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1 Introduction

Consider the nonlinear third order differential equation

(rO(Z'@®)") +q@)f (x(o (1)) =0, (1.1)

where ¢ > £ > 0, z(t) = x(t) + p(£)x(z (t)), and « is a ratio of odd positive integers. We assume
that the following conditions hold:

(Hy) r(2),p(t),q(t), t(t),0(t) € C([to, 20)), r(t), q(¢) are positive and 0 < p(t) < pg < 00;

(Hp) limy_ oo T(£) = limy_, oo 0 (£) = 00, 6(¢) >0, and 7(¢) < ¢;

(Hs) f(u) € C(R) and there exists a positive constant k such that f(«)/u” > k forall u #0

and y is a ratio of odd positive integers;

(Hy) T/(() > t9>0andtoo =0 o0T.

By a solution of (1.1), we mean a nontrivial function x(¢) € C([Ty, 00)), Ty > to, which has
the properties z(t) € C?([T, 00)), r(t)(z"(£))* € C*([Ty, o0)) and satisfies (1.1) on [T}, 00).
Our attention is restricted to those solutions x(¢) of (1.1) satisfying sup{|x(£)| : ¢ > T} > 0
forall T > T,. We assume that (1.1) possesses such a solution. A solution of (1.1) is called
oscillatory if it has arbitrarily large zeros on [T, 00); otherwise, it is termed nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.
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The oscillatory behavior of solutions of various classes of nonlinear differential and dy-
namic equations on time scales has received much attention, we refer the reader to [1-17]
and the references cited therein.

In 2012, Liu et al. [9] established new oscillation criteria for the second order Emden—
Fowler equation

(r(t)|z/(t)|aflz’(t))/ +q(t)|x(o (1)) |y71x(a(t)) =0 (1.2)
under the assumptions

0<pt)<1, (1.3)

r'(t) >0, o'(t) >0, (1.4)

and « > y > 0. In 2016, Wang et al. [16] studied Eq. (1.2) with condition (1.3),

/OO 11 dt = oo, (1.5)
to rc_!(t)

and o'(£) > 0 with @ > y > 1 when the condition 7'(¢) > 0 is neglected. Meanwhile, Wu et

al. [17] established oscillation criteria for (1.2) in the general case when « >0 and y >0
are constants with conditions (1.3) and (1.4). Baculikova et al. [2] considered (1.2) in the
more general case when 0 < p(£) < py < co with condition (1.5) and ¢'(¢) > 0. For the case
of third order differential equations, Dzurina et al. [18] obtained sufficient conditions for
the oscillation of solutions of the differential equation

(rO(Z"®)%) +a®x*(c(®) =0, (1.6)
where
0<pt)<po<1 (1.7)

with condition (1.5). Meanwhile, Baculikova et al. [1] and Su et al. [19] discussed the oscil-
latory behavior of third order Eq. (1.6) when r/(¢) > 0, (1.7) and (1.5) hold. Also Thanda-
pani et al. [14] studied Eq. (1.6) when (1.7) holds and

/OO 11 dt < co. (1.8)
to ra (t)

Recently, Jiang et al. [7] established new oscillation criteria for Eq. (1.1), where y =a > 1
and (1.5) hold without requiring (1.4).

More recently, Graef et al. [6] discussed the special case of Eq. (1.1) in which r = 1 and
a=y.

The main goal of this paper is to establish new oscillation criteria motivated by [6, 7],
and [17] for Eq. (1.1) under all cases of y, & (i.e, ¥y >, y =, and y < ), ftzo #(t) dt < 00
and ftzo L dt = oo without assumption (1.4). We consider the two cases when (H,) holds

re(t)
or not.
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In the sequel, we give the following notations:
Q(¢) = min{q(),q(z (1))}, R(t) = max{r(e),r(r(2))},

’ _ ! * = ! - =
rO=max{on @}, PO = s (1 p(r-l(r‘1<t>>>>'

1 1 m(t7H(r71(2)))
PO= ) (1 TP @) @) ) and
PSR m**u-l(r-l(t))))
Pt p(t=1(2)) pE (@) mu(l(0) )
where 77! is the inverse of 7, m, and m,, are functions to be specified later. All func-

tional inequalities considered in this article are assumed to hold eventually, that is, they

are satisfied for all ¢ large enough.

2 Some preliminaries
We enlist some known results which will be needed. We first present the following classes
of nonoscillatory (let us say positive) solutions of (1.1):
z(t) e N; & Z/(t) > 0, Z"(t) > 0, (r(t)(z"(2))¥) < 0,
z(t) e Ny & Z/(t) <0, 2"(t) > 0, (r(t)(z"(t))*) <0, and
z(t) e Npr < 2/ (t) >0, 2"(¢) < 0, (r(£)(2"(£))*)’ <0, eventually.
The following lemma comes directly from combining Lemma 1 and Lemma 2 in [13]
with Lemma 3 and Lemma 4 in [20].

Lemma 2.1 Assume that A > 0 and B> 0. Then

(A+B* <A*+B* <2'"™(A+B), 0<Ar<]l, (2.1)
and

2'""A+B» <A*+B*<(A+B), r>1. (2.2)

Lemma 2.2 Let g > 0. Then

g <rg+(1-r) forO<r<l1 (2.3)
and

g =zrg+(l-r) forr>1. (2.4)
Proof See [21, p. 28]. O

Lemma 2.3 [17]Assume that A > 0,B>0,U > 0, and A > 0. Then

)\'A AA+1

1
AU-BUYF < —" 2
S+ B
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Lemma 2.4 Assume that x is an eventually positive solution of (1.1). If (1.5) holds, then
z(t) € Ny or z(t) € Ny;. While if (1.8) holds, then either z(t) € N; or z(t) € Ny or z(t) € Ny;.

Proof The proof is similar to [22, Theorem 2.1 and Theorem 2.2]. d

Lemma 2.5 ([5, 23]) Let the function f(t) satisfy fO(t) >0,i=0,1,2,...,n, and f"*D(t) < 0
eventually, then there exists a constant k; € (0,1) such that % > % eventually.
3 Oscillation criteria in the case when (H,) holds

In this section, we establish new oscillation criteria for Eq. (1.1) in the case when (H,)
holds.

