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Abstract
The main objective of this article is to improve and complement some of the
oscillation criteria published recently in the literature for third order differential
equation of the form

(r(t)(z′′(t))α)′ + q(t)f (x(σ (t))) = 0, t ≥ t0 > 0,

where z(t) = x(t) + p(t)x(τ (t)) and α is a ratio of odd positive integers in the two cases∫ ∞
t0

r
–1
α (s)ds < ∞ and

∫ ∞
t0

r
–1
α (s)ds =∞. Some illustrative examples are presented.
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1 Introduction
Consider the nonlinear third order differential equation

(
r(t)

(
z′′(t)

)α)′ + q(t)f
(
x
(
σ (t)

))
= 0, (1.1)

where t ≥ t0 > 0, z(t) = x(t)+p(t)x(τ (t)), and α is a ratio of odd positive integers. We assume
that the following conditions hold:

(H1) r(t), p(t), q(t), τ (t),σ (t) ∈ C([t0,∞)), r(t), q(t) are positive and 0 ≤ p(t) ≤ p0 < ∞;
(H2) limt→∞ τ (t) = limt→∞ σ (t) = ∞, σ (t) > 0, and τ (t) ≤ t;
(H3) f (u) ∈ C(R) and there exists a positive constant k such that f (u)/uγ ≥ k for all u �= 0

and γ is a ratio of odd positive integers;
(H4) τ ′(t) ≥ τ0 > 0 and τ ◦ σ = σ ◦ τ .
By a solution of (1.1), we mean a nontrivial function x(t) ∈ C([Tx,∞)), Tx ≥ t0, which has

the properties z(t) ∈ C2([Tx,∞)), r(t)(z′′(t))α ∈ C1([Tx,∞)) and satisfies (1.1) on [Tx,∞).
Our attention is restricted to those solutions x(t) of (1.1) satisfying sup{|x(t)| : t ≥ T} > 0
for all T ≥ Tx. We assume that (1.1) possesses such a solution. A solution of (1.1) is called
oscillatory if it has arbitrarily large zeros on [Tx,∞); otherwise, it is termed nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.
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The oscillatory behavior of solutions of various classes of nonlinear differential and dy-
namic equations on time scales has received much attention, we refer the reader to [1–17]
and the references cited therein.

In 2012, Liu et al. [9] established new oscillation criteria for the second order Emden–
Fowler equation

(
r(t)

∣
∣z′(t)

∣
∣α–1z′(t)

)′ + q(t)
∣
∣x

(
σ (t)

)∣∣γ –1x
(
σ (t)

)
= 0 (1.2)

under the assumptions

0 ≤ p(t) ≤ 1, (1.3)

r′(t) ≥ 0, σ ′(t) > 0, (1.4)

and α ≥ γ > 0. In 2016, Wang et al. [16] studied Eq. (1.2) with condition (1.3),

∫ ∞

t0

1
r 1

α (t)
dt = ∞, (1.5)

and σ ′(t) > 0 with α ≥ γ > 1 when the condition r′(t) ≥ 0 is neglected. Meanwhile, Wu et
al. [17] established oscillation criteria for (1.2) in the general case when α > 0 and γ > 0
are constants with conditions (1.3) and (1.4). Baculíková et al. [2] considered (1.2) in the
more general case when 0 ≤ p(t) ≤ p0 < ∞ with condition (1.5) and σ ′(t) ≥ 0. For the case
of third order differential equations, Džurina et al. [18] obtained sufficient conditions for
the oscillation of solutions of the differential equation

(
r(t)

(
z′′(t)

)α)′ + q(t)xα
(
σ (t)

)
= 0, (1.6)

where

0 ≤ p(t) ≤ p0 < 1 (1.7)

with condition (1.5). Meanwhile, Baculíková et al. [1] and Su et al. [19] discussed the oscil-
latory behavior of third order Eq. (1.6) when r′(t) ≥ 0, (1.7) and (1.5) hold. Also Thanda-
pani et al. [14] studied Eq. (1.6) when (1.7) holds and

∫ ∞

t0

1
r 1

α (t)
dt < ∞. (1.8)

Recently, Jiang et al. [7] established new oscillation criteria for Eq. (1.1), where γ = α ≥ 1
and (1.5) hold without requiring (1.4).

More recently, Graef et al. [6] discussed the special case of Eq. (1.1) in which r = 1 and
α = γ .

The main goal of this paper is to establish new oscillation criteria motivated by [6, 7],
and [17] for Eq. (1.1) under all cases of γ , α (i.e., γ > α, γ = α, and γ < α),

∫ ∞
t0

1
r

1
α (t)

dt < ∞
and

∫ ∞
t0

1
r

1
α (t)

dt = ∞ without assumption (1.4). We consider the two cases when (H4) holds
or not.
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In the sequel, we give the following notations:

Q(t) = min
{

q(t), q
(
τ (t)

)}
, R(t) = max

{
r(t), r

(
τ (t)

)}
,

η′
+(t) = max

{
0,η′(t)

}
, p∗(t) =

1
p(τ–1(t))

(

1 –
1

p(τ–1(τ–1(t)))

)

,

p∗(t) =
1

p(τ–1(t))

(

1 –
1

p(τ–1(τ–1(t)))
m∗(τ–1(τ–1(t)))

m∗(τ–1(t))

)

, and

p∗∗(t) =
1

p(τ–1(t))

(

1 –
1

p(τ–1(τ–1(t)))
m∗∗(τ–1(τ–1(t)))

m∗∗(τ–1(t))

)

,

where τ–1 is the inverse of τ , m∗ and m∗∗ are functions to be specified later. All func-
tional inequalities considered in this article are assumed to hold eventually, that is, they
are satisfied for all t large enough.

2 Some preliminaries
We enlist some known results which will be needed. We first present the following classes
of nonoscillatory (let us say positive) solutions of (1.1):

z(t) ∈ NI ⇔ z′(t) > 0, z′′(t) > 0, (r(t)(z′′(t))α)′ < 0,
z(t) ∈ NII ⇔ z′(t) < 0, z′′(t) > 0, (r(t)(z′′(t))α)′ < 0, and
z(t) ∈ NIII ⇔ z′(t) > 0, z′′(t) < 0, (r(t)(z′′(t))α)′ < 0, eventually.

The following lemma comes directly from combining Lemma 1 and Lemma 2 in [13]
with Lemma 3 and Lemma 4 in [20].

Lemma 2.1 Assume that A ≥ 0 and B ≥ 0. Then

(A + B)λ ≤ Aλ + Bλ ≤ 21–λ(A + B)λ, 0 < λ ≤ 1, (2.1)

and

21–λ(A + B)λ ≤ Aλ + Bλ ≤ (A + B)λ, λ ≥ 1. (2.2)

Lemma 2.2 Let g > 0. Then

gr ≤ rg + (1 – r) for 0 < r ≤ 1 (2.3)

and

gr ≥ rg + (1 – r) for r ≥ 1. (2.4)

Proof See [21, p. 28]. �

Lemma 2.3 [17]Assume that A ≥ 0, B > 0, U ≥ 0, and λ > 0. Then

AU – BU1+ 1
λ ≤ λλ

(λ + 1)λ+1
Aλ+1

Bλ
. (2.5)
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Lemma 2.4 Assume that x is an eventually positive solution of (1.1). If (1.5) holds, then
z(t) ∈ NI or z(t) ∈ NII . While if (1.8) holds, then either z(t) ∈ NI or z(t) ∈ NII or z(t) ∈ NIII .

Proof The proof is similar to [22, Theorem 2.1 and Theorem 2.2]. �

Lemma 2.5 ([5, 23]) Let the function f (t) satisfy f (i)(t) > 0, i = 0, 1, 2, . . . , n, and f (n+1)(t) < 0
eventually, then there exists a constant k1 ∈ (0, 1) such that f (t)

f ′(t) ≥ k1t
n eventually.

3 Oscillation criteria in the case when (H4) holds
In this section, we establish new oscillation criteria for Eq. (1.1) in the case when (H4)
holds.

