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Abstract
In this paper, we consider C∗-algebra valued fuzzy normed spaces. We study the
random integral equation ( 12c )

∫ x+cd
x–cd u(γ ,τ ,d0)dτ = u(γ , x,d) which is related to the

stochastic wave equation. In addition, using a C∗-algebra valued fuzzy controller
function, we consider its C∗-algebra valued fuzzy Hyers–Ulam stability.
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1 Introduction
The stability problem of functional equations originated from a question of Ulam [1] con-
cerning the stability of group homomorphisms. In 1941, Hyers [2] gave the first affirmative
answer to the question of Ulam for additive groups in Banach spaces. Hyers’ theorem was
generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem
was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Rassias’ approach. The stability problems for several func-
tional equations or inequalities have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [6–11]).

Let A be a C∗-algebra and x be a self-adjoint element in A. Then if x is of the form yy∗ for
some y ∈ A, then x is called a positive element. Denote by A+ the cone of positive elements
of A. We will denote z � w when w – z ∈ A+ (see [12]).

Using random normed spaces introduced by S̆erstnev [13] and studied by Mus̆tari [14]
and Radu [15], Cheng and Mordeson [16] defined fuzzy normed spaces.

In this paper, we generalize a recent paper of Saadati [17] using C∗-algebra valued fuzzy
sets and applying t-norms on C∗-algebras (see [18, 19]).

2 C∗-Algebra valued fuzzy normed spaces
In this section, we discuss C∗-algebra. For more details, we refer the reader to [20–22].
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Definition 1 Let A be an order commutative C∗-algebra and A+ be the positive section
of A. Let U �= ∅. A C∗-algebra valued fuzzy set C on U is a function C : U −→A+. For each
u in U , C(u) represents the degree (in A+) to which u satisfies A+.

We put 0 = infA+ and 1 = supA+. Now, we define the triangular norm (t-norm) on A+.

Definition 2 A function T : A+ ×A+ →A+ which satisfies
(i) (∀u ∈A+) (T (u, 1) = u); (boundary condition)

(ii) (∀(u, v) ∈A+ ×A+) (T (u, v) = T (v, u)); (commutativity)
(iii) (∀(u, v, w) ∈A+ ×A+ ×A+) (T (u,T (v, w)) = T (T (u, v), w)); (associativity)
(iv) (∀(u, u′, v, v′) ∈A+ ×A+ ×A+ ×A+) (u � u′ and v � v′ ⇒ T (u, v) � T (u′, v′)),

(monotonicity)
is called a t-norm.

If, for every u, v ∈A+ and sequences {un} and {vn} converging to u and v, we have

lim
n
T (un, vn) = T (u, v),

then we say T on A+ is continuous (in short, a ct-norm).

Definition 3 Assume thatF : A+ →A+ satisfies F (0) = 1 and F (1) = 0 and is decreasing.
Then F is called a negation on A+.

Example 4 Let

diag Mn
(
[0, 1]

)
=

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

u1
. . .

un

⎤

⎥
⎥
⎦ = diag[u1, . . . , un], u1, . . . , un ∈ [0, 1]

⎫
⎪⎪⎬

⎪⎪⎭
.

We say diag[u1, . . . , un] � diag[b1, . . . , bn] if and only if ai ≤ bi for all i = 1, . . . , n and
also 1 = diag[1, . . . , 1] and 0 = diag[0, . . . , 0]. Now, we see that if A = diag Mn([0, 1]), then
diag Mn([0, 1]) = A+. Let TP : diag Mn([0, 1]) × diag Mn([0, 1]) → diag Mn([0, 1]) be

TP
(
diag[u1, . . . , un], diag[v1, . . . , vn]

)
= diag[u1 · v1, . . . , un · vn].

Then TP is a t-norm (product t-norm). Note that this t-norm is continuous.

Example 5 Let diag Mn([0, 1]) = A+ and TM : diag Mn([0, 1]) × diag Mn([0, 1]) →
diag Mn([0, 1]) be

TM
(
diag[u1, . . . , un], diag[v1, . . . , vn]

)
= diag

[
min(u1, v1), . . . , min(un, vn)

]
.

Then TM is a t-norm (minimum t-norm). Note that this t-norm is continuous.

Definition 6 The triple (S,η,T ) is called a C∗-algebra valued fuzzy normed space (in
short, C∗AVFN-space) if S �= ∅, T is a ct-norm on A+ and η is a C∗-algebra valued fuzzy
set on S2 × ]0, +∞[ such that, for each t, s, p ∈ T and τ , ς in ]0, +∞[, we have
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(a) η(s, τ ) 
 0;
(b) η(s, τ ) = 1 for all τ > 0 if and only if s = 0;
(c) η(as, τ ) = η(s, τ

|a| ) for all s ∈ S and a ∈R with a �= 0;
(d) η(t + s, τ + ς ) � T (η(t, τ ),η(s,ς )) for all t, s ∈ S and τ ,ς ≥ 0;
(e) η(s, ·) : (0,∞) →A+ \ {0} is left continuous;
(f ) limt−→∞ η(s, τ ) = 1.