Theorem 3.1 Assume that (H;)—(Ha) hold. If there exists a positive function p(t) €
C ([0, 00)) such that

fh(S)ftlld 11 dvdu

0 t A 14
[ Tomses( =)

ro (u)
14 ’ A+l A
1
_ (1 + I;‘il)Rg(s)(—p*(s)) ( ) ] ds = oo, (3.1)
7 A+1 mp(s)
where
. 1, Yy =aq, %1 Y > 11
A =min{a, ¥}, m= K=1? (3.2)
0<m<1, y+#«q, k, y <1,
1, yza t, o) >t
g= and () = (3.3)
E y<a a(t), o(t)<t

holds for some constant k > 0, sufficiently large t; > ty, and for some t, > t; > t;, then there

exists no positive solution x(t) of Eq. (1.1) satisfying z(t) € Nj.

Proof Assume that x(¢) is a positive solution of Eq. (1.1) satisfying z(t) € N; for t > t;.
Then from (1.1) and (H3) it follows that

(r@) (z”(t))a)/ = —q(0)f (x(c (1)) < —kq(t)x” (o (2)) <O. (3.4)

Since (r(z (8))(2"(z(8)))*) = (r(z”)*) (z(¢))t'(¢), then in view of (Hy) there exists t, > #; such
that

Y

(O ©)") + 2 (r(z0) (@ (x@)))

To

< —kQ(t) [xy (a(t)) +pha (r (o(t)))] fort > t,. (3.5)
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In the following, we consider the two cases y > 1 and y < 1. Firstly, assume that y > 1.
Using (2.2) with (3.5), we get

(OO + 2 () & (20)")

To
k k
= 5,7 QO ®) + pox(z (0 (1))]" = -5 75 QO (1) (3.6)
Define the functions w(t) and v(¢) by
r(6)(Z"(8)*
w(t) = P(t)W (3.7)
and
@) (2 ()
v(t) = P(t)W, t> 1. (3.8)

Then clearly w(¢) and v(¢) are positive for ¢ > ¢, and satisfy

ey P (r@®)"@©)") (' ()"

W)= 2 lo) + 00T 00 s (3.9)

and
pon P8 (rz())"(z(®)") Lo @ (@)

V() = >0 v(t) + p(2) ZGQ) yo@r(t(®))r (t)—(z’(r(t)))l’“ . (3.10)
Now, we consider the two cases ¥ > « and y < «. We first assume that y > «. From (3.7),
we have

v eyt (B )
0= () <p<t>r<t>> '

Substituting into (3.9), we get

o 0 &'@Y o) \"7, e
(0= Lot + 0 O Vp(‘)’(‘)(p(t)rm) @) G

But since z/(¢) is positive and increasing, it follows that there exists a constant M > 0 sat-
isfying z'(£) > M and

w(t)
p(E)r(z)

w(t) )“é (rO@E"(0)*)"

o) Y

w'(t) < ,o;(t)r(t)( (Z(®)r

) - yM%lpmr(t)(

Using inequality (2.5) with A = o/ (£)r(¢), U = %, and B = VM§‘1p(t)r(t), it follows that

P, (t) )““( o )" +o(t) (r()("@®)")
a+1 yMap(t) @)

PON 1N OO
Srm(om) (M%lp(t)> POy (612)

o'(t) < r(t)(
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In view of (3.8), we have

) ) Y (t) :
Z'(z(0) = (Z(z(®))° <p(t)vr(t(t))> '

Substituting into (3.10), we get

P(0) (@) (@)
o0 POy

, 1+$
_ ‘}/Io(t)}"(f(t))‘[/(t) (z’(r(t))) o <p(t;}r((?(t)))

v(#) )+ (t)(r(f(t))(z//(f(t)))“)’
p(O)r(z(t)) (@ (z ()

V(t) =

< pi(t)r(r(t))<

) e
—yMeap(O)r(T(®))T (t)<p(t)r(r(t))> '

Again by inequality (2.5), we get

, L0\ 1 O D)
”(t)fr(’(”)<a+1) (Mé-lpmf/(t)) POy

But since z”(£) > 0 and 7(¢) < ¢, we obtain

/ PO\ 1 “ (r(z ()" (z ()"
V'(t) < r(r(t)) (a N 1) (M%Ip(t)‘[/(t)) + p(t) 20 . (3.13)

Combining (3.12) and (3.13) and using (3.6), we get

Y
2
To

o' (t) +

Y
V() < —%maom(“"(”))

Z/(¢)

pg)/ p:_(t) o+l 1 o
+ <1 + ‘[g"'l)R(t)(m) (Mg—lp(t)> . (3.14)

Now, assume that y < «. Then from (3.7) we have

o) \3
1 Gow)”

20 @)y

Substituting into (3.9), we get

= PO rOEOF) s (@O \"
W' (t) = 0 w(t) + p(t) Z0) yp@)r(6)(2(¢)) ( p(t)r(t))
LG (r(®)(2" (1))
=00 TPy

1
Y

=5 b 2 ) (29 v
—yp@)(r®) "7 (r= (2" (1)) (p(t)r(t)) '

Page 6 of 25
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. 1 - - . ) . -
It is clear that (r@ (£)2/(£))" 7 is positive and increasing, and so there exists a positive con-
stant »1; such that

0= om0 (S0 ) + o0 O

(t) (t) (Z/(t))y
gy (@) v
- ymlp(t)(r(t)) (p(t)r(t)>

for all sufficiently large ¢. Using inequality (2.5), we conclude that

’ +1 1 1" AV
W) < (m(t))y ( ra(t) )yﬂ)(t)w. (3.15)

y+1 my p(t) (Z(1)”

But since from (3.8) we have

1 e t))y
2(z () (z”(r(r)»‘?’

then, by substituting into (3.10), we get

102 o0r(e0) ) g DO

POz 0) e
o) o2 _)
Trmp i) (p(t)r(m))) '

This with (2.5) leads to

/ PO\ ri@®) ) (r(@®)(" (1))
v(t)i(y+1> (W) +p(2) @) . (3.16)

Combining (3.15) and (3.16), using (3.6), we get

a)(t)+p0 '