Theorem 3.1 Assume that (H1)–(H4) hold. If there exists a positive function ρ(t) ∈
C1([t0,∞)) such that

∫ ∞

t∗

[

Kρ(s)Q(s)
(

∫ λ1(s)
t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

–
(

1 +
pγ

0

τλ+1
0

)

Rg(s)
(

ρ ′
+(s)

λ + 1

)λ+1( 1
mρ(s)

)λ]

ds = ∞, (3.1)

where

λ = min{α,γ }, m =

⎧
⎨

⎩

1, γ = α,

0 < m ≤ 1, γ �= α,
K =

⎧
⎨

⎩

k
2γ –1 , γ > 1,

k, γ ≤ 1,
(3.2)

g =

⎧
⎨

⎩

1, γ ≥ α,
γ

α
, γ < α

and λ1(t) =

⎧
⎨

⎩

t, σ (t) ≥ t,

σ (t), σ (t) < t
(3.3)

holds for some constant k > 0, sufficiently large t1 ≥ t0, and for some t∗ > t2 > t1, then there
exists no positive solution x(t) of Eq. (1.1) satisfying z(t) ∈ NI .

Proof Assume that x(t) is a positive solution of Eq. (1.1) satisfying z(t) ∈ NI for t ≥ t1.
Then from (1.1) and (H3) it follows that

(
r(t)

(
z′′(t)

)α)′ = –q(t)f
(
x
(
σ (t)

)) ≤ –kq(t)xγ
(
σ (t)

)
< 0. (3.4)

Since (r(τ (t))(z′′(τ (t)))α)′ = (r(z′′)α)′(τ (t))τ ′(t), then in view of (H4) there exists t2 ≥ t1 such
that

(
r(t)

(
z′′(t)

)α)′ +
pγ

0
τ0

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′

≤ –kQ(t)
[
xγ

(
σ (t)

)
+ pγ

0 xγ
(
τ
(
σ (t)

))]
for t ≥ t2. (3.5)
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In the following, we consider the two cases γ > 1 and γ ≤ 1. Firstly, assume that γ > 1.
Using (2.2) with (3.5), we get

(
r(t)

(
z′′(t)

)α)′ +
pγ

0
τ0

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′

≤ –
k

2γ –1 Q(t)
[
x
(
σ (t)

)
+ p0x

(
τ
(
σ (t)

))]γ ≤ –
k

2γ –1 Q(t)zγ
(
σ (t)

)
. (3.6)

Define the functions ω(t) and ν(t) by

ω(t) = ρ(t)
r(t)(z′′(t))α

(z′(t))γ
(3.7)

and

ν(t) = ρ(t)
r(τ (t))(z′′(τ (t)))α

(z′(τ (t)))γ
, t ≥ t2. (3.8)

Then clearly ω(t) and ν(t) are positive for t ≥ t2 and satisfy

ω′(t) =
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ
– γρ(t)r(t)

(z′′(t))α+1

(z′(t))γ +1 (3.9)

and

ν ′(t) =
ρ ′(t)
ρ(t)

ν(t) + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))γ
– γρ(t)r

(
τ (t)

)
τ ′(t)

(z′′(τ (t)))α+1

(z′(τ (t)))γ +1 . (3.10)

Now, we consider the two cases γ ≥ α and γ < α. We first assume that γ ≥ α. From (3.7),
we have

z′′(t) =
(
z′(t)

) γ
α

(
ω(t)

ρ(t)r(t)

) 1
α

.

Substituting into (3.9), we get

ω′(t) =
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ
– γρ(t)r(t)

(
ω(t)

ρ(t)r(t)

)1+ 1
α (

z′(t)
) γ

α –1. (3.11)

But since z′(t) is positive and increasing, it follows that there exists a constant M > 0 sat-
isfying z′(t) ≥ M and

ω′(t) ≤ ρ ′
+(t)r(t)

(
ω(t)

ρ(t)r(t)

)

– γ M
γ
α –1ρ(t)r(t)

(
ω(t)

ρ(t)r(t)

)1+ 1
α

+ ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ
.

Using inequality (2.5) with A = ρ ′
+(t)r(t), U = ω(t)

ρ(t)r(t) , and B = γ M
γ
α –1ρ(t)r(t), it follows that

ω′(t) ≤ r(t)
(

ρ ′
+(t)

α + 1

)α+1(
α

γ M
γ
α –1ρ(t)

)α

+ ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ

≤ r(t)
(

ρ ′
+(t)

α + 1

)α+1( 1
M

γ
α –1ρ(t)

)α

+ ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ
. (3.12)
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In view of (3.8), we have

z′′(τ (t)
)

=
(
z′(τ (t)

)) γ
α

(
ν(t)

ρ(t)r(τ (t))

) 1
α

.

Substituting into (3.10), we get

ν ′(t) =
ρ ′(t)
ρ(t)

ν(t) + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))γ

– γρ(t)r
(
τ (t)

)
τ ′(t)

(
z′(τ (t)

)) γ
α –1

(
ν(t)

ρ(t)r(τ (t))

)1+ 1
α

≤ ρ ′
+(t)r

(
τ (t)

)
(

ν(t)
ρ(t)r(τ (t))

)

+ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))γ

– γ M
γ
α –1ρ(t)r

(
τ (t)

)
τ ′(t)

(
ν(t)

ρ(t)r(τ (t))

)1+ 1
α

.

Again by inequality (2.5), we get

ν ′(t) ≤ r
(
τ (t)

)
(

ρ ′
+(t)

α + 1

)α+1( 1
M

γ
α –1ρ(t)τ ′(t)

)α

+ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))γ
.

But since z′′(t) > 0 and τ (t) ≤ t, we obtain

ν ′(t) ≤ r
(
τ (t)

)
(

ρ ′
+(t)

α + 1

)α+1( 1
M

γ
α –1ρ(t)τ ′(t)

)α

+ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(t))γ
. (3.13)

Combining (3.12) and (3.13) and using (3.6), we get

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

z(σ (t))
z′(t)

)γ

+
(

1 +
pγ

0

τα+1
0

)

R(t)
(

ρ ′
+(t)

α + 1

)α+1( 1
M

γ
α –1ρ(t)

)α

. (3.14)

Now, assume that γ < α. Then from (3.7) we have

1
z′(t)

=
( ω(t)
ρ(t)r(t) )

1
γ

(z′′(t))
α
γ

.

Substituting into (3.9), we get

ω′(t) =
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ
– γρ(t)r(t)

(
z′′(t)

)1– α
γ

(
ω(t)

ρ(t)r(t)

)1+ 1
γ

=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ

– γρ(t)
(
r(t)

)1– 1
α + 1

γ
(
r

1
α (t)z′′(t)

)1– α
γ

(
ω(t)

ρ(t)r(t)

)1+ 1
γ

.



Sallam et al. Advances in Difference Equations        (2020) 2020:314 Page 7 of 25

It is clear that (r 1
α (t)z′′(t))1– α

γ is positive and increasing, and so there exists a positive con-
stant m1 such that

ω′(t) ≤ ρ ′
+(t)r(t)

(
ω(t)

ρ(t)r(t)

)

+ ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ

– γ m1ρ(t)
(
r(t)

)1– 1
α + 1

γ

(
ω(t)

ρ(t)r(t)

)1+ 1
γ

for all sufficiently large t. Using inequality (2.5), we conclude that

ω′(t) ≤
(

ρ ′
+(t)

γ + 1

)γ +1( r 1
α (t)

m1ρ(t)

)γ

+ ρ(t)
(r(t)(z′′(t))α)′

(z′(t))γ
. (3.15)

But since from (3.8) we have

1
z′(τ (t))

=
( ν(t)
ρ(t)r(τ (t)) )

1
γ

(z′′(τ (t)))
α
γ

,

then, by substituting into (3.10), we get

ν ′(t) ≤ ρ ′
+(t)r

(
τ (t)

)
(

ν(t)
ρ(t)r(τ (t))

)

+ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(τ (t)))γ

– γ m1ρ(t)
(
r
(
τ (t)

))1– 1
α + 1

γ τ ′(t)
(

ν(t)
ρ(t)r(τ (t))

)1+ 1
γ

.

