤ a(ς )
〈
m

(
X(ς )

)〉
+ m

(
F(ς )

)
. (3.27)

By using Lemma 3.1 on (3.26) and (3.27) respectively, we obtain

x̄(ς ) ≤ Ea(ς ,ς0)x̄(ς0) +
∫ ς

ς0

〈
E–a(τ ,ς )

〉
f –(τ )�τ (3.28)

and

m
(
X(ς )

) ≤ Ea(ς ,ς0)m
(
X(ς0)

)
+

∫ ς

ς0

〈
E–a(τ ,ς )

〉
m

(
F(τ )

)
�τ . (3.29)

Inequalities (3.28) and (3.29) yield (3.23). a(ς ) < 0 on T0 implies that a(ς )X(ς ) =
[a(ς )〈x(ς )〉, a(ς )〈x̄(ς )〉]. By using inequality (3.22), we obtain

[
(x̄)�(ς ), (x)�(ς )

] 
LC
[
a(ς )

〈
x(ς )

〉
+ f –(ς ), a(ς )

〈
x̄(ς )

〉
+ f +(ς )

]
.

Applying LC-order, we have

(x̄)�(ς ) ≤ a(ς )
〈
x(ς )

〉
+ f –(ς ) ≤ a(ς )

〈
x̄(ς )

〉
+ f –(ς ) (3.30)

and

(
m

(
X(ς )

))� ≤ (
–a(ς )

)〈
m

(
X(ς )

)〉
+ m

(
F(ς )

)
. (3.31)

By using Lemma 3.1 on (3.30) and (3.31) respectively, we obtain

x̄(ς ) ≤ Ea(ς ,ς0)x̄(ς0) +
∫ ς

ς0

〈
E–a(τ ,ς )

〉
f –(τ )�τ (3.32)

and

m
(
X(ς )

) ≤ E–a(ς ,ς0)m
(
X(ς0)

)
+

∫ ς

ς0

〈
Ea(τ ,ς )

〉
m

(
F(τ )

)
�τ . (3.33)

Since a(ς ) < 0 and a ∈ R+, it follows that (–a) ∈ R+ and a ≤ –a. Therefore, Lemma 2.1
and Corollary 3.6 imply that

x̄(ς ) ≤ Ea(ς ,ς0)x̄(ς0) +
∫ ς

ς0

〈
E–a(τ ,ς )

〉
f –(τ )�τ

≤ E–a(ς ,ς0)x̄(ς0) +
∫ ς

ς0

〈
Ea(τ ,ς )

〉
f –(τ )�τ . (3.34)

Combining (3.33) and (3.34), we get

X(ς ) 
LC E–a(ς ,ς0)X(ς0) +
∫ ς

ς0

〈
Ea(τ ,ς )

〉
F(τ )�τ .
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(b) If X ∈ C1,2nd
gH , then X�(ς ) = [(x)�(ς ), (x̄)�(ς )] and for a(ς ) ≥ 0, so we have a(ς )X(ς ) =

[a(ς )〈x̄(ς )〉, a(ς )〈x(ς )〉]. Inequality (3.24) implies that

(–x̄)�(ς ) ≤ a(ς )
〈
x̄(ς )

〉
+ f –(ς ) =

(
–a(ς )

)〈
–x̄(ς )

〉
+ f –(ς )

and

(
–m

(
X(ς )

))� ≤ (
–a(ς )

)〈
–m

(
X(ς )

)〉
+ m

(
F(ς )

)
.

It follows that

x̄(ς ) ≥ E–a(ς ,ς0)x̄(ς0) –
∫ ς

ς0

〈
Ea(τ ,ς )

〉
f –(τ )�τ (3.35)

and

m
(
X(ς )

) ≥ E–a(ς ,ς0)m
(
X(ς0)

)
–

∫ ς

ς0

〈
E–a(τ ,ς )

〉
m

(
F(τ )

)
�τ . (3.36)

By using (3.35) and (3.36) in LC order, we can get (3.25). For a(ς ) < 0, similar to the second
inequality of part (a), we can obtain (3.25). �

One of the consequences of Lemma 3.9 and Lemma 3.10 is as follows.

Lemma 3.11 Let F , X ∈ CKC
rd and a ∈R+.

(a) If X ∈ C1,1st
gH �

X�(ς ) 
LC a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0,

then

〈
X(ς )

〉 
LC
〈
Ea(ς ,ς0)

〉
X(ς0) +

∫ ς

ς0

〈〈
E–a(τ ,ς )

〉〉
F(τ )�τ

+
1
2
μ(ς )

〈
E–a

(
ς ,ςσ

)〉
F(ς )

∀ ς ∈ T0.
(b) If X ∈ C1,2nd

gH �

–X�(ς ) 
LC a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0,

then

〈
X(ς )

〉 �LC
〈
E–a(ς ,ς0)

〉
X(ς0) –

∫ ς

ς0

〈〈
Ea(τ ,ς )

〉〉
F(τ )�τ

–
1
2
μ(ς )

〈
E–a

(
ς ,ςσ

)〉
F(ς )

∀ ς ∈ T0.
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Similar to Lemma 3.10, by applying Lemma 3.2, we get the subsequent result.

Lemma 3.12 Let F , X ∈ CKC
rd and a ∈R+.

(a) If X ∈ C1,1st
gH �

X�(ς ) 
LC –a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0, (3.37)

then

X(ς ) 
LC E–a(ς ,ς0)X(ς0) +
∫ ς

ς0

〈
Ea(τ ,ς )

〉
F(τ )�τ (3.38)

∀ ς ∈ T0.
(b) If X ∈ C1,2nd

gH �

–X�(ς ) 
LC –a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0, (3.39)

then

X(ς ) �LC Ea(ς ,ς0)X(ς0) –
∫ ς

ς0

〈
E–a(τ ,ς )

〉
F(τ )�τ (3.40)

∀ ς ∈ T0.

