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Abstract
Controlling information diffusion or propagation through social networks can be
challenging when dealing with information related to a subject of highest interest for
the public. The complexity level of control depends on subject importance, users’
dynamic, and network structure. When two published messages or pieces of
information share the same interest for targeted readers, analyzing their propagation
dynamic for control and prediction is of great interest. This article proposes to model,
based on a modified interactive system with Holling type functional response, the
dynamic of underlying relationship between two broadcasted messages traveling
through social networks media. We showed in the qualitative analysis of the
proposed model that system could be stable at certain conditions, and the
model-system exhibited very rich dynamical behavior. Numerical simulation results
validated theoretical analyses and suggested adapting resources harvesting and
assimilation efficiency for an authoritative message to stabilize the system and control
the dissemination of information in a closed environment.

Keywords: Information propagation; Social network; Competitive interaction;
Logistic model; Holling type II; Stability analysis

1 Introduction
Avoiding overdiffusion or propagation of broadcasted messages or information in social
networks media or platform can be necessary and needed in preventing disinformation,
panic, or overreaction due to content sensibility in a closed environment. On most of so-
cial media platforms, information propagation may follow a random pattern relying on
the size of the network, users’ dynamic, and publishers’ ties or importance [1–4]. It has
become challenging to predict and control the speed of diffusion and dissemination of
information in larger scale and complex networks such as today’s social networks. The
omnipresence of connectivity and wide spread of intelligent devices are among multiple
reasons that may explain this complexity. As investigated by numerous authors, most of
the studies related to information propagation, rumors diffusion, and so forth have been
focusing on information speed of diffusion, readership growth rate, and network topology.
Some researchers investigated node properties to analyze the influence each node has on
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information dissemination in a period of crisis for example, relying on epidemic control
models and social network analysis techniques and methods [5–9].

We are interested in this article in analyzing the influence different pieces of informa-
tion may have on each other when they are related to the same topic and have the same
interest for the audience or readership. Identifying the type and nature of underlying rela-
tionship between interacting entities is a key in controlling and predicting system behavior
as stipulated in many published articles in related literature [10–15].

In this article, we propose to consider the impact of social network users’ behavior on
information propagation dynamic when two influential publishers publish two messages
or pieces of information on a social media platform. We consider the published messages
to be related to the same topic, thus sharing relatively the same interest for readers or fol-
lowers. The published messages may reach a larger audience, depending on publishers’
ties and importance in respect to the number of followers. Readers may follow both pub-
lishers; consequently, one published message related to the same subject may drive readers
to do more comparisons for enrichment of viewpoint and knowledge about the respective
subject. As a result, one published message may lead to discovery and contact with more
messages related to the same topic from different publishers. Depending on how reliable
readers consider respective publishers, they will repost, transmit, or recommend the piece
of information to their own followers [16–20]. This phenomenon can be assimilated to a
predator-prey type relationship in which messages or information that increase respec-
tive readership per time unit could be considered as predator. As in the classical dynamic
social network analysis, users or nodes have random behavior and may move to differ-
ent locations, virtual groups, etc. We consider the publishers to share audience and the
readers to join randomly any publishers’ open group.

Traditional logistic Lotka–Volterra based interactive systems are commonly used to
model interactions occurring in a system where entities share available resources. The
advantage of such systems is that they exhibit rich dynamical behavior and have many
applications in the real world, such as economic ties, interconnected markets, applied en-
gineering sciences, ecology, etc. Models with Holling type functional responses are well
spread and there are large varieties of modified models adjusted to formalize specific ties
or relationship in dynamical systems. Depending on studied systems and underlying in-
teraction types, the outcome of interaction may be simple or complex. Holling type func-
tional response commonly allows better control of resources accessibility, harvesting time,
assimilation efficiency, and so forth [21–24].