Y
(t)<——p( Qe )( ("(t”)

Z(t)

Po PN 1
<1+‘L'0 )R ()<V+1) (”’11/0(7«‘)) ‘ 317

Combining (3.14) and (3.17), we obtain for any «, y ratios of odd positive integers that

/ pO / k Z(G(t)) v
0+ B - ()Q()< o )

v p:_(t) A+l 1 A
+<“r&“>Rg(t)<x+1) (mp(t))' (319

Now, we consider the two cases o (t) < t and o (t) > ¢. We start by considering the case

o (t) < t. Since r(£)(2"(£))* is positive and decreasing, we have

tra (8)2"(s) 1 t

20 = 2(t) -2 () = f ds > r# (02'(0)

t ra(s) ty ra(s)

ds,
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ie.,

(—ft 20 ) <o. (3.19)
L ré(s)

But since o (£) < ¢, then it follows that

o) _ 120

e 3.20
20 [ ds (320
2
ra(s)
Now since by (3.19) we have
¢+ Z(5) ftz ftg ftsz ll
z(t) > 2(t) — z(t3) = dszz/(t)—,
& ftz ré () ftz r& (s)
which means that
t
) Jolo 7 for ¢ (3.21)
> >1t3> 10, .
0 [ 11 o rezion
2 ra(s)
then we have
ot g s
e > I . (3.22)
zZ'(o ftz Tds
ra(s)
This with (3.20) leads to
o) o) o) a3 ré o s
_ . . (3.23)
Z@)  Z(e®) 2 =
2 ra (s)
Substituting into (3.18), we get
o(t) rs
duds
k 2 ré u 4
o)+ 2 ”0 SICE ——p(t)Q(t)< S )
2y 1 j‘ 1
t2 1
’ A+l A
t 1
+<1 p" )Rg()<p*()) < ) . (3.24)
1:0 A+1 mp(t)
Now, consider the case o () > t. Since z(¢) is positive and increasing, it follows from (3.18)

that

k Y
W(£) + ”0 /(1) < p(t)Q(t)(Z,(t)>
Z(t)

P} P\ 1\
(“?)’W +1) (m) (3:25)
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Since (r(t)(z"(£))*) < 0, we get (3.19) and consequently we arrive at (3.21). Then, substi-
tuting into (3.25), we have

s 1 duds
’ p())/ ’ k ft"’ ftz ré(“) 4
o' () + " (t) < —Fp(t)Q(t)<W)
2 ra(s)
Py PN 1Y
+ <1+ Té+1>Rg(t)<m) <mp(t)) ’ (320

Combining (3.24) and (3.26), we get

() s 11 duds

Y Y
b, k < B2 )
o' () + —=V'(t) < - 1)Q(t
(t) To ) = 2%1/)( )Q(2) fttz s

re(s)

pg pi(t) A+l 1 A
' <1+ ré“>Rg(t)<x+ 1) (mp(t)) ‘

Integrating from 4 (>23) to t, we have

pg ook tzl(S) ft’; rél(v) dvdu. 4
L. — V(L. —
o(ts) + % v(ty) > /t4 |:2y1 P(S)Q(S)< fs T du )

L ra (u)

v} P\ (LY
_(1+ T&H)Rg(s)(“l) (mp(s)> }ds,

which contradicts (3.1). Secondly, assume that y < 1. Using (2.1) with (3.5), we obtain

Y

(rt)(2'®)“) + ’z—O (r(z@®) (2 (z(0)))%) < -kQ®)Z" (o (2)). (3.27)

0

By completing the proof as the above case of y > 1, using (3.27) instead of (3.6), the proof
is completed. d

Lemma 3.1 Assume that conditions (H1)—(Hy) hold. Let x be an eventually positive solu-
tion of Eq. (1.1) and the corresponding z(t) satisfies z(t) € Ny. If

/OO Q(s)ds = 00 (3.28)

or

/to ) /; N[V(Tl( ) f ) Q(x) du]é dsdt = oo, (3.29)

then lim;_, o x(£) = lim,_, o, 2(£) = 0.

Proof Assume that x(¢) is a positive solution of Eq. (1.1) satisfying z(¢) € Ny for ¢t > t;.
Going through as in the proof of Theorem 3.1, we arrive at (3.5). In the following, we

Page 9 of 25
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consider the two cases y > 1 and y < 1. Firstly, assume that y > 1. Then we have (3.6).
Since z(t) is positive and decreasing, we have lim,_, o z(t) = [ > 0 exists. We claim that
[ =0.If not, then there exists 3 > ¢, such that z(c (£)) > [ for ¢ > ¢3. Substituting into (3.6),
we get

Y
OO + P (r(z0) (2 ())<=~ ). (3.30)

70 2v-1

Integrating (3.30) from ¢ to ¢ and taking into account (3.28), we have
« Py «
r(t)(z”(t)) + t—zr(t(t)) (z”(t(t)))
/! o pg /7" o kl)/ !
<r(ts)('(t3))" + T—Or(r(tg))(z (t(t3)))" - F/ Q(s)ds > —oco ast— oo,
13

which is a contradiction. Thus / = 0 and consequently lim;_, - x(t) = 0. In the following,
we obtain the same conclusion in the case when ftzo Q(s) ds < oo. Integrating (3.30) from ¢

to 0o, we have

T

Y
O @O) + () (@ (10)) = 5 [ Qs

But since 7(¢) < ¢, then we can observe that »(z(¢))(z"(z(¢)))* > r(t)(z”(¢))* and conse-

quently we have
p o kv o
MO (@) = [ Qs
(14 ) e
ie.,

) N Y B W a
Z'(z(1) = |:2y1(1+[£)] [V(T(t))/t Q(s)ds] .

Integrating from ¢ to oo followed by integrating from t3 to co, we obtain

1 ki @ (oo poor o poe «
il - d dsdt,
Tozz(f(ts)) z |:2V1(1+%)] /:3 /t [r(r(s))/s Q(u) M] sdt

which contradicts (3.29). Thus lim;_, x(f) = 0. Secondly, assume that y < 1. As in the

proof of Theorem 3.1, we have (3.27). By completing the proof as in the above case of
y > 1, using (3.27) instead of (3.6), the proof is completed. a

Theorem 3.2 Assume that (H1)—(Hy) hold. If

~ L ' y < 1 4 ]a ~
/ro [V(t) 0 QAs)(@(6)) ( /a o T du) ds| dt=oo, (3.31)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) € Ny;.