This with (2.5) leads to

ν ′(t) ≤
(

ρ ′
+(t)

γ + 1

)γ +1( r 1
α (τ (t))

m1ρ(t)τ ′(t)

)γ

+ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

(z′(t))γ
. (3.16)

Combining (3.15) and (3.16), using (3.6), we get

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

z(σ (t))
z′(t)

)γ

+
(

1 +
pγ

0

τ
γ +1
0

)

R
γ
α (t)

(
ρ ′

+(t)
γ + 1

)γ +1( 1
m1ρ(t)

)γ

. (3.17)

Combining (3.14) and (3.17), we obtain for any α, γ ratios of odd positive integers that

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

z(σ (t))
z′(t)

)γ

+
(

1 +
pγ

0

τλ+1
0

)

Rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

. (3.18)

Now, we consider the two cases σ (t) < t and σ (t) ≥ t. We start by considering the case
σ (t) < t. Since r(t)(z′′(t))α is positive and decreasing, we have

z′(t) ≥ z′(t) – z′(t2) =
∫ t

t2

r 1
α (s)z′′(s)
r 1

α (s)
ds ≥ r

1
α (t)z′′(t)

∫ t

t2

1
r 1

α (s)
ds,
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i.e.,

(
z′(t)

∫ t
t2

1
r

1
α (s)

ds

)′
≤ 0. (3.19)

But since σ (t) < t, then it follows that

z′(σ (t))
z′(t)

≥
∫ σ (t)

t2
1

r
1
α (s)

ds
∫ t

t2
1

r
1
α (s)

ds
. (3.20)

Now since by (3.19) we have

z(t) ≥ z(t) – z(t3) =
∫ t

t3

z′(s)
∫ s

t2
1

r
1
α (u)

du
∫ s

t2
1

r
1
α (u)

du
ds ≥ z′(t)

∫ t
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds
,

which means that

z(t)
z′(t)

≥
∫ t

t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds
for t ≥ t3 > t2, (3.21)

then we have

z(σ (t))
z′(σ (t))

≥
∫ σ (t)

t3

∫ s
t2

1
r

1
α (u)

du ds
∫ σ (t)

t2
1

r
1
α (s)

ds
. (3.22)

This with (3.20) leads to

z(σ (t))
z′(t)

=
z(σ (t))
z′(σ (t))

z′(σ (t))
z′(t)

≥
∫ σ (t)

t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds
. (3.23)

Substituting into (3.18), we get

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

∫ σ (t)
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds

)γ

+
(

1 +
pγ

0

τλ+1
0

)

Rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

. (3.24)

Now, consider the case σ (t) ≥ t. Since z(t) is positive and increasing, it follows from (3.18)
that

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

z(t)
z′(t)

)γ

+
(

1 +
pγ

0

τλ+1
0

)

Rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

. (3.25)
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Since (r(t)(z′′(t))α)′ < 0, we get (3.19) and consequently we arrive at (3.21). Then, substi-
tuting into (3.25), we have

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

∫ t
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds

)γ

+
(

1 +
pγ

0

τλ+1
0

)

Rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

. (3.26)

Combining (3.24) and (3.26), we get

ω′(t) +
pγ

0
τ0

ν ′(t) ≤ –
k

2γ –1 ρ(t)Q(t)
(

∫ λ1(t)
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds

)γ

+
(

1 +
pγ

0

τλ+1
0

)

Rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

.

Integrating from t4 (>t3) to t, we have

ω(t4) +
pγ

0
τ0

ν(t4) ≥
∫ t

t4

[
k

2γ –1 ρ(s)Q(s)
(

∫ λ1(s)
t3

∫ u
t2

1
r

1
α (v)

dv du
∫ s

t2
1

r
1
α (u)

du

)γ

–
(

1 +
pγ

0

τλ+1
0

)

Rg(s)
(

ρ ′
+(s)

λ + 1

)λ+1( 1
mρ(s)

)λ]

ds,

which contradicts (3.1). Secondly, assume that γ ≤ 1. Using (2.1) with (3.5), we obtain

(
r(t)

(
z′′(t)

)α)′ +
pγ

0
τ0

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′ ≤ –kQ(t)zγ
(
σ (t)

)
. (3.27)

By completing the proof as the above case of γ > 1, using (3.27) instead of (3.6), the proof
is completed. �

Lemma 3.1 Assume that conditions (H1)–(H4) hold. Let x be an eventually positive solu-
tion of Eq. (1.1) and the corresponding z(t) satisfies z(t) ∈ NII . If

∫ ∞

t0

Q(s) ds = ∞ (3.28)

or

∫ ∞

t0

∫ ∞

t

[
1

r(τ (s))

∫ ∞

s
Q(u) du

] 1
α

ds dt = ∞, (3.29)

then limt→∞ x(t) = limt→∞ z(t) = 0.

Proof Assume that x(t) is a positive solution of Eq. (1.1) satisfying z(t) ∈ NII for t ≥ t1.
Going through as in the proof of Theorem 3.1, we arrive at (3.5). In the following, we
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consider the two cases γ > 1 and γ ≤ 1. Firstly, assume that γ > 1. Then we have (3.6).
Since z(t) is positive and decreasing, we have limt→∞ z(t) = l ≥ 0 exists. We claim that
l = 0. If not, then there exists t3 ≥ t2 such that z(σ (t)) > l for t ≥ t3. Substituting into (3.6),
we get

(
r(t)

(
z′′(t)

)α)′ +
pγ

0
τ0

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′ ≤ –
klγ

2γ –1 Q(t). (3.30)

Integrating (3.30) from t3 to t and taking into account (3.28), we have

r(t)
(
z′′(t)

)α +
pγ

0
τ0

r
(
τ (t)

)(
z′′(τ (t)

))α

≤ r(t3)
(
z′′(t3)

)α +
pγ

0
τ0

r
(
τ (t3)

)(
z′′(τ (t3)

))α –
klγ

2γ –1

∫ t

t3

Q(s) ds → –∞ as t → ∞,

which is a contradiction. Thus l = 0 and consequently limt→∞ x(t) = 0. In the following,
we obtain the same conclusion in the case when

∫ ∞
t0

Q(s) ds < ∞. Integrating (3.30) from t
to ∞, we have

r(t)
(
z′′(t)

)α +
pγ

0
τ0

r
(
τ (t)

)(
z′′(τ (t)

))α ≥ klγ

2γ –1

∫ ∞

t
Q(s) ds.

But since τ (t) ≤ t, then we can observe that r(τ (t))(z′′(τ (t)))α ≥ r(t)(z′′(t))α and conse-
quently we have

r
(
τ (t)

)(
z′′(τ (t)

))α ≥ klγ

2γ –1(1 + pγ
0

τ0
)

∫ ∞

t
Q(s) ds,

i.e.,

z′′(τ (t)
) ≥

[
klγ

2γ –1(1 + pγ
0

τ0
)

] 1
α
[

1
r(τ (t))

∫ ∞

t
Q(s) ds

] 1
α

.

Integrating from t to ∞ followed by integrating from t3 to ∞, we obtain

1
τ 2

0
z
(
τ (t3)

) ≥
[

klγ

2γ –1(1 + pγ
0

τ0
)

] 1
α

∫ ∞

t3

∫ ∞

t

[
1

r(τ (s))

∫ ∞

s
Q(u) du

] 1
α

ds dt,

which contradicts (3.29). Thus limt→∞ x(t) = 0. Secondly, assume that γ ≤ 1. As in the
proof of Theorem 3.1, we have (3.27). By completing the proof as in the above case of
γ > 1, using (3.27) instead of (3.6), the proof is completed. �

Theorem 3.2 Assume that (H1)–(H4) hold. If

∫ ∞

t0

[
1

r(t)

∫ t

t0

Q(s)
(
σ (s)

)γ

(∫ ∞

σ (s)

1
r 1

α (u)
du

)γ

ds
] 1

α

dt = ∞, (3.31)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) ∈ NIII .
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Proof Let x(t) be an eventually positive solution of Eq. (1.1) satisfying z(t) ∈ NIII for all t ≥
t1 ≥ t0. Since z′′(t) < 0 and z′(t) > 0, then by Lemma 2.5, there exist t2 ≥ t1 and a constant
k1 satisfying 0 < k1 < 1 such that z(t) ≥ k1tz′(t) for t ≥ t2, i.e.,

z
(
σ (t)

) ≥ k1σ (t)z′(σ (t)
)
, t ≥ t2 ≥ t1. (3.32)

Going through as in Theorem 3.1, we arrive at (3.5). In the following, we consider the two
cases γ > 1 and γ ≤ 1. Firstly, assume that γ > 1. Then we have (3.6), and using (3.32) we
get

(
r(t)

(
z′′(t)

)α)′ +
pγ

0
τ0

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′ ≤ –
kkγ

1
2γ –1 Q(t)

(
σ (t)