Controlling rumor and fake news overdiffusion through social media is a recurrent prob-
lem that needs to be addressed from different perspectives for control purposes. Mea-
suring and reducing information speed of diffusion in nowadays society have become
challenging due to social network popularity and widespread Internet network. The up-
coming of next generation mobile and intelligent devices along with the Internet of things
may even bring more challenges from management and control standpoint. This inves-
tigation proposes an insight into network resources administration and information dif-
fusion. Whether we deal with real news or rumors, this article provides a new angle of
investigation to describe and solve existing issues and challenges from resources optimiza-
tion and control perspectives. Results of this work could be used to determine the effect
authoritative information could have on related persistent propagating rumors traveling
through social networks media, such as Weibo, WeChat, etc. Particularly, in a period of
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crisis where a decision about the content related to national security or social wellbeing
has to be made to establish or restore the truth. The main motivation of this investigation
is to provide supporting evidence on the importance of controlling overdiffusion of sensi-
ble and potentially dangerous contents across social media platforms and promoting the
truth.

By performing qualitative analysis of the proposed competitive model, we found that,
under certain conditions, the system could be stable and both published pieces of infor-
mation could coexist peacefully. Furthermore, the dynamic of this particular competition
in a closed environment is impacted directly by readers’ behavior, content nature, the im-
portance of related subject in respect to readers’ interest, and network state in terms of
resources availability as shown in numerical simulation results. Adjusting diffusion effi-
ciency or publishing higher interest information through certain nodes may boost given
message propagation efficiency and improve the publisher’s esteem or reliability.

2 Model
Let M1 and M2 be the number of views of respectively the first and second message at
time t. If we consider there is interconnection between readers, then people who read M1

first may or may not look at M2 content for crosschecking purpose for example and vice-
versa. This behavior depends on content attractiveness or interest for the reader. Consid-
ering there is an upper limit in the number of views for each posted message, we formalize
this limitation using logistic terms in both M1 and M2. Each message will increase respec-
tive views or population size, using ecology terms, if the number of views increases per
time unit, the rate of increase being proportional to the per capita total number of views
at time t. A model system is given by

dM1

dt
= M1

[
a1(V – nM1)

(
1 –

M1

V

)
–

a2M2

1 + a3M1

]
,

dM2

dt
= M2

[
b1

(
1 –

mM2

V

)
+

b2M1

1 + a3M1

]
,

(1)

where a1, a2, a3, b1, b2, n, m, and V are positive constant parameters, a1 and b1 rep-
resent respectively the natural growth coefficients of M1 and M2. a2 corresponds to the
interaction effect of M2 on M1, and b2 is positive feedback resulting from this interaction.
a3 formalizes assimilation efficiency and harvesting effort in respect to the time needed
to capture and consume resources. n is a control parameter modeling the threshold when
M1 reaches the critical number of views. m is a control parameter modeling the effect of
promotion from which M2 benefits. V is the maximum number of views each message
can reach. This factor is incorporated in the proposed model for practical and analysis
purposes, in respect to a social network’s finite number of views.

It is clear that:
(i) Both M1 and M2 increase density or number of views as far as 0 < M1(t) < V < V /n,

and 0 < M2(t) < V < V /m as far as 0 < m, n < 1.
(ii) a2M2/(1 + a3M1) value depends on a2 and a3 for a larger M1 population or the

number of views. M2 will thrive only if interaction is intensive, meaning when there
is a significant proportion of readers who only read one message and never double
check, trusting respective publisher. On the other hand, M1 will suffer less from
predation if M2 is weaker or has relatively less views.
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Set

dM1

dt
= f1(M1, M2),

dM2

dt
= f2(M1, M2),

(2)

such that f1(M1, M2) and f2(M1, M2) are continuously derivable functions for M1, M2 > 0.
Then we can write

∂f1
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= 3a1nM2
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(3)

∀t → ∞, solutions of system (1) are unique according to the Lipschitz condition.
Furthermore, applying the Poincaré–Bendixson criterion, we have

div(f1, f2) =
∂f1

∂M1
+

∂f2

∂M2

= 3a1nM2
1 + a1V + b1 +

b2M1

1 + a3M1

–
[

2a1(n + 1)M1 +
2b1nM2

V
+

a2M2

(1 + a3M1)2

]

�= 0. (4)

This indicates that system (1) has at least one periodic orbit lying in the phase plane
(M1, M2) for a given set of parameters value according to the Poincaré–Bendixson cri-
terion.

3 Model steady state
In this section, we describe a steady state equilibrium of the system.

(i) The zero growth isoclines equations are given by

⎧⎪⎨
⎪⎩

F = a1a3nM3
1 + (a1n – a1a3nV – a1a3V )M2

1 + (a1a3V 2 – a1nV – a1V )M1

– a2VM2 + a1V 2 = 0,
G = V (1 – a3)M1 – nM2 + a2mM1M2 + V = 0.