Sallam et al. Advances in Difference Equations (2020) 2020:314 Page 11 of 25

Proof Let x(t) be an eventually positive solution of Eq. (1.1) satisfying z(t) € Ny for all £ >
t; > tp. Since z”(£) < 0 and Z/(¢) > 0, then by Lemma 2.5, there exist ¢, > #; and a constant
ki satisfying O < k; < 1 such that z(¢t) > ki ¢2/(¢) for £ > t,, i.e.,

Z(o(t) = ko) (o(t), t=t =1t (3.32)
Going through as in Theorem 3.1, we arrive at (3.5). In the following, we consider the two

cases y > 1 and y < 1. Firstly, assume that y > 1. Then we have (3.6), and using (3.32) we
get

w P o KK /
(0E©)) + 20 ((0)") <-37e00E0) E@0). 63

But since v(t) = —ra (£)2"(¢) is positive and increasing, then there exists a constant g; > 0
such that v(t) > g; for £ > t3 > t,. Hence

Z(o(8) = f T s g / L (3.34)

1
® ra(s) @ ra(s)

Substituting into (3.33) and integrating from 3 to ¢, we get
/" o Pg 7" o
—r(t)(z (t)) - —r(t(t)) (z (r(t)))

Y
> Z;gf f Q) (0 (s)) ( / . r;(u) du) ds. (3.35)

But since 7(¢) < ¢, then we can conclude that (z(£))(z"(z(¢)))* > r(¢)(z"(¢t))*. Now since

from (3.35) we have

Y 00
_r(t)(z”(t))a &/ Q(s) a(s)) (/ ll du)yds,

2r-1(1 + &2 () ra(u)

ie.,

0= () T ooy ([ )
Z(t)z(zyl(u’%) r(t)/:s Aete) fm)ré(u) P

Then integrating from ¢, (> £3) to ¢, we get

: kki g1 )é t[ 1 ( 1 )y F
kg dv) d ds,
Z(ta) = (2;/1(1 + %) f r(s) t3 Q(u)( (u )) /a(u) ré(V) ’ ! '

which contradicts (3.31). Secondly, assume that y < 1. As in the proof of Theorem 3.1, we

arrive at (3.27), and then using (3.32) we get

Y
(rOE'®O)) + 22 (r(z0) (' (z0))%) <~k Q) (0 (1)) (2 (0 (1)) (3.36)

To
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Going through as in the proof of the case y > 1, using (3.36) instead of (3.33), this com-
pletes the proof. d

The following results are immediate consequences of Lemma 2.4, Lemma 3.1, Theo-
rem 3.1, and Theorem 3.2.

Theorem 3.3 Assume that (1.8) and all the conditions of Lemma 3.1, Theorem 3.1, and
Theorem 3.2 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies
lim;_, o x(£) = 0.

Theorem 3.4 Assume that (1.5) and all the conditions of Lemma 3.1 and Theorem 3.1
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies lim;_, o, x(¢) = 0.

The following results deal with the special case <1 and y > 1 of Eq. (1.1).

Theorem 3.5 Assume that conditions (H;)—(Ha), @ <1, and y > 1 hold. If there exists a
positive function p(t) € C*([ty, 00)) such that

A0 ftsl L duds

~ k o dn Ty
/ [W—ﬂp(t)(z(t)( L )—Glm]dt:oo (337)

holds for any positive constants k, M, sufficiently large t1 > to, and for some t, > t; > t1,
where 11 (t) is defined by (3.3) and

_1 pe) 1-a\ pp P A-a)T'®))
Gl(t)-zapu)[r(t)(p(t) +a—M> +T—02r(t(t))<p(t) Tl )]

k(y - 1)
+
-1 M

p()Q(t),
then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) € Nj.

Proof Assume that x(¢) is an eventually positive solution of Eq. (1.1) satisfying z(¢) € Nj.
As in the proof of Theorem 3.1, we arrive at (3.6). Now define the function W(¢t) by

W(t) = p(ﬂ%, >t >t (3.38)

Then W(¢t) > 0 for ¢t > t; and

oy P rOE @) r@E )
W)= W+ PO e
_ P (r@®)E"@®)") Z'(2)
= V0o WO (3.39)

Since 7Z/(¢) and z”(¢) are positive, then there exist £, > #; and constant M > 0 such that
7 (t) > M for all £ > t,. Now, from (3.38) and (2.3), we get

2@ W (-9

Z(t) " apt)r(t) oM (3.40)

Page 12 of 25
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This with (3.39) yields

p(t) rOE®)*) W) (1-a)

VO= oM wer et Y
(r@)(" (1)) (t) 1-a))’
<pl(t )T ap(t)r (t)< DR ) . (3.41)
Now define
o) @)
V(t) = p(t)W' (3.42)
As we did for W, we can get
, p'(t) (rzO)"(z(®)*) T OVE)  (1-a)T'()
A Tt 77) R e 75, Y VIl
But since 7’ is increasing and 7(£) < ¢, then
, (r(T @) T ®))?)  Lap®r(x(t)) (p'() 1-a)T'(8))
Vi(t) < p(2) 20 M7 ( PR ) . (3.43)
This with (3.41) leads to
%
w(e) + 22 v(e)
To
(r@)("(©))*) + %(V(T(t))(Z”(r(t)))")/
< p(t)[ p }
Z/(t)
1 pt) 1-a)\*> phrz@®) (p'(t) (1-a)T'(®)\°
+5WM{AH(Mﬂ+ aM')+ 7 (mn* oM >}
Thus, by (3.6) and (2.4), we get
o Do z(o (t))
W'(t) + T—OV 1) < 2y —— r(H)Q(5) 20 + G1(2). (3.44)

Now, we consider the two cases o (¢) < t and o (£) > ¢.
First assume that o (¢) < £. As in the proof of Theorem 3.1, we get (3.23). Substituting
into (3.44), we have

o(t)
Po ky /;3 f2 ré(u) duds
W' (t) + — V/(t) < —Fp(t)Q(t) f ; +Gi(t) fort>t3>¢t. (3.45)
) L