)γ (
z′(σ (t)

))γ . (3.33)

But since v(t) = –r 1
α (t)z′′(t) is positive and increasing, then there exists a constant g1 > 0

such that v(t) ≥ g1 for t ≥ t3 ≥ t2. Hence

z′(σ (t)
) ≥

∫ ∞

σ (t)

v(s)
r 1

α (s)
ds ≥ g1

∫ ∞

σ (t)

1
r 1

α (s)
ds. (3.34)

Substituting into (3.33) and integrating from t3 to t, we get

–r(t)
(
z′′(t)

)α –
pγ

0
τ0

r
(
τ (t)

)(
z′′(τ (t)

))α

≥ kkγ
1 gγ

1
2γ –1

∫ t

t3

Q(s)
(
σ (s)

)γ

(∫ ∞

σ (s)

1
r 1

α (u)
du

)γ

ds. (3.35)

But since τ (t) ≤ t, then we can conclude that r(τ (t))(z′′(τ (t)))α ≥ r(t)(z′′(t))α . Now since
from (3.35) we have

–r(t)
(
z′′(t)

)α ≥ kkγ
1 gγ

1

2γ –1(1 + pγ
0

τ0
)

∫ t

t3

Q(s)
(
σ (s)

)γ

(∫ ∞

σ (s)

1
r 1

α (u)
du

)γ

ds,

i.e.,

–z′′(t) ≥
(

kkγ
1 gγ

1

2γ –1(1 + pγ
0

τ0
)

) 1
α
[

1
r(t)

∫ t

t3

Q(s)
(
σ (s)

)γ

(∫ ∞

σ (s)

1
r 1

α (u)
du

)γ

ds
] 1

α

.

Then integrating from t4 (≥ t3) to t, we get

z′(t4) ≥
(

kkγ
1 gγ

1

2γ –1(1 + pγ
0

τ0
)

) 1
α

∫ t

t4

[
1

r(s)

∫ s

t3

Q(u)
(
σ (u)

)γ

(∫ ∞

σ (u)

1
r 1

α (v)
dv

)γ

du
] 1

α

ds,

which contradicts (3.31). Secondly, assume that γ ≤ 1. As in the proof of Theorem 3.1, we
arrive at (3.27), and then using (3.32) we get

(
r(t)

(
z′′(t)

)α)′ +
pγ

0
τ0

(
r
(
τ (t)

)(
z′′(τ (t)

))α)′ ≤ –kkγ
1 Q(t)

(
σ (t)

)γ (
z′(σ (t)

))γ . (3.36)
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Going through as in the proof of the case γ > 1, using (3.36) instead of (3.33), this com-
pletes the proof. �

The following results are immediate consequences of Lemma 2.4, Lemma 3.1, Theo-
rem 3.1, and Theorem 3.2.

Theorem 3.3 Assume that (1.8) and all the conditions of Lemma 3.1, Theorem 3.1, and
Theorem 3.2 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies
limt→∞ x(t) = 0.

Theorem 3.4 Assume that (1.5) and all the conditions of Lemma 3.1 and Theorem 3.1
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0.

The following results deal with the special case α ≤ 1 and γ ≥ 1 of Eq. (1.1).

Theorem 3.5 Assume that conditions (H1)–(H4), α ≤ 1, and γ ≥ 1 hold. If there exists a
positive function ρ(t) ∈ C1([t0,∞)) such that

∫ ∞

t∗

[
kγ

2γ –1 ρ(t)Q(t)
(

∫ λ1(t)
t2

∫ s
t1

1
r

1
α (u)

du ds
∫ t

t1
1

r
1
α (s)

ds

)

– G1(t)
]

dt = ∞ (3.37)

holds for any positive constants k, M, sufficiently large t1 ≥ t0, and for some t∗ > t2 > t1,
where λ1(t) is defined by (3.3) and

G1(t) =
1
4
αρ(t)

[

r(t)
(

ρ ′(t)
ρ(t)

+
1 – α

αM

)2

+
pγ

0
τ 2

0
r
(
τ (t)

)
(

ρ ′(t)
ρ(t)

+
(1 – α)τ ′(t)

αM

)2]

+
k(γ – 1)
2γ –1M

ρ(t)Q(t),

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) ∈ NI .

Proof Assume that x(t) is an eventually positive solution of Eq. (1.1) satisfying z(t) ∈ NI .
As in the proof of Theorem 3.1, we arrive at (3.6). Now define the function W (t) by

W (t) = ρ(t)
r(t)(z′′(t))α

z′(t)
, t ≥ t1 ≥ t0. (3.38)

Then W (t) > 0 for t ≥ t1 and

W ′(t) =
ρ ′(t)
ρ(t)

W (t) + ρ(t)
(r(t)(z′′(t))α)′

z′(t)
– ρ(t)

r(t)(z′′(t))α+1

(z′(t))2

=
ρ ′(t)
ρ(t)

W (t) + ρ(t)
(r(t)(z′′(t))α)′

z′(t)
– W (t)

z′′(t)
z′(t)

. (3.39)

Since z′(t) and z′′(t) are positive, then there exist t2 ≥ t1 and constant M > 0 such that
z′(t) ≥ M for all t ≥ t2. Now, from (3.38) and (2.3), we get

z′′(t)
z′(t)

≥ W (t)
αρ(t)r(t)

–
(1 – α)
αM

. (3.40)
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This with (3.39) yields

W ′(t) ≤ ρ ′(t)
ρ(t)

W (t) + ρ(t)
(r(t)(z′′(t))α)′

z′(t)
–

W 2(t)
αρ(t)r(t)

+
(1 – α)
αM

W (t)

≤ ρ(t)
(r(t)(z′′(t))α)′

z′(t)
+

1
4
αρ(t)r(t)

(
ρ ′(t)
ρ(t)

+
(1 – α)
αM

)2

. (3.41)

Now define

V (t) = ρ(t)
r(τ (t))(z′′(τ (t)))α

z′(τ (t))
. (3.42)

As we did for W , we can get

V ′(t) ≤ ρ ′(t)
ρ(t)

V (t) + ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

z′(τ (t))
–

τ ′(t)V 2(t)
αρ(t)r(τ (t))

+
(1 – α)τ ′(t)

αM
V (t).

But since z′ is increasing and τ (t) ≤ t, then

V ′(t) ≤ ρ(t)
(r(τ (t))(z′′(τ (t)))α)′

z′(t)
+

1
4

αρ(t)r(τ (t))
τ ′(t)

(
ρ ′(t)
ρ(t)

+
(1 – α)τ ′(t)

αM

)2

. (3.43)

This with (3.41) leads to

W ′(t) +
pγ

0
τ0

V ′(t)

≤ ρ(t)
[ (r(t)(z′′(t))α)′ + pγ

0
τ0

(r(τ (t))(z′′(τ (t)))α)′

z′(t)

]

+
1
4
αρ(t)

[

r(t)
(

ρ ′(t)
ρ(t)

+
(1 – α)
αM

)2

+
pγ

0 r(τ (t))
τ 2

0

(
ρ ′(t)
ρ(t)

+
(1 – α)τ ′(t)

αM

)2]

.

Thus, by (3.6) and (2.4), we get

W ′(t) +
pγ

0
τ0

V ′(t) ≤ –
kγ

2γ –1 ρ(t)Q(t)
z(σ (t))

z′(t)
+ G1(t). (3.44)

Now, we consider the two cases σ (t) < t and σ (t) ≥ t.
First assume that σ (t) < t. As in the proof of Theorem 3.1, we get (3.23). Substituting

into (3.44), we have

W ′(t) +
pγ

0
τ0

V ′(t) ≤ –
kγ

2γ –1 ρ(t)Q(t)

∫ σ (t)
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds
+ G1(t) for t ≥ t3 > t2. (3.45)

Secondly, assume that σ (t) ≥ t. Since z′(t) > 0, it follows from (3.44) that

W ′(t) +
pγ

0
τ0

V ′(t) ≤ –
kγ

2γ –1 ρ(t)Q(t)
z(t)
z′(t)

+ G1(t). (3.46)
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As in the proof of Theorem 3.1, we arrive at (3.21). Then, substituting into (3.46), we have

W ′(t) +
pγ

0
τ0

V ′(t) ≤ –
kγ

2γ –1 ρ(t)Q(t)

∫ t
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds
+ G1(t). (3.47)

This with (3.45) yields

W ′(t) +
pγ

0
τ0

V ′(t) ≤ –
kγ

2γ –1 ρ(t)Q(t)

∫ λ1(t)
t3

∫ s
t2

1
r

1
α (u)

du ds
∫ t

t2
1

r
1
α (s)

ds
+ G1(t).