Lemma 3.13 Let F , X ∈ CKC
rd and a ∈R+.

(a) If X ∈ C1,1st
gH �

X�(ς ) 
LC a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0,

then

〈
X(ς )

〉 
LC
〈
E–a(ς ,ς0)

〉
X(ς0) +

∫ ς

ς0

〈〈
Ea(τ ,ς )

〉〉
F(τ )�τ

+
1
2
μ(ς )

〈
Ea

(
ς ,ςσ

)〉
F(ς )

∀ ς ∈ T0.
(b) If X ∈ C1,2nd

gH �

–X�(ς ) 
LC a(ς )
〈
X(ς )

〉
+ F(ς ) ∀ ς ∈ T0,

then

〈
X(ς )

〉 �LC
〈
Ea(ς ,ς0)

〉
X(ς0) –

∫ ς

ς0

〈〈
E–a(τ ,ς )

〉〉
F(τ )�τ

–
1
2
μ(ς )

〈
E–a

(
ς ,ςσ

)〉
F(ς )

∀ ς ∈ T0.
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Remark 3.14 It is noted that in Lemmas 3.10 and 3.12 we get a more simple and relaxed
condition as compared to the main results in [40].

Now onward, we are assuming that all functions are bounded.

Theorem 3.15 Let F , X ∈ CKC
rd and a ∈R+, a(ς ) ≥ 0 ∀ ς ∈ T0,

X(ς ) 
LC F(ς ) +
∫ ς

ς0

a(s)
〈
X(s)

〉
�s (3.41)

holds ∀ ς ∈ T0. Then

X(ς ) 
LC F(ς ) +
∫ ς

ς0

a(s)
〈
Ea(ς , s)

〉〈
F(s)

〉
�s (3.42)

∀ ς ∈ T0.

Proof Consider Z(ς ) =
∫ ς

ς0
a(τ )〈X(τ )〉�τ . Since a(τ ), 〈X(τ )〉 are bounded and belong to

Crd class, therefore it follows that Z ∈ C1,1st
gH and Z�(ς ) = a(ς )〈X(ς )〉, ς ∈ T0. From in-

equality (3.41), we can see that 〈X(ς )〉 
LC 〈F(ς )〉 + 〈Z(ς )〉. Clearly,

Z�(ς ) 
LC a(ς )
〈
Z(ς )

〉
+ a(ς )

〈
F(ς )

〉
.

Part (a) in Lemma 3.10 and Z(ς0) = {0} implies that

Z(ς ) 
LC

∫ ς

ς0

a(s)
〈
Ea(ς , s)

〉〈
F(s)

〉
�s,

and hence assertion (3.42) follows by inequality (3.41). �

Corollary 3.16 Let X ∈ CKC
rd , a ∈R+, a ≥ 0, and X0 ∈KC . If

X(ς ) 
LC X0 +
∫ ς

ς0

a(s)
〈
X(s)

〉
�s ∀ ς ∈ T0, (3.43)

then

X(ς ) 
LC X0Ea(ς ,ς0) ∀ ς ∈ T0. (3.44)

Proof In Theorem 3.15, if we take F(ς ) = X0, we can get (3.44). �

Corollary 3.17 Let X ∈ CKC
rd , a ∈R+, a ≥ 0 �

X(ς ) 
LC

∫ ς

ς0

X(ς )a(ς )�ς ∀ ς ∈ T0,

then

X(ς ) 
LC {0}

∀ ς ∈ T0.
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Similar to Theorem 3.15, we derive the subsequent theorem.

Theorem 3.18 Let F , Q, X ∈ CKC
rd , a ∈R+, a ≥ 0 b0 ∈R+ such that

X(ς ) 
LC F(ς ) + b0

∫ ς

ς0

[
a(τ )X(τ ) + Q(τ )

]
�τ ∀ ς ∈ T0,

then

X(ς ) 
LC F(ς ) + b0

∫ ς

ς0

(
a(τ )

〈
F(τ )

〉
+ Q(τ )

)〈
Eab0 (ς , τ )

〉
�τ

∀ ς ∈ T0.

If we take F(ς ) = Q(ς ) = 0 in Theorem 3.18, then one can get the following.

Corollary 3.19 Suppose X(ς ) ∈ CKC
rd and a ∈R+, a ≥ 0 b0 ∈R+ such that

X(ς ) 
LC b0

∫ ς

ς0

X(τ )a(τ )�τ ∀ ς ∈ T0,

then

X(ς ) 
LC {0}

∀ ς ∈ T0.

Remark 3.20 If b0 = 1 in Corollary 3.19, then we get Corollary 3.17.

4 Conclusions
In this paper, we presented certain results of Gronwall type inequalities concerning
interval-valued functions under 
LC. These inequalities render explicit bounds of un-
known functions. By using 
LCthe assumptions in the main results become more relaxed
compared to the main results in [40]. The results can be more beneficial in the subject of
the uniqueness of solution for interval-valued differential equations or interval-valued in-
tegrodifferential equations. Moreover, we will extend these inequalities to fuzzy-interval-
valued functions in our forthcoming work. This research also points out that Gronwall’s
inequality for interval-valued functions can be reduced to a family of classical Gronwall’s
inequality for real-valued functions. The interval versions of Gronwall’s inequality exhib-
ited in this study are tools to work in an uncertain environment. Furthermore, as these
inequalities are given by applying different assumptions than those used in the earlier re-
search articles, our results are new.
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