VOlS

Secondly, assume that o (£) > ¢. Since Z/(£) > 0, it follows from (3.44) that

Y
W+ Bvio <o+
To 2v= ()

G (). (3.46)
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As in the proof of Theorem 3.1, we arrive at (3.21). Then, substituting into (3.46), we have

Y T PN L0
Wit)+—=V'() < ——_lp(t)Q(t)# + G (). (3.47)
To 2}/ + T dS
2 ra(s)
This with (3.45) yields
py ky /‘tzl(t) fts ré(u) duds
W(6) + == V'(2) < - —=p()Q(t) + G ().
To 27 ftz
ra (s)
Integrating from ¢, (> £3) to ¢, we get
11(s)
T ky ft;s ftz é()dvdu
W(e) + 22 V(t4) = / [FP(S)Q(S) 5 FP G (S)i| ds
la ty l
e (u)
This contradicts (3.37) and completes the proof. d

Theorem 3.6 Assume that (1.8) and all the conditions of Lemma 3.1, Theorem 3.2, and
Theorem 3.5 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies
lim;_, o0 x(£) = 0.

Theorem 3.7 Assume that (1.5) and all the conditions of Lemma 3.1 and Theorem 3.5
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies lim;_, o, x(£) = 0.

4 Oscillation criteria without condition (H,)

In this section, we study the oscillation of Eq. (1.1) when either of the two conditions
0 <p(t) <po<1orp(t) =1, p(t) # 1 holds for large ¢t. Now, we begin by establishing
new oscillation criteria for Eq. (1.1) in the case when p(£) > 1, p(t) # 1 for large ¢ with the
condition 7(¢) < ¢ and 7(¢) is strictly increasing.

Theorem 4.1 Assume that (H1)—(Hs) hold, p(t) > 1, p(t) #£ 1 for sufficiently large t, T(t) < ¢
and ©'(t) > 0. Further assume that there exists a positive function m,(t) € C([ty, 00)) such

that

m,(t) / / duds <0 (4.1)

nora (s hnore (u)
and p.(t) > 0 for sufficiently large t. If there exists a positive function p(t) € C'([to, 00)) such
that
o f ftl dvdu
/ [kp(sm(s)(p* (0(5))" ( o )
. ftl ra (u)

_rg()<p+(8)>“1< ! )A]ds:oo (4.2)
A+l mp(s) '
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holds for some constant k > 0, sufficiently large t; > ty, and for some t, > t; > t;, where X,
m, g are defined by (3.2), (3.3), and

-1
M(t) = t(o(), o) <z(®), 4.3)
t, o(t) = (t),

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) € Nj.

Proof Assume that x(¢) is an eventually positive solution of Eq. (1.1) satisfying z(¢t) € N;
for t > t,. From the definition of z (see also (2.2) in [6]), we have

_ 1 -1 _ 1
x(t) = =) (z(z7'(®) —x(r7'(®))
G O)) 1 11 11
= e 10) e opeiei) AT T O) - ()
>Z(‘L"l(t)) 1

-1(_-1
~ p(r(®) _p(rl(t))p(rl(rl(t)))Z(’ (=7 @))- (4.4)

Define the function w(t) as in (3.7). Then w(¢) > O for ¢ > £; satisfying (3.9). As in the proof
of Theorem 3.1, since (r(£)(z”(£))*) < 0, we have (3.19) and then

t rs
) ftz ftl ll( ; duds
> ro(u
'(t) — ft L ds

a re(s)

fort >t > t. (4.5)

~

N

||

This with (4.1) yields

2\ 1 /
(m(t)) 70 [ (O)m. (&) - 2()m, (0)]

t 1
z(t) m*(t) ftl ré(s) ds /
<— D -m,(t)| <O.
m2(t) ftz ftl T )duds

Wfit&) is nonincreasing. But since t(¢) < ¢ and 7/(¢) > 0, it follows that

74(¢) < v~ (r71(¢)), and so

This means that

Z(‘E_l (‘L'_l(t))) < m*(ril(fil(t)))z(fil(t)) .

PREIE) *0
Substituting from (4.6) into (4.4), we get
5(0) > p.02(x (). @)
This in the view of (1.1) leads to
(O ©)°) = —ka@)(p. (o)) 7 (7 ((0)). @8)

In the following, we consider the two cases y > o and y < «.
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First, assume that y > «. As in the proof of Theorem 3.1, we have (3.12). Then, substi-
tuting from (4.8) into (3.12), we obtain

a+l o -1 y
w(t)<r(t)(p++(i> (My_llp(t)> —kp(t)q(t)(p*(a(t)))y<w> . (49

Now assume that y < «. As in the proof of Theorem 3.1, we have (3.15). Then, substituting
from (4.8) into (3.15), we obtain

, NG ACN S T y (2o )Y
o'(t)<r (t)<)/+l> (m) —kP(t)Q(t)(P*(U(f))) (T) . (4.10)

This with (4.9) yields

) oL\ 1Y y (2o @)\
w(t)frg(t)<)h+1> (m) —kp(t)q(t)( *(U(t))) (T) . (411)

Now, consider the two Cases o(t) < 7(t) and o (¢) > 7(¢). First assume that o (¢) < 7(¢). Since
Yo (t)) <t and (/ )’ <0, then by (4.5) we have

tlriu

duds

Ho®) s 1
qlo@) o I Em
Z/(t) - ftl

ras

Substituting into (4.11), we get

/ A+l A
) = ’g(t)<§++(?> (m;<t)>

o) s 1
ftz ft1 +— duds

Y
—kp(t)Q(t)(P*(a(t)))y< 7 - ( ) . (4.12)

rtx(s

Secondly, assume that o (t) > 7(t). Hence since Z/(¢) > 0 and t7'(o(¢)) > ¢, we have
z(t™Y(o (t))) > z(t). Thus it follows from (4.11) and (4.5) that

/ A+l A
/o) = ’g(t)<§++(?> (mi(t))

ftzftl 7( duds)y
j‘h 1

r'ls

(4.13)