(5)

Based on (5), we know that interaction happens. The system may admit more than one
positive solution in the first quadrant as portrayed in Fig. 1 and Fig. 2. The ideal scenario
is to choose parameter value such that the intersection point of the two isoclines lies in
the positive quadrant.
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Figure 1 Phase portrait when the system is stable and admits a unique positive equilibrium point attracting
all nearby trajectories

Figure 2 Phase portrait when the system admits one stable positive equilibrium point attracting nearby
trajectories and one positive unstable equilibrium behaving as a saddle node

(ii) The unique positive equilibrium point of the system can be computed solving (5).
From G we obtain

M∗
2 =

V (1 + M∗
1 + a3M∗

1)
n – a2mM∗

1
, n > a2mM∗

1,

t → ∞, M1(t) <
n

a2m
.

(6)
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After substituting in F and rearranging, we get

p0M4
1 + p1M3

1 + p2M2
1 + p3M1 + p4 = 0, (7)

where

p0 = –a1a2nm,

p1 = –a1
[
a2mn2 + a2m(n – a3nV – a3V )

]
,

p2 = a1n(n + na3V – a3V ) – a1a2mV (a3V – n – 1),

p3 = V
[
a1n(a3V – n – 1) – a2V (a3 + 1) – a1a2mV

]
,

p4 = (a1n – a2)V 2.

Equation (7) could be reduced by changing variables to

X4 + μ0X3 + μ1X + μ2 = 0, (8)

where

M1 = X –
p1

4p0
,

and

μ0 =
p2

p0
–

3p2
1

8p2
0

,

μ1 =
p3

p0
–

p1p2

2p2
0

+
p3

1

8p3
0

,
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p4
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–

p1p3

4p2
0

+
p2

1p3

16p3
0

–
3p4

1
256p4

0
.

Take a variable s satisfying the following resolving cubic equation:

8s3 – 4μ0s2 – 8μ2s +
(
3μ0μ2 – μ2

1
)

= 0. (9)

It follows

(
X2 + s

)2 –
[
(2s – μ0)X2 – μ1X + s2 – μ2

]
= 0 (10)

and

(2s – μ0)X2 – μ1X + s2 – μ2 = (2s – μ0)
(
X – X+)(

X – X–)
. (11)

Under the constraint X+ = X–, we can write

(
X2 + s +

√
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μ1

2
√

2s – μ0

)(
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√
2s – μ0X +

μ1

2
√
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)
= 0. (12)
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Equation (8) admits four solutions given by

X1,2 = –
1
2
√

2s – μ0 ± 1
2

√
–2s – μ0 +

2μ1√
2s – μ0

, (13)

X3,4 =
1
2
√

2s – μ0 ± 1
2

√
–2s – μ0 –

2μ1√
2s – μ0

. (14)

From (13) and (14) we deduct

Mk
1 = Xk –

μ1

4μ0
, k = 1, 2, 3, 4. (15)

Then the steady state equilibrium is given by

(
M∗

1, M∗
2
)

=
(

Mk
1,

V (1 + Mk
1 + a3Mk

1)
n – a2mMk

1

)
, k = 1, 2, 3, 4. (16)

4 Model stability analysis
In this section, we determine stability conditions around the system steady state equilib-
rium and analyze interaction outcome.

Let the Jacobian matrix be

J =

(
O P
Q R

)
, (17)

where

O = 3a1nM̄2
1 – 2a1(n + 1)M̄1 + a1V –

a2M̄2

(1 + a3M̄1)2
,

P = –
a2M̄1

1 + a3M̄1
, Q =

b2M̄2

(1 + a3M̄1)2
,

R = b1 –
2b1M̄2

V
+

b2M̄1

1 + a3M̄1
.

(18)

1—At the origin, we have

J(0, 0) =

(
a1V 0

0 b1

)
. (19)

The origin is always unstable, the polynomial equation admits two positive roots and (19)
determinant is greater than zero.