Integrating from t4 (> t3) to t, we get

W (t4) +
pγ

0
τ0

V (t4) ≥
∫ t

t4

[
kγ

2γ –1 ρ(s)Q(s)

∫ λ1(s)
t3

∫ u
t2

1
r

1
α (v)

dv du
∫ s

t2
1

r
1
α (u)

du
– G1(s)

]

ds.

This contradicts (3.37) and completes the proof. �

Theorem 3.6 Assume that (1.8) and all the conditions of Lemma 3.1, Theorem 3.2, and
Theorem 3.5 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies
limt→∞ x(t) = 0.

Theorem 3.7 Assume that (1.5) and all the conditions of Lemma 3.1 and Theorem 3.5
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0.

4 Oscillation criteria without condition (H4)
In this section, we study the oscillation of Eq. (1.1) when either of the two conditions
0 ≤ p(t) ≤ p0 < 1 or p(t) ≥ 1, p(t) �≡ 1 holds for large t. Now, we begin by establishing
new oscillation criteria for Eq. (1.1) in the case when p(t) ≥ 1, p(t) �≡ 1 for large t with the
condition τ (t) < t and τ (t) is strictly increasing.

Theorem 4.1 Assume that (H1)–(H3) hold, p(t) ≥ 1, p(t) �≡ 1 for sufficiently large t, τ (t) < t
and τ ′(t) > 0. Further assume that there exists a positive function m∗(t) ∈ C1([t0,∞)) such
that

m∗(t)
∫ t

t1

ds
r 1

α (s)
– m′

∗(t)
∫ t

t2

∫ s

t1

1
r 1

α (u)
du ds ≤ 0 (4.1)

and p∗(t) > 0 for sufficiently large t. If there exists a positive function ρ(t) ∈ C1([t0,∞)) such
that

∫ ∞

t∗

[

kρ(s)q(s)
(
p∗

(
σ (s)

))γ

(
∫ λ2(s)

t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

– rg(s)
(

ρ ′
+(s)

λ + 1

)λ+1( 1
mρ(s)

)λ]

ds = ∞ (4.2)
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holds for some constant k > 0, sufficiently large t1 ≥ t0, and for some t∗ > t2 > t1, where λ,
m, g are defined by (3.2), (3.3), and

λ2(t) =

⎧
⎨

⎩

τ–1(σ (t)), σ (t) < τ (t),

t, σ (t) ≥ τ (t),
(4.3)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) ∈ NI .

Proof Assume that x(t) is an eventually positive solution of Eq. (1.1) satisfying z(t) ∈ NI

for t ≥ t1. From the definition of z (see also (2.2) in [6]), we have

x(t) =
1

p(τ–1(t))
(
z
(
τ–1(t)

)
– x

(
τ–1(t)

))

=
z(τ–1(t))
p(τ–1(t))

–
1

p(τ–1(t))p(τ–1(τ–1(t)))
(
z
(
τ–1(τ–1(t)

))
– x

(
τ–1(τ–1(t)

)))

≥ z(τ–1(t))
p(τ–1(t))

–
1

p(τ–1(t))p(τ–1(τ–1(t)))
z
(
τ–1(τ–1(t)

))
. (4.4)

Define the function ω(t) as in (3.7). Then ω(t) > 0 for t ≥ t1 satisfying (3.9). As in the proof
of Theorem 3.1, since (r(t)(z′′(t))α)′ < 0, we have (3.19) and then

z(t)
z′(t)

≥
∫ t

t2

∫ s
t1

1
r

1
α (u)

du ds
∫ t

t1
1

r
1
α (s)

ds
for t ≥ t2 > t1. (4.5)

This with (4.1) yields

(
z(t)

m∗(t)

)′
=

1
m2∗(t)

[
z′(t)m∗(t) – z(t)m′

∗(t)
]

≤ z(t)
m2∗(t)

[ m∗(t)
∫ t

t1
1

r
1
α (s)

ds
∫ t

t2

∫ s
t1

1
r

1
α (u)

du ds
– m′

∗(t)
]

≤ 0.

This means that z(t)
m∗(t) is nonincreasing. But since τ (t) < t and τ ′(t) > 0, it follows that

τ–1(t) ≤ τ–1(τ–1(t)), and so

z
(
τ–1(τ–1(t)

)) ≤ m∗(τ–1(τ–1(t)))z(τ–1(t))
m∗(τ–1(t))

. (4.6)

Substituting from (4.6) into (4.4), we get

x(t) ≥ p∗(t)z
(
τ–1(t)

)
. (4.7)

This in the view of (1.1) leads to

(
r(t)

(
z′′(t)

)α)′ ≤ –kq(t)
(
p∗

(
σ (t)

))γ zγ
(
τ–1(σ (t)

))
. (4.8)

In the following, we consider the two cases γ ≥ α and γ < α.
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First, assume that γ ≥ α. As in the proof of Theorem 3.1, we have (3.12). Then, substi-
tuting from (4.8) into (3.12), we obtain

ω′(t) ≤ r(t)
(

ρ ′
+(t)

α + 1

)α+1( 1
M

γ
α –1ρ(t)

)α

– kρ(t)q(t)
(
p∗

(
σ (t)

))γ

(
z(τ–1(σ (t)))

z′(t)

)γ

. (4.9)

Now assume that γ < α. As in the proof of Theorem 3.1, we have (3.15). Then, substituting
from (4.8) into (3.15), we obtain

ω′(t) ≤ r
γ
α (t)

(
ρ ′

+(t)
γ + 1

)γ +1( 1
m1ρ(t)

)γ

– kρ(t)q(t)
(
p∗

(
σ (t)

))γ

(
z(τ–1(σ (t)))

z′(t)

)γ

. (4.10)

This with (4.9) yields

ω′(t) ≤ rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

– kρ(t)q(t)
(
p∗

(
σ (t)

))γ

(
z(τ–1(σ (t)))

z′(t)

)γ

. (4.11)

Now, consider the two cases σ (t) < τ (t) and σ (t) ≥ τ (t). First assume that σ (t) < τ (t). Since
τ–1(σ (t)) < t and ( z′(t)

∫ t
t1

ds

r
1
α (s)

)′ ≤ 0, then by (4.5) we have

z(τ–1(σ (t)))
z′(t)

≥
∫ τ–1(σ (t))

t2

∫ s
t1

1
r

1
α (u)

du ds
∫ t

t1
1

r
1
α (s)

ds
.

Substituting into (4.11), we get

ω′(t) ≤ rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

– kρ(t)q(t)
(
p∗

(
σ (t)

))γ

(
∫ τ–1(σ (t))

t2

∫ s
t1

1
r

1
α (u)

du ds
∫ t

t1
1

r
1
α (s)

ds

)γ

. (4.12)

Secondly, assume that σ (t) ≥ τ (t). Hence since z′(t) > 0 and τ–1(σ (t)) ≥ t, we have
z(τ–1(σ (t))) ≥ z(t). Thus it follows from (4.11) and (4.5) that

ω′(t) ≤ rg(t)
(

ρ ′
+(t)

λ + 1

)λ+1( 1
mρ(t)

)λ

– kρ(t)q(t)
(
p∗

(
σ (t)

))γ

(
∫ t

t2

∫ s
t1

1
r

1
α (u)

du ds
∫ t

t1
1

r
1
α (s)

ds

)γ

. (4.13)

Combining (4.12) and (4.13) and then integrating from t3 (> t2) to t, we get

ω(t3) ≥
∫ t

t3

[

kρ(s)q(s)
(
p∗

(
σ (s)

))γ

(
∫ λ2(s)

t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

– rg(s)
(

ρ ′
+(s)

λ + 1

)λ+1( 1
mρ(s)

)λ]

ds,

which contradicts (4.2). This completes the proof. �
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Theorem 4.2 Assume that (H1)–(H3) hold, p(t) ≥ 1, p(t) �≡ 1 for sufficiently large t, τ (t) <
t, τ ′(t) > 0, and p∗(t) > 0. If x(t) is an eventually positive solution of Eq. (1.1) satisfying
z(t) ∈ NII with

∫ ∞

t0

q(s)
(
p∗(σ (s)

))γ ds = ∞ (4.14)

or

∫ ∞

t0

∫ ∞

t

[
1

r(s)

∫ ∞

s
q(u)

(
p∗(σ (u)

))γ du
] 1

α

ds dt = ∞, (4.15)

then limt→∞ x(t) = 0.