—kp(£)q(@®)(p. (o (2)))" (
Combining (4.12) and (4.13) and then integrating from t3 (> ;) to ¢, we get

e gty
ftl rE (1)

,01(5) A+l 1 A
_'g(s)(Ml) (mp(s)) }ds’

which contradicts (4.2). This completes the proof. d

dvdu
V

olts) > / [kp(s)q(s)( *(o(s)))y<
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Theorem 4.2 Assume that (H;)—(Hjs) hold, p(t) > 1, p(t) # 1 for sufficiently large t, T(¢) <
t, T'(t) > 0, and p*(t) > 0. If x(t) is an eventually positive solution of Eq. (1.1) satisfying
z(t) € Ny with

f q(s)(p*(o(s)))” ds = 00 (4.14)

or

o ] dse
fto /t [r(s)/s q()(p" (0 ())) du] dsdt = oo, (4.15)

then lim;_, o, x(¢) = 0.

Proof Let x(¢) be an eventually positive solution of Eq. (1.1) satisfying z(¢) € Ny for t > t;.
Going through as in the proof of Theorem 4.1, we arrive at (4.4). Since z(¢) is decreasing
and 7(¢) < t, then z(z71(¢)) > z(r "} (r 1(¢))). Substituting into (4.4), we get

x(t) Zp*(t)z(‘[_l(t)). (4.16)

This with (1.1) leads to

(O (Z'0)%) < ~kg(&)(p* (o)) 2 (=7 (0 ®))). (4.17)

Since z(t) > 0 and Z/(¢) < 0, then lim,_, o, z(¢) = [ > 0 exists. We claim that [ = 0. If not, then
there exists £, > t; such that 171 (o' (¢)) > t; and z(t (o' (¢))) > [ for ¢ > t,. Substituting into
(4.17), we get

(r)(2'()") < —k” q(t) (p* (0 (1)) (4.18)

Integrating from £, to ¢ and taking into account (4.14), we have

t

r(t)(z”(t))a < r(tz)(z”(tz))a —kIv / q(s) (p* (a(s)))y ds— —oc0 ast— oo,

5]

which is a contradiction. Thus / = 0 and lim;_, o #(¢) = 0. In the following, we obtain the
same conclusion in the case when ftzo q(s)(p* (o (s)))” ds < co. Integrating (4.18) from ¢ to
oo and dividing both sides by r(£), we have

z”(t)z(kl”)‘i[%/ q(s)(p*(o(s)))ydsila, >t

Integrating again from ¢ to co, we obtain

R~

—Z() > (k")

wop 1 oo . ) @
/t [@/; q(w)(p* (o ())) du] ds, t>t3>t.

Moreover, by integrating again from 3 to oo, we get

1

2(ts) > (k) f / [% f q(u)(p*(a(u)))ydu]adsdt,
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which contradicts (4.15). Hence, [ = 0. So from the fact that 0 < x(£) < z(¢), it follows that
lim,— o0 2() = 0. -

Theorem 4.3 Assume that (Hi)—(Hs) hold, p(t) > 1, p(t) # 1 for sufficiently large t,
() < t and ©'(t) > 0. If for some constant ki € (0,1) there exists a function m,.(t) €
C([to, 00), (0, 00)) such that

. (t) — kytm, (£) <0, (4.19)

Pss(t) > 0 for all sufficiently large t and

NS ' -1 o0 1 v ]% B
/to [r(t)/mﬂs)[t (a(s))p**(a(s))/r_l(g(s)) T du] ds| dt=o0, (4.20)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) € Ny;.

Proof Let x(£) be an eventually positive solution of Eq. (1.1) such that x(¢) > 0, x(z(¢)) > 0,
and x(o (¢)) > 0, z(¢) satisfies z(t) € Ny and (o (¢)) > to for t > t; > ty. From the definition
of z, we have (4.4) as in the proof of Theorem 4.1. Since z”(¢t) < 0 and Z/(¢) > O, then by
Lemma 2.5 there exists £, > #; such that

z(t) > kit (t), t>to. (4.21)

This with (4.19) yields

( 0] > L (02 0) - 0y, ()]

me(t)) ~ m2 (1)

z(2)
< ———|m. () - kit (8)] <0,
= k2 (0) [Wl () = kytm, )]
and so mi(:zt) is nonincreasing. Hence z(t 71 (t71(¢))) < m**(T;(f(i(_tl))();)(fl(t)) .Now, from (1.1),
(4.4), and (4.21), we have
(r(t) (z”(t))a)/ < —kki/q(t)(r_1 (a(t)))y (p** (a(t)))y (z’(t‘1 (a(t))))y. (4.22)
But since —ra (£)z"(¢) is positive and increasing, then we have _ra B)2'(t) > g1 for t > 1.
Hence
o0 l 1! o0
Ly 1
Z/(t)Z/ MdSZ&/ —— ds.
¢ ra(s) t rafs)
Thus

(4.23)

(= (00)) = a1 f R

(o (1)) }"é (S)

This with (4.22) leads to

(06 O)) = e a0( @ 0) o)) ([ d)

1
o) ra(s)
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Integrating from t, to ¢, we get

) t o0 y %
—z”(t)z(kki’gf)"‘[%/ q(s)[r‘l(a(S))p**(G(s))/ 1 du} ds] .

=10 (s)) }"é (M)

Integrating again from £3 (> ;) to ¢, we have

Z/(tg) t 1 s i o0 1 :|V ]é
_ — ok dv| d ds.
g > /ts |:V(S) /t; q(u)|:r (0 (@) pas (0 (1)) /rl(a(u)) o) v| du

This contradicts (4.20) and completes the proof. d

Theorem 4.4 Assume that (1.8) and all the conditions of Theorem 4.1, Theorem 4.2, and
Theorem 4.3 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies

lim;_, o x(£) = 0.

Theorem 4.5 Assume that (1.5) and all the conditions of Theorem 4.1 and Theorem 4.2
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies lim;_, o, x(¢) = 0.