Also, η is a C∗-algebra valued fuzzy norm.

Let (S,η,T ) be a C∗AVFN-space. For τ > 0, define the open ball B(t,�, τ ) as

B(s,�, τ ) =
{

t ∈ S : η(t – s, τ ) �F (�)
}

,

in which s ∈ S is the center and � ∈ A+ \ {0, 1} is the radius. We say that A ⊆ S is open
if, for each s ∈ A, there exist τ > 0 and � ∈ A+ \ {0, 1} such that B(s,�, τ ) ⊆ A. We denote
the family of all open subsets of S by τη , and so τη is the C∗-fuzzy topology induced by the
C∗-algebra valued fuzzy norm η.

Example 7 Consider the linear normed space (S,‖ · ‖). Let T = TM and define the fuzzy
set η on S2 × (0,∞) as follows:

η(s, τ ) = diag

[
τ

τ + ‖s‖ , exp

(

–
‖s‖
τ

)]

for all τ ∈ R+. Then (S,η,TM) is a C∗AVFN-space.

Lemma 8 ([23]) Let (S,η,T ) be a C∗AVFN-space. Then η(s, τ ) is nondecreasing with re-
spect to τ for all s ∈ S.

Definition 9 Let {sn}n∈N be a sequence in a C∗AVFN-space (S,η,T ). If, for all ε ∈A+ \ {0}
and τ > 0, there exists n0 ∈ N such that, for all m ≥ n ≥ n0,

η(sm – sn, τ ) �F (ε),

then {sn}n∈N is said to be Cauchy.
Also {sn}n∈N is said to be convergent to s ∈ S (sn

η−→ s) if η(sn – s, τ ) = η(s – sn, τ ) → 1
as n → +∞ for every τ > 0. If every Cauchy sequence is convergent in a C∗AVFN-space,
then the space is said to be complete. A complete C∗AVFN-space is called a C∗-algebra
valued fuzzy Banach space (in short, a C∗AVFB-space).

3 Random operators in C∗AVFB-spaces
Let (Γ ,Σ , ξ ) be a probability measure space. Assume that (T ,BT ) and (S,BS) are Borel
measurable spaces, in which T and S are C∗AVFB-spaces. A mapping F : Γ × T → S is
said to be a random operator if {γ : F(γ , t) ∈ B} ∈ Σ for all t in T and B ∈ BS . Also, F is a
random operator if F(γ , t) = s(γ ) is an S-valued random variable for every t in T . A random
operator F : Γ × T → S is called linear if F(γ , at1 + bt2) = aF(γ , t1) + bF(γ , t2) for almost
every γ for each t1, t2 in T and scalars a, b and bounded if there exists a nonnegative
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real-valued random variable M(γ ) such that

η
(
F(γ , t1) – F(γ , t2), M(γ )τ

)� η(t1 – t2, τ ),

almost every γ for each t1, t2 in T and τ > 0.
Recently, some authors discussed the approximation of functional equations in several

spaces by using a direct technique and a fixed point technique; for fuzzy Menger normed
algebras, see [24]; for fuzzy metric spaces, see [25, 26]; for FN spaces, see [27]; for non-
Archimedean random Lie C∗-algebras, see [28]; for non-Archimedean random normed
spaces, see [29]; for random multi-normed space, see [30]; and we also refer the reader to
[31–34].

Note that a [0,∞]-valued metric is called a generalized metric.

Theorem 10 ([35, 36]) Consider a complete generalized metric space (T , δ) and a strictly
contractive function Λ : T → T with Lipschitz constant L < 1. For every given element t ∈ T ,
either

δ
(
Λnt,Λn+1t

)
= ∞

for each n ∈ N or there is n0 ∈N such that
(1) δ(Λnt,Λn+1t) < ∞, ∀n ≥ n0;
(2) the fixed point s∗ of Λ is the convergent point of sequence {Λnt};
(3) in the set V = {s ∈ T | δ(Λn0 t, s) < ∞}, s∗ is the unique fixed point of Λ;
(4) (1 – L)δ(s, s∗) ≤ δ(s,Λs) for every s ∈ V .