Proof Let x(t) be an eventually positive solution of Eq. (1.1) satisfying z(t) ∈ NII for t ≥ t1.
Going through as in the proof of Theorem 4.1, we arrive at (4.4). Since z(t) is decreasing
and τ (t) < t, then z(τ–1(t)) ≥ z(τ–1(τ–1(t))). Substituting into (4.4), we get

x(t) ≥ p∗(t)z
(
τ–1(t)

)
. (4.16)

This with (1.1) leads to

(
r(t)

(
z′′(t)

)α)′ ≤ –kq(t)
(
p∗(σ (t)

))γ zγ
(
τ–1(σ (t)

))
. (4.17)

Since z(t) > 0 and z′(t) < 0, then limt→∞ z(t) = l ≥ 0 exists. We claim that l = 0. If not, then
there exists t2 ≥ t1 such that τ–1(σ (t)) > t1 and z(τ–1(σ (t))) ≥ l for t ≥ t2. Substituting into
(4.17), we get

(
r(t)

(
z′′(t)

)α)′ ≤ –klγ q(t)
(
p∗(σ (t)

))γ . (4.18)

Integrating from t2 to t and taking into account (4.14), we have

r(t)
(
z′′(t)

)α ≤ r(t2)
(
z′′(t2)

)α – klγ
∫ t

t2

q(s)
(
p∗(σ (s)

))γ ds → –∞ as t → ∞,

which is a contradiction. Thus l = 0 and limt→∞ x(t) = 0. In the following, we obtain the
same conclusion in the case when

∫ ∞
t0

q(s)(p∗(σ (s)))γ ds < ∞. Integrating (4.18) from t to
∞ and dividing both sides by r(t), we have

z′′(t) ≥ (
klγ

) 1
α

[
1

r(t)

∫ ∞

t
q(s)

(
p∗(σ (s)

))γ ds
] 1

α

, t ≥ t2.

Integrating again from t to ∞, we obtain

–z′(t) ≥ (
klγ

) 1
α

∫ ∞

t

[
1

r(s)

∫ ∞

s
q(u)

(
p∗(σ (u)

))γ du
] 1

α

ds, t ≥ t3 ≥ t2.

Moreover, by integrating again from t3 to ∞, we get

z(t3) ≥ (
klγ

) 1
α

∫ ∞

t3

∫ ∞

t

[
1

r(s)

∫ ∞

s
q(u)

(
p∗(σ (u)

))γ du
] 1

α

ds dt,
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which contradicts (4.15). Hence, l = 0. So from the fact that 0 < x(t) < z(t), it follows that
limt→∞ x(t) = 0. �

Theorem 4.3 Assume that (H1)–(H3) hold, p(t) ≥ 1, p(t) �≡ 1 for sufficiently large t,
τ (t) < t and τ ′(t) > 0. If for some constant k1 ∈ (0, 1) there exists a function m∗∗(t) ∈
C1([t0,∞), (0,∞)) such that

m∗∗(t) – k1tm′
∗∗(t) ≤ 0, (4.19)

p∗∗(t) > 0 for all sufficiently large t and

∫ ∞

t0

[
1

r(t)

∫ t

t0

q(s)
[

τ–1(σ (s)
)
p∗∗

(
σ (s)

)
∫ ∞

τ–1(σ (s))

1
r 1

α (u)
du

]γ

ds
] 1

α

dt = ∞, (4.20)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) ∈ NIII .

Proof Let x(t) be an eventually positive solution of Eq. (1.1) such that x(t) > 0, x(τ (t)) > 0,
and x(σ (t)) > 0, z(t) satisfies z(t) ∈ NIII and τ–1(σ (t)) > t0 for t ≥ t1 ≥ t0. From the definition
of z, we have (4.4) as in the proof of Theorem 4.1. Since z′′(t) < 0 and z′(t) > 0, then by
Lemma 2.5 there exists t2 ≥ t1 such that

z(t) ≥ k1tz′(t), t ≥ t2. (4.21)

This with (4.19) yields

(
z(t)

m∗∗(t)

)′
=

1
m2∗∗(t)

[
m∗∗(t)z′(t) – z(t)m′

∗∗(t)
]

≤ z(t)
k1tm2∗∗(t)

[
m∗∗(t) – k1tm′

∗∗(t)
] ≤ 0,

and so z(t)
m∗∗(t) is nonincreasing. Hence z(τ–1(τ–1(t))) ≤ m∗∗(τ–1(τ–1(t)))z(τ–1(t))

m∗∗(τ–1(t)) . Now, from (1.1),
(4.4), and (4.21), we have

(
r(t)

(
z′′(t)

)α)′ ≤ –kkγ
1 q(t)

(
τ–1(σ (t)

))γ (
p∗∗

(
σ (t)

))γ (
z′(τ–1(σ (t)

)))γ . (4.22)

But since –r 1
α (t)z′′(t) is positive and increasing, then we have –r 1

α (t)z′′(t) ≥ g1 for t ≥ t1.
Hence

z′(t) ≥
∫ ∞

t

–r 1
α (s)z′′(s)
r 1

α (s)
ds ≥ g1

∫ ∞

t

1
r 1

α (s)
ds.

Thus

z′(τ–1(σ (t)
)) ≥ g1

∫ ∞

τ–1(σ (t))

1
r 1

α (s)
ds. (4.23)

This with (4.22) leads to

(
r(t)

(
z′′(t)

)α)′ ≤ –kkγ
1 gγ

1 q(t)
(
τ–1(σ (t)

))γ (
p∗∗

(
σ (t)

))γ

(∫ ∞

τ–1(σ (t))

1
r 1

α (s)
ds

)γ

.
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Integrating from t2 to t, we get

–z′′(t) ≥ (
kkγ

1 gγ
1
) 1

α

[
1

r(t)

∫ t

t2

q(s)
[

τ–1(σ (s)
)
p∗∗

(
σ (s)

)
∫ ∞

τ–1(σ (s))

1
r 1

α (u)
du

]γ

ds
] 1

α

.

Integrating again from t3 (≥ t2) to t, we have

z′(t3)
(kkγ

1 gγ
1 ) 1

α

≥
∫ t

t3

[
1

r(s)

∫ s

t2

q(u)
[

τ–1(σ (u)
)
p∗∗

(
σ (u)

)
∫ ∞

τ–1(σ (u))

1
r 1

α (v)
dv

]γ

du
] 1

α

ds.

This contradicts (4.20) and completes the proof. �

Theorem 4.4 Assume that (1.8) and all the conditions of Theorem 4.1, Theorem 4.2, and
Theorem 4.3 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies
limt→∞ x(t) = 0.

Theorem 4.5 Assume that (1.5) and all the conditions of Theorem 4.1 and Theorem 4.2
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0.

Remark 1 The assumptions concerning the existence of the two functions m∗(t) and
m∗∗(t) hold, for example, μ(t) = ξ (t), μ(t) = (ξ (t))η , μ(t) = ξ (t)eξε (t), μ(t) = (ξ (t))ηeεξ (t) with

ξ (t) =

⎧
⎨

⎩

∫ t
t2

∫ s
t1

1
r

1
α (u)

du ds, μ(t) = m∗(t),

t
1

k1 , μ(t) = m∗∗(t),

η ≥ 1 and ε ≥ 0, etc.

Remark 2 From Theorem 4.4 and Theorem 4.5, we can obtain more than one oscillation
criterion for Eq. (1.1) in the two theorems with different choices of m∗(t) and m∗∗(t) which
are mentioned in Remark 1.

In the following, we discuss the oscillatory behavior of solutions of Eq. (1.1) in the case
when 0 ≤ p(t) ≤ p0 < 1.