Remark 1 The assumptions concerning the existence of the two functions m,(f) and
m,(¢) hold, for example, uu(t) = £(2), u(2) = (E(®)", u(t) = £()e¥ W, u(t) = (5 (2))"e™ with

Ji Jo 7 duds, pu(e) = m.(0)
1

th, /L(t) = m**(t)y

£(t) =

n>1ande >0, etc.

Remark 2 From Theorem 4.4 and Theorem 4.5, we can obtain more than one oscillation
criterion for Eq. (1.1) in the two theorems with different choices of m,(t) and m,.,(¢£) which

are mentioned in Remark 1.

In the following, we discuss the oscillatory behavior of solutions of Eq. (1.1) in the case
when 0 < p(t) < po < 1.

Theorem 4.6 Assume that (H1)—(Hs) hold and 0 < p(t) < po < 1. If there exists a positive
function p(t) € C'([ty, 00)) such that

M) pu 1
b ftl o dvdu

ft* [kp(sm(s)(l—p(a(s)))V( T da )

re (u)

,O_/'_(S) A+l 1 A B
()" (k) o

holds for some constant k > 0, for sufficiently large t, > to, and for some t, > t, > t;, where

A, m, g, M (t) are as defined by (3.2) and (3.3), then there exists no positive solution x(t) of
Egq. (1.1) satisfying z(t) € Nj.
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Proof Let x(£) be an eventually positive solution of Eq. (1.1) satisfying z(¢) € N;. From the
definition of z, we have

x(t) = z(t) - p(O)x(t(2)) = (1 - p(2))2(2).

This with (1.1) yields
(r@) (z”(t))a)/ < —kq(t)(1 —p(a(t)))yz” (o(2)). (4.25)

Defining w(t) by (3.7), completing the proof as in the proof of Theorem 4.1 by applying
(4.25) instead of (4.8), and considering the two cases o (£) < ¢ and o (¢) > ¢ instead of the
two cases o (t) < t(t) and o (£) > t(¢), we get a contradiction to (4.24). O

Theorem 4.7 Assume that (Hy)—(Hs) hold, 0 < p(t) < po < 1, and x(t) is an eventually
positive solution of Eq. (1.1) satisfying z(t) € Ny;. If

/ N q(s)ds =00 (4.26)

Lo

or

/OO/OOI:L /00 q(u) dui|a dsdt = oo, (4.27)
to t r(S) s

then lim;_, o x(£) = 0.

Proof Let x(t) be an eventually positive solution of Eq. (1.1) satisfying z(t) € Ny, for ¢ >
11 > tp. Since z(t) is positive and decreasing, we have lim;_, « z(¢) = / > 0 exists. We claim

that/ = 0. If not, then for any € > 0 we have [ < z(£) < [ + € eventually. Choose 0 < € < 1(1;—;’0).
It is easy to verify that

x(t) = z(¢) —p(t)x(t(t)) > z(t) —p(t)z(t(t)) >I—po(l+€)=ko(l + €) > koz(t),
where ky = l“’;;’fge) > 0. Now, it follows from (1.1) that

(")) <K q(0) (o (1)) < ~k(kal)? q(0). (4.28)

Going through as in the proof of Theorem 4.2 by applying (4.28) instead of (4.18), we can
get a contradiction to (4.26) or (4.27). This completes the proof. (|

Using a similar technique to the proof of Theorem 4.3 and using (4.25) with (4.21) in-
stead of (4.22), we can get the following result.

Theorem 4.8 Assume that (H1)—(Hs) hold and 0 < p(t) < po < 1. If

/m[ 1 tq(s)[a(s)(l—l’("(s))) /oo 11 du:|ydsi|adt=oo, (4.29)

r(t) Ji, ) ra(u)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) € Ny;.
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Theorem 4.9 Assume that (1.8) and all the conditions of Theorem 4.6, Theorem 4.7, and
Theorem 4.8 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies

lim;_, o x(£) = 0.

Theorem 4.10 Assume that (1.5) and all the conditions of Theorem 4.6 and Theorem 4.7
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies lim;_, . x(¢) = O

5 Examples
Example 1 Consider the third order differential equation

25 (t\\" 1%\ 3
([(x(t)+zx<§)) ] ) +;x(t)=0, t>1. (5.1)

Here, r(t) = 1, p = 4,T(t)—% q()—;, o(t) =t and1=y>a=%.1tisclearthat
ftzo —— dt = c0. Choosing p(t) = 1, then we have p.(t) =0, and

@ (£) £’

—— dvdu

o f f 1 ’ a+l o
274 ) Po P, (s) 1
Z;[“ﬂ”Q@< [ ) ‘(1 ﬁ“)RU(a+l> (mp@> }“

dvdu ®/3 3t 3t 34t
:/ 2<ft2f“ )dsZ/ <———21‘_§+ ]32>ds=oo.
ty S ft Ly 2s s 2s §

Thus, it follows from Theorem 3.4 that every solution x(¢) of Eq. (5.1) is either oscillatory

or satisfies lim;_, o x(¢) = 0. In fact, x(¢) = = 1s a solution of Eq. (5.1).

Example 2 Consider the third order differential equation

t tl//5,t1%%t1—0t>1 0 52
() R PR

Here,r(t)—lp—po,r(t)—t i,q(t)—(t—l)% o()—t—%,and%=y<a=5.Itisclear

that ft T dt = 00. Choosing p(t) = 1, we have p(t) = 0, and
s S5 fy - dvdu
/Pmmﬁ )
g o e

2 PN 1Y
() () o
:/°°<1> %<(S—t1—l)2—(tz—t1)2) ds
Ly 2 s—h
1\2 , %ds
- [() (o) )
1) 3
L D)oty o) o
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Thus, by Theorem 3.4, it follows that every solution x(¢) of Eq. (5.2) is either oscillatory or
satisfies lim;_, o, x(¢) = 0.