4 Random integral equation related to the stochastic wave equation
Let (Γ ,Σ , ξ ) be a probability space and (S,η,TM) be a C∗AVFB-space. Assume that the
real numbers c > 0 and d0 are fixed, and suppose that γ ∈ Γ . Consider the stochastic wave
equation

udd(γ , x, d) = c2uxx(γ , x, d). (4.1)

Since

ud(γ , x, d) =
1
2c

∂

∂d

∫ x+cd

x–cd
H(γ , τ , d0) dτ

=
1
2

H(γ , x + cd, d0) +
1
2

H(γ , x – cd, d0),

udd(γ , x, d) =
c
2

Hd(γ , x + cd, d0) –
c
2

Hd(γ , x – cd, d0),

ux(γ , x, d) =
1
2c

H(γ , x + cd, d0) –
1
2c

H(γ , x – cd, d0),

uxx(γ , x, d) =
1
2c

Hx(γ , x + cd, d0) –
1
2c

Hx(γ , x – cd, d0),

(4.2)

we have that

u(γ , x, d) :=
1
2c

∫ x+cd

x–cd
H(γ , τ , d0) dτ (4.3)
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is a solution of (4.1) for any random differentiable S-valued function H on Γ ×R.
On the other hand, Jung [37] showed that if the S-valued functions F and G on Γ ×R

2 are
twice differentiable, then the S-valued solution u on Γ ×R

2 of (4.1) has a representation
of the form

u(γ , x, d) = F(γ , x + cd) + G(γ , x – cd), (4.4)

in which

1
2c

∫ x+cd

x–cd
F(γ , τ ) dτ = F(γ , x + cd),

1
2c

∫ x+cd

x–cd
G(γ , τ ) dτ = G(γ , x – cd).

(4.5)

Consider the random integral equation

1
2c

∫ x+cd

x–cd
u(γ , τ , d0) dτ = u(γ , x, d), (4.6)

which is controlled by the continuous fuzzy set ϕ(x, d, t) as

η

(
1
2c

∫ x+cd

x–cd
u(γ , τ , d0) dτ – u(γ , x, d), t

)

≥ ϕ(x, d, t). (4.7)

We say that the random integral equation (4.6) has fuzzy Hyers–Ulam stability if there are
u0(γ , x, d) and λ > 0 such that

1
2c

∫ x+cd

x–cd
u0(γ , τ , d0) dτ = u0(γ , x, d),

η
(
u(γ , x, d) – u0(γ , x, d), t

)≥ ϕ

(

x, d,
t
λ

)

.
(4.8)

5 C∗-Algebra-valued fuzzy Hyers–Ulam stability
Let c > 0, d0 > 0, and a+cd0 < b–cd0. Let (Γ ,Σ , ξ ) be a probability measure space, (S,η,TM)
be a C∗AVFB-space, α := [a, b], β := (0, d0], and α0 := [a + cd0, b – cd0]. Let M > 0 and
0 < L < 1. Consider a continuous C∗-algebra-valued fuzzy set ϕ : α ×β × (0,∞) → J which
is increasing in the second and third components and satisfies

inf
τ∈[x–cd,x+cd]

ϕ

(

τ , d,
t
d

)

� ϕ

(

x, d,
t
L

)

(5.1)

for all x ∈ α0, d ∈ β , and t > 0.
The set T consists of all random operators F : Γ × α × β → S which satisfy the follow-

ing:
(a) F(γ , x, d) is continuous for each x ∈ α0, d ∈ β , and γ ∈ Γ ;
(b) F(γ , x, d) = 0S for all x ∈ α \ α0, d ∈ β , and γ ∈ Γ ;
(c) η(F(γ , x, d), t) � ϕ(x, d, t

M ) for all x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ .
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Theorem 11 Suppose that a random operator u ∈ T satisfies the random integral inequal-
ity

η

(
1
2c

∫ x+cd

x–cd
u(γ , τ , d0) dτ – u(γ , x, d), t

)

� ϕ(x, d, t) (5.2)

for all x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ . Then there is a unique random operator u0 ∈ T
which satisfies

1
2c

∫ x+cd

x–cd
u0(γ , τ , d0) dτ = u0(γ , x, d), (5.3)

η
(
u(γ , x, d) – u0(γ , x, d)

)� ϕ
(
x, d, (1 – L)t

)
(5.4)

for all x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ .

Proof We consider the [0,∞]-valued metric δ on T defined by

δ(F , G)

:= inf

{

λ ∈ [0,∞]
∣
∣
∣ η
(
F(γ , x, d) – G(γ , x, d), t

)� ϕ

(

x, d,
t
λ

)

∀x ∈ α0, d ∈ β ,γ ∈ Γ , t > 0
}

. (5.5)

In [38], Miheţ and Radu proved that (B, δ) is complete (see also [39]).
Consider the operator Λ : T → T given by

(ΛH)(γ , x, d) :=

⎧
⎨

⎩

1
2c
∫ x+cd

x–cd H(γ , τ , d0) dτ , (x ∈ α0, d ∈ β ,γ ∈ Γ ),

0, (otherwise).
(5.6)

It is easy to show that ΛH is continuous on Γ × α0 × β . Let x – cd = ξ1 < ξ2 < · · · < ξk =
x + cd, �si = ξi – ξi–1, i = 1, 2, . . . , k. Using (5.1), (c), and (5.6), we obtain

η(ΛH)(γ , x, d), t) = η

(
1
2c

∫ x+cd

x–cd
H(γ , τ , d0) dτ , t

)

= η

(
1
2c

lim‖�s‖→0

k∑

i=1

H(γ , ξi, d0)�si, t

)

= η

(

lim‖�s‖→0

k∑

i=1

H(γ , ξi, d0)�si, 2ct

)

= lim‖�s‖→0
η

( k∑

i=1

H(γ , ξi, d0)�si, 2ct

)

� lim‖�s‖→0
TMη

(

H(γ , ξi, d0)�si,
2ct
k

)

� inf
τ∈[x–cd,x+cd]

η

(

H(γ , ξi, d0),
2ct

|�si|k
)
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� inf
τ∈[x–cd,x+cd]

η

(

H(γ , τ , d0),
2ctk
2cdk

)

� inf
τ∈[x–cd,x+cd]

ϕ

(

τ , d0,
t

dM

)

� ϕ

(

x, d,
t

LM

)


 ϕ

(

x, d,
t

M

)

(5.7)

for any given x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ , and then ΛH ∈ T . Let F , G ∈ T and λFG ∈
[0,∞] such that δ(F , G) ≤ λFG. Then we have

η
(
F(γ , x, d) – G(γ , x, d), t

)� ϕ

(

x, d,
t

λFG

)

(5.8)

for all x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ , i.e., Λ is strictly contractive on T . From (5.1), (5.6),
and (5.8), we get

η
(
(ΛF)(γ , x, d) – (ΛG)(γ , x, d), t

)
= η

(
1
2c

∫ x+cd

x–cd

(
F(γ , τ , d0) – G(γ , τ , d0)

)
dτ , t

)

= η

(
1
2c

lim‖�s‖→0

k∑

i=1

(
F(γ , ξi, d0) – G(γ , ξi, d0)

)
�si, t

)

= η

(

lim‖�s‖→0

k∑

i=1

(
F(γ , ξi, d0) – G(γ , ξi, d0)

)
�si, 2ct

)

= lim‖�s‖→0
η

( k∑

i=1

(
F(γ , ξi, d0) – G(γ , ξi, d0)

)
�si, 2ct

)

� lim‖�s‖→0
TMη

(
(
F(γ , ξi, d0) – G(γ , ξi, d0)

)
,

2ct
|�si|k

)

� inf
τ∈[x–cd,x+cd]

η

(
(
F(γ , τ , d0) – G(γ , τ , d0)

)
,

2ctk
2cdk

)

� inf
τ∈[x–cd,x+cd]

ϕ

(

τ , d0,
t

dλFG

)

� ϕ

(

x, d0,
t

LλFG

)


 ϕ

(

x, d,
t

LλFG

)

(5.9)

for any given x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ , which implies that δ(ΛF ,ΛG) ≤ LλFG, and so
δ(ΛF ,ΛG) ≤ Ld(F , G). Suppose H0 ∈ T . Using (5.2) and (5.5), we get

η
(
(ΛH0)(γ , x, d) – H0(γ , x, d), t

)� η

(
1
2c

∫ x+cd

x–cd
H0(γ , τ , d0) dτ – H0(γ , x, d), t

)

� ϕ(x, d, t) (5.10)
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for any x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ . Thus (5.5) implies that

δ(ΛH0, H0) ≤ 1 < ∞. (5.11)

Now,
(1) Theorem 10 (2) implies that there is u0 ∈ T such that ΛnH0 → u0 in (T , δ) and

Λu0 = u0.
(2) Theorem 10 (3) implies that u0 is the unique element of T which satisfies

(Λu0)(γ , x, d) = u0(γ , x, d) for any x ∈ α0, d ∈ β , t > 0, and γ ∈ Γ .
(3) Theorem 10 (3), together with (5.5) and (5.2), implies that

δ(u, u0) ≤ 1
1 – L

δ(Λu, u) ≤ 1
1 – L

, (5.12)

since (5.2) means that δ(Λu, u) ≤ 1. In view of (5.5), we can conclude that (5.4)
holds for all x ∈ α0 and d ∈ β .

�

6 Conclusion
In this paper, we modified and generalized fuzzy normed spaces and introduced the con-
cept of a C∗AVFN-space. As an application, we studied the Hyers–Ulam stability of a ran-
dom integral equation related to the stochastic wave equation in C∗AVFB-spaces.
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