Theorem 4.6 Assume that (H1)–(H3) hold and 0 ≤ p(t) ≤ p0 < 1. If there exists a positive
function ρ(t) ∈ C1([t0,∞)) such that

∫ ∞

t∗

[

kρ(s)q(s)
(
1 – p

(
σ (s)

))γ

(
∫ λ1(s)

t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

– rg(s)
(

ρ ′
+(s)

λ + 1

)λ+1( 1
mρ(s)

)λ]

ds = ∞ (4.24)

holds for some constant k > 0, for sufficiently large t1 ≥ t0, and for some t∗ > t2 > t1, where
λ, m, g , λ1(t) are as defined by (3.2) and (3.3), then there exists no positive solution x(t) of
Eq. (1.1) satisfying z(t) ∈ NI .
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Proof Let x(t) be an eventually positive solution of Eq. (1.1) satisfying z(t) ∈ NI . From the
definition of z, we have

x(t) = z(t) – p(t)x
(
τ (t)

) ≥ (
1 – p(t)

)
z(t).

This with (1.1) yields

(
r(t)

(
z′′(t)

)α)′ ≤ –kq(t)
(
1 – p

(
σ (t)

))γ zγ
(
σ (t)

)
. (4.25)

Defining ω(t) by (3.7), completing the proof as in the proof of Theorem 4.1 by applying
(4.25) instead of (4.8), and considering the two cases σ (t) < t and σ (t) ≥ t instead of the
two cases σ (t) < τ (t) and σ (t) ≥ τ (t), we get a contradiction to (4.24). �

Theorem 4.7 Assume that (H1)–(H3) hold, 0 ≤ p(t) ≤ p0 < 1, and x(t) is an eventually
positive solution of Eq. (1.1) satisfying z(t) ∈ NII . If

∫ ∞

t0

q(s) ds = ∞ (4.26)

or

∫ ∞

t0

∫ ∞

t

[
1

r(s)

∫ ∞

s
q(u) du

] 1
α

ds dt = ∞, (4.27)

then limt→∞ x(t) = 0.

Proof Let x(t) be an eventually positive solution of Eq. (1.1) satisfying z(t) ∈ NII for t ≥
t1 ≥ t0. Since z(t) is positive and decreasing, we have limt→∞ z(t) = l ≥ 0 exists. We claim
that l = 0. If not, then for any ε > 0 we have l < z(t) < l + ε eventually. Choose 0 < ε < l(1–p0)

p0
.

It is easy to verify that

x(t) = z(t) – p(t)x
(
τ (t)

) ≥ z(t) – p(t)z
(
τ (t)

)
> l – p0(l + ε) = k2(l + ε) > k2z(t),

where k2 = l–p0(l+ε)
(l+ε) > 0. Now, it follows from (1.1) that

(
r(t)

(
z′′(t)

)α)′ ≤ –kkγ
2 q(t)zγ

(
σ (t)

) ≤ –k(k2l)γ q(t). (4.28)

Going through as in the proof of Theorem 4.2 by applying (4.28) instead of (4.18), we can
get a contradiction to (4.26) or (4.27). This completes the proof. �

Using a similar technique to the proof of Theorem 4.3 and using (4.25) with (4.21) in-
stead of (4.22), we can get the following result.

Theorem 4.8 Assume that (H1)–(H3) hold and 0 ≤ p(t) ≤ p0 < 1. If

∫ ∞

t0

[
1

r(t)

∫ t

t0

q(s)
[

σ (s)
(
1 – p

(
σ (s)

))
∫ ∞

σ (s)

1
r 1

α (u)
du

]γ

ds
] 1

α

dt = ∞, (4.29)

then there exists no positive solution x(t) of Eq. (1.1) satisfying z(t) ∈ NIII .
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Theorem 4.9 Assume that (1.8) and all the conditions of Theorem 4.6, Theorem 4.7, and
Theorem 4.8 hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies
limt→∞ x(t) = 0.

Theorem 4.10 Assume that (1.5) and all the conditions of Theorem 4.6 and Theorem 4.7
hold. Then every solution x(t) of Eq. (1.1) is either oscillatory or satisfies limt→∞ x(t) = 0.

5 Examples
Example 1 Consider the third order differential equation

([(

x(t) +
25
4

x
(

t
2

))′′] 1
3
)′

+
3
t

x(t) = 0, t ≥ 1. (5.1)

Here, r(t) = 1, p = 25
4 , τ (t) = t

2 , q(t) = 3
t , σ (t) = t, and 1 = γ > α = 1

3 . It is clear that
∫ ∞

t0
1

r
1
α (t)

dt = ∞. Choosing ρ(t) = 1
t , then we have ρ ′

+(t) = 0, and

∫ ∞

t∗

[

kρ(s)Q(s)
(

∫ s
t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

–
(

1 +
pγ

0

τα+1
0

)

R(s)
(

ρ ′
+(s)

α + 1

)α+1( 1
mρ(s)

)α]

ds

=
∫ ∞

t∗

3
s2

(∫ s
t2

∫ u
t1

dv du
∫ s

t1
du

)

ds ≥
∫ ∞

t∗

(
3
2s

–
3t1

s2 –
3t2

2
2s3 +

3t1t2

s3

)

ds = ∞.

Thus, it follows from Theorem 3.4 that every solution x(t) of Eq. (5.1) is either oscillatory
or satisfies limt→∞ x(t) = 0. In fact, x(t) = 1

t is a solution of Eq. (5.1).

Example 2 Consider the third order differential equation

([(

x(t) + p0x
(

t –
1
2

))′′]5)′
+

(

t –
1
2

) 4
3

x
1
3

(

t –
1
2

)

= 0, t ≥ 1, p0 > 0. (5.2)

Here, r(t) = 1, p = p0, τ (t) = t – 1
2 , q(t) = (t – 1

2 ) 4
3 , σ (t) = t – 1

2 , and 1
3 = γ < α = 5. It is clear

that
∫ ∞

t0
1

r
1
α (t)

dt = ∞. Choosing ρ(t) = 1, we have ρ ′
+(t) = 0, and

∫ ∞

t∗

[

kρ(s)Q(s)
(

∫ σ (s)
t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

–
(

1 +
pγ

0

τ
γ +1
0

)

R
γ
α (s)

(
ρ ′

+(s)
γ + 1

)γ +1( 1
mρ(s)

)γ ]

ds

=
∫ ∞

t∗

(
1
2

) 1
3

(s – 1)
4
3

( (s – t1 – 1
2 )2 – (t2 – t1)2

s – t1

) 1
3

ds

≥
∫ ∞

t∗

(
1
2

) 1
3

(s – 1)
((

s – t1 –
1
2

)2

– (t2 – t1)2
) 1

3
ds

>
∫ ∞

t∗

(
1
2

) 1
3
(

s –
(

t1 +
1
2

))((

s – t1 –
1
2

)2

– (t2 – t1)2
) 1

3
ds = ∞.
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Thus, by Theorem 3.4, it follows that every solution x(t) of Eq. (5.2) is either oscillatory or
satisfies limt→∞ x(t) = 0.

Example 3 Consider the third order differential equation

(

t
[(

x(t) +
1

3
√

3
x
(

t
3

))′′] 1
3
)′

+ λt6x3
(

t
2

)

= 0, t > 1,λ > 0. (5.3)

Here, r(t) = t, p = 1
3
√

3 , τ (t) = t
3 , q(t) = λt6, σ (t) = t

2 , and 3 = γ > α = 1
3 . It is clear that

∫ ∞
t0

1
r

1
α (t)

dt =
∫ ∞

1
1
t3 dt = 1

2 < ∞. Choosing ρ(t) = 1
t10 , we have ρ ′

+(t) = 0, and

∫ ∞

t∗

[
k

2γ –1 ρ(s)Q(s)
(

∫ σ (s)
t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ

–
(

1 +
pγ

0

τα+1
0

)

R(s)
(

ρ ′
+(s)

α + 1

)α+1( 1
mρ(s)

)α]

ds

=
λt6

1
4(3)6

∫ ∞

t∗

s6

s

( 2
s2 + 1

2t2
1

–
1
t2

+ t2
t2
1

s

s2 – t2
1

)3

ds

>
λt6

1
4(3)6

∫ ∞

t∗

(s2 – t2
1)3

s

( 2
s2 + 1

2t2
1

–
1
t2

+ t2
t2
1

s

s2 – t2
1

)3

ds = ∞,

and

∫ ∞

t0

[
1

r(t)

∫ t

t0

Q(s)
(
σ (s)

)γ

(∫ ∞

σ (s)

1
r 1

α (u)
du

)γ

ds
] 1

α

dt

=
λ3

(3)18(4)3

∫ ∞

1

(t4 – 1)3

t3 dt =
λ3

(3)18(4)3

∫ ∞

1

(t – 1)3(t + 1)3(t2 + 1)3

t3 dt

>
λ3

(3)18(4)3

∫ ∞

1
(t – 1)3(t2 + 1

)3 dt >
λ3

(3)18(4)3

∫ ∞

1
(t – 1)3 dt = ∞.