Example 3 Consider the third order differential equation

(t[( t)+vx(t>>”]3>,+)\t6x3(é):0, t>1,1>0. (5.3)

Here, r(t) = t, p = [ r(t) q( Y= A, o(t) = ;, and3=y >a = l It is clear that
[ —de= [~ % dt =1 <o0. Choosmg o(t) = LO, we have p’ (t) = 0, and

0 ré(t)

dvdu

- ' a(s) f;l r&V y
[ [Fp(sxz(s)( - )

rvtu

o p.(s) 1\
‘(“F)Rm<a+1) (mp(s>) ]ds

1,
1.5
t 2
1 2 L5

and

00 L t y o0 1 14 :|é
/;0 |:r(t) /;0 Q(s)(a(s)) </G(s) ré(u) du) ds| dt

A3 o (14 _1)3 A3 (=13t + 132 +1)3
- (3)18(4)3 / 5 4 Gy / 7 d

/ t-1°(£ +1) dt> ———

/ (¢ -1)>d¢t = c0.

)18(4)3 (3)18 4)3

Thus, by Theorem 3.3, it follows that every solution x(¢) of Eq. (5.3) is either oscillatory or

3
satisfies lim;_, o x(f) = 0. We may note that, for A = \/‘/:7, we have x(f) = = is a solution of

[7
Eq. (5.3).

Example 4 Consider the third order neutral delay differential equation

( (x(t) 5tt++16x(§>> ) OB (E—1)=0, t>t5=2. (5.4)

Here, r(t) = £, p(t) = £3 M q() =1, t()=%,00)=t-1,f(u) =’ , @ =1,and y = 3.1t
is clear that p(¢) = £3 [5+ H—l] > (5)(23) ~15.874>1, 100 #0 o1, 0(t) > t(t), conditions

(H;)—(H3), and (1.8) hold, and

P (1 0) = @0 - [ 11}(4r)%><5)<4t)%><5><8>%:160. 55)
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¢ 1
Let m,(t) = ftz f; rél(u) =t%, Thus

i) ps

6= — (1 vk kg duds)
Px _ - - - -1 s
pEt@O)\ pr(x () I © s L duds

re (u)
1 1 12¢2-13t+3 1
p(20) 160 62— 13t+6 ) p2t)\ 160
. 784241080~ N )
where ¢(1) = ¢ tzlf;ir <. Since ¢'(¢) = %ﬁﬁt@?, which is negative for t > £, =3 > £ = 2.
Thus ¢(2) is positive and decreasing for ¢ > ¢, = 3. It follows that ¢(z) < 17—0. Thus by (5.6)
we have
1 1 24 137 2t+1
pit)y > ——1-—— | = = >0 fort>t,=3.
p(2t) 160 7 (140)(2¢)3 10t +6

By choosing p(t) = %8, condition (4.2) becomes

ft1 dvdu

. T Y
f [kp(S)q(s)(P*(U(s)))y( I o ) ]ds
ty o ré(ll)

or 1 137 25—1 1 \*/[ [ 5dvdu\?
Z/ _859 5 5 : s1 1/1 ds
o Ls® \(140)(23) 10s =4 (5 _ 1)3 Ji sdu

143

0 3o (Gh + %)du 3
- | [s(%as)ig) ("’l—i) }ds, (57)
b (140)(23) s3 w2t 32

2
2ty

where ¢ (s) = 1253‘_14 Then ¢'(s) = 105 e > 0,1i.e., ¢(s) is positive and increasing and ¢ (s) >

for s > t, = 3. Now from (5.7) we have

ftl +— dvdu

ft* [kp(S)Q(S)(p*(U(S)))V< 3 llwdu )]ds
ra (u)

2]

1 1 t

>/°°[( 137 5 1)3(z+;7;‘m‘ﬁ)3}d
> S| ———— — S

L \(140)(23) 26 53 =t

2 3_ o 2.\ 3
o0 ! ts+s - 58 — s

> (2.082656208 x 107*) - > ds = co.

L S S

But since by (5.5) we have

L (1_ 1 >> 159 2411
P01 7o @) T qe0)@d) 106643

then it follows that condition (4.14) reads

© 159 3 1 ©
/ﬁo ) (p* (o))" du>ft0 u9<(160)(23_)_6_g) du~61[0 Wt dut = oo,
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where €] = (0.05868968172)3. Moreover, since by using (5.5) and letting k; = % we have

P (1_ 1 [z—l(f—l(r))]k‘l>
P 0o U e o)L o
1 ( 1 <4t>2> 39 26+1 1
>— (1-— (=) )= —— — >0,
p(2t) 160 \ 2t (40)(23) 10£ +6 43
then condition (4.20) becomes
e’} t [e%e} Y é
[ o [t eomntow [ el w]
©1 o1 ( 39 25-1 1 >]3de
2/2 t3/2 * [4(5_1) (40)(23) 10s =4 (5 1)3 ‘
B[ 39 3 1)\T
2/2 t3/z * [48((40)(22)165?,)} bt

~ri1 2
~e / [— - —] dt = oo, where €, = (0.01439558231)°.
2

Thus, all the conditions of Theorem 4.4 are satisfied, and so every solution x(¢) of Eq. (5.4)
is either oscillatory or satisfies lim;_, o, x(£) = 0.

6 General remarks

(1) In this paper, several new oscillation criteria for Eq. (1.1) have been presented which
complement and improve the existing results introduced in the cited papers. In fact,
our results are applicable in the cases either with p(¢) is bounded or unbounded and
where the restriction r/(¢£) > 0 imposed by the authors in [1, 8, 9, 14, 19], and [17] is
dropped in this paper.

(2) Itis our belief that the present paper is of significance because it extends most of the
cited papers which are concerned with unbounded p(t) and relaxes some of their
conditions. For example, Theorem 4.5 includes Theorem 2.6 and Theorem 2.9 of
[15], where the author was only concerned with the special case a = y with
ftzo ra (s) ds = 0o, and with the restriction o (¢) is nonincreasing. Moreover, our
results in this paper extend those of [5] in the special case r(¢) = 1, « = 1, and
f(u) =u”, where y < 1. At the same time it extends those of [4] in the special case
p(t) =0, @ = y, with o (¢) being strictly increasing.

(3) Our criteria could be extended to the dynamic equation on time scales. In this case,
if we consider m.(t) = fé f:l 1~ AuAsand ftzo L As = 00, then the obtained

re (u) ra(s)

results will be more general than those of [10], because one may note that the results

of [10] are applicable only in the case y <«, 0 < p(t) <po < 1,and o(¢) is

nondecreasing, while our results are applicable in the case y > « and p(¢) > 1.
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