Thus, by Theorem 3.3, it follows that every solution x(t) of Eq. (5.3) is either oscillatory or
satisfies limt→∞ x(t) = 0. We may note that, for λ =

3√35√
217 , we have x(t) = 1

t
5
2

is a solution of
Eq. (5.3).

Example 4 Consider the third order neutral delay differential equation

(

t3
(

x(t) + t
5
3

5t + 6
t + 1

x
(

t
2

))′′)′
+ t9x3(t – 1) = 0, t ≥ t0 = 2. (5.4)

Here, r(t) = t3, p(t) = t 5
3 5t+6

t+1 , q(t) = t9, τ (t) = t
2 , σ (t) = t – 1, f (u) = u3, α = 1, and γ = 3. It

is clear that p(t) = t 5
3 [5 + 1

t+1 ] ≥ (5)(2 5
3 ) � 15.874 > 1, τ ◦ σ �= σ ◦ τ , σ (t) ≥ τ (t), conditions

(H1)–(H3), and (1.8) hold, and

p
(
τ–1(τ–1(t)

))
=

20t + 6
4t + 1

(4t)
5
3 =

[

5 +
1

4t + 1

]

(4t)
5
3 > (5)(4t)

5
3 > (5)(8)

5
3 � 160. (5.5)
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Let m∗(t) =
∫ t

t2

∫ s
t1

1
r

1
α (u)

du ds and m∗∗(t) = t
1

k1 . Thus

p∗(t) =
1

p(τ–1(t))

(

1 –
1

p(τ–1(τ–1(t)))

∫ τ–1(τ–1(t))
t2

∫ s
t1

1
r

1
α (u)

du ds
∫ τ–1(t)

t2

∫ s
t1

1
r

1
α (u)

du ds

)

≥ 1
p(2t)

(

1 –
1

160
12t2 – 13t + 3
6t2 – 13t + 6

)

=
1

p(2t)

(

1 –
1

160
(
2 + φ(t)

)
)

, (5.6)

where φ(t) = 13t–9
6t2–13t+6 . Since φ′(t) = –78t2+108t–39

(6t2–13t+6)2 , which is negative for t ≥ t2 = 3 > t1 = 2.
Thus φ(t) is positive and decreasing for t ≥ t2 = 3. It follows that φ(t) ≤ 10

7 . Thus by (5.6)
we have

p∗(t) ≥ 1
p(2t)

(

1 –
1

160
24
7

)

=
137

(140)(2t) 5
3

2t + 1
10t + 6

> 0 for t ≥ t2 = 3.

By choosing ρ(t) = 1
t8 , condition (4.2) becomes

∫ ∞

t∗

[

kρ(s)q(s)
(
p∗

(
σ (s)

))γ

(
∫ λ2(s)

t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ ]

ds

≥
∫ ∞

t∗

[
1
s8 s9

(
137

(140)(2 5
3 )

2s – 1
10s – 4

1

(s – 1) 5
3

)3(∫ s
t2

∫ u
t1

1
v3 dv du

∫ s
t1

1
u3 du

)3]

ds

≥
∫ ∞

t∗

[

s
(

137

(140)(2 5
3 )

ζ (s)
1

s 5
3

)3(
∫ s

t2
( –1

2u2 + 1
2t2

1
) du

–1
2s2 + 1

2t2
1

)3]

ds, (5.7)

where ζ (s) = 2s–1
10s–4 . Then ζ ′(s) = 2

(10s–4)2 > 0, i.e., ζ (s) is positive and increasing and ζ (s) ≥ 5
26

for s ≥ t2 = 3. Now from (5.7) we have

∫ ∞

t∗

[

kρ(s)q(s)
(
p∗

(
σ (s)

))γ

(
∫ λ2(s)

t2

∫ u
t1

1
r

1
α (v)

dv du
∫ s

t1
1

r
1
α (u)

du

)γ ]

ds

≥
∫ ∞

t∗

[

s
(

137

(140)(2 5
3 )

5
26

1

s 5
3

)3( 1
2s + s

2t2
1

– 1
2t2

– t2
2t2

1
–1
2s2 + 1

2t2
1

)3]

ds

≥
∫ ∞

t∗

[
(
2.082656208 × 10–4) 1

s4

( t2
1s + s3 – t2

1
t2

s2 – t2s2

s2

)3]

ds = ∞.

But since by (5.5) we have

p∗(t) =
1

p(τ–1(t))

(

1 –
1

p(τ–1(τ–1(t)))

)

≥ 159

(160)(2 5
3 )

2t + 1
10t + 6

1

t 5
3

> 0,

then it follows that condition (4.14) reads

∫ ∞

t0

q(u)
(
p∗(σ (u)

))γ du ≥
∫ ∞

t0

u9
(

159

(160)(2 5
3 )

3
16

1

u 5
3

)3

du � ε1

∫ ∞

t0

u4 du = ∞,
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where ε1 = (0.05868968172)3. Moreover, since by using (5.5) and letting k1 = 1
2 we have

p∗∗(t) =
1

p(τ–1(t))

(

1 –
1

p(τ–1(τ–1(t)))

[
τ–1(τ–1(t))

τ–1(t)

] 1
k1

)

≥ 1
p(2t)

(

1 –
1

160

(
4t
2t

)2)

=
39

(40)(2 5
3 )

2t + 1
10t + 6

1

t 5
3

> 0,

then condition (4.20) becomes

∫ ∞

t0

[
1

r(t)

∫ t

t0

q(s)
[

τ–1(σ (s)
)
p∗∗

(
σ (s)

)
∫ ∞

τ–1(σ (s))

1
r 1

α (u)
du

]γ

ds
] 1

α

dt

≥
∫ ∞

2

1
t3

∫ t

2
s9

[
1

4(s – 1)

(
39

(40)(2 5
3 )

2s – 1
10s – 4

1

(s – 1) 5
3

)]3

ds dt

≥
∫ ∞

2

1
t3

∫ t

2
s9

[
1
4s

(
39

(40)(2 5
3 )

3
16

1

s 5
3

)]3

ds dt

� ε2

∫ ∞

2

[
1
2t

–
2
t3

]

dt = ∞, where ε2 = (0.01439558231)3.

Thus, all the conditions of Theorem 4.4 are satisfied, and so every solution x(t) of Eq. (5.4)
is either oscillatory or satisfies limt→∞ x(t) = 0.

6 General remarks
(1) In this paper, several new oscillation criteria for Eq. (1.1) have been presented which

complement and improve the existing results introduced in the cited papers. In fact,
our results are applicable in the cases either with p(t) is bounded or unbounded and
where the restriction r′(t) ≥ 0 imposed by the authors in [1, 8, 9, 14, 19], and [17] is
dropped in this paper.

(2) It is our belief that the present paper is of significance because it extends most of the
cited papers which are concerned with unbounded p(t) and relaxes some of their
conditions. For example, Theorem 4.5 includes Theorem 2.6 and Theorem 2.9 of
[15], where the author was only concerned with the special case α = γ with
∫ ∞

t0
r– 1

α (s) ds = ∞, and with the restriction σ (t) is nonincreasing. Moreover, our
results in this paper extend those of [5] in the special case r(t) = 1, α = 1, and
f (u) = uγ , where γ ≤ 1. At the same time it extends those of [4] in the special case
p(t) = 0, α = γ , with σ (t) being strictly increasing.

(3) Our criteria could be extended to the dynamic equation on time scales. In this case,
if we consider m∗(t) =

∫ t
t2

∫ s
t1

1
r

1
α (u)

�u�s and
∫ ∞

t0
1

r
1
α (s)

�s = ∞, then the obtained

results will be more general than those of [10], because one may note that the results
of [10] are applicable only in the case γ ≤ α, 0 ≤ p(t) ≤ p0 < 1, and σ (t) is
nondecreasing, while our results are applicable in the case γ > α and p(t) ≥ 1.
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