2—At the positive equilibrium point, we have

O = 3a1nM∗2
1 + a1V – [2a1(n + 1)M∗

1 +
a2M∗

2
(1 + a3M∗

1)2 ],

P = –
a2M∗

1
1 + a3M∗

1
, Q =

b2M∗
2

(1 + a3M∗
1)2 ,

R = b1 +
b2M∗

1
1 + a3M∗

1
–

2b1M∗
2

V
.

(20)
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Figure 3 Time series showing local stability of the system at the steady state equilibrium neighborhood in A
and the corresponding phase space in B for M1(0) = 0.01, M2(0) = 0.002, a1 = 0.06, b1 = 0.039, V = 10,
a2 = 0.023, b2 = 0.06, a3 = 0.3, n = 0.79,m = 0.68

The characteristic polynomial equation is given by

λ2 – (O + R)λ + OR – PQ = 0. (21)

The system is asymptotically stable at the neighborhood of the steady state equilibrium
only if O + R < 0 and OR – PQ > 0.

In case equation (21) admits complex conjugate imaginary roots of the form λ = μ± iω,
we have

{
μ2 – ω2 – μ(O + R) + OR – PQ = 0,
2μ = O + R,

(22)
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Figure 4 Time series showing the existence of periodic solutions at the steady state equilibrium
neighborhood A and the phase portrait in B for M1(0) = 0.39, M2(0) = 0.01, a1 = 0.06, b1 = 0.039, V = 30,
a2 = 0.023, b2 = 0.06, a3 = 0.3, n = 0.9,m = 0.8

{
μ = (O + R)/2,
ω = ±√

(O + R)2/4 – (O + R)/2 + OR – PQ.

If μ = 0, then a Hopf bifurcation occurs at (M∗
1, M∗

2) and all solution curves lie on ω =
±√

OR – PQ as far as OR > PQ. If μ �= 0, then at (M∗
1, M∗

2) neighborhood solution curves
are spiraling inward or outward depending on μ sign.

5 Numerical results
In this section, to test the proposed model predictability and validate the theoretical hy-
pothesis, we carried out computer simulation (Figs. 3, 4, 5, 6, 7) and used data collected
from the Chinese social network media Weibo (Figs. 8, 9, 10). Several situations of interac-
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Figure 5 Time series showing the existence of periodic solutions at the steady state equilibrium
neighborhood giving birth to a stable limit cycle in A and the phase portrait in B forM1(0) = 0.09,M2(0) = 0.02,
a1 = 0.07, b1 = 0.015, V = 60, a2 = 0.023, b2 = 0.06, a3 = 0.3, n = 0.9,m = 0.8

tion were considered. In all the scenarios, model parameters are constant. We computed
M1 and M2 intrinsic growth factors respectively a1 = 0.03, b1 = 0.9 as per capita increase
of the number of views per unit time (here per day, after rescaling the data for practical
purpose). Computing a2, b2, and a3 is more challenging using the data at hand, a2 being
the effect M2 has on M1, modeling M1 per capita decrease in the number of views. b2 is
the positive feedback resulting from this interaction, while a3 captures relative speed of
increase in the number of views per unit time for M2. This implies that M2 needs more
time to benefit from positive feedback at high M1 density. We varied initial conditions,
interaction coefficients, system carrying capacity, and control parameters m and n to test
system sensitivity to small perturbations and explore the interaction outcome.



Zhang et al. Advances in Difference Equations        (2020) 2020:318 Page 11 of 15

Figure 6 Time series showing the existence of periodic solutions at the vicinity of the steady state
equilibrium giving birth to a stable limit cycle in A and the phase portrait in B for M1(0) = 0.6, M2(0) = 0.02,
a1 = 0.07, b1 = 0.039, V = 30, a2 = 0.023, b2 = 0.06, a3 = 0.13, n = 0.49,m = 0.68

1—Fig. 3 displays the dynamic of interaction when system is stable and there is peaceful
coexistence for a given set of parameters value. Benefiting from a larger audience and a
more reliable publisher, namely the authority, M2 gets more views and stays attractive for a
longer period of time. This validates the fact that releasing authoritative information con-
taining the truth at a specific time is important to reduce the negative effect of persistent
rumor or fake news. Control parameters m and n have significant impact on system dy-
namic in respect to per capita growth rate or the number of views per unit time. Adjusting
these control parameters by improving exposition and stimulating readers’ interest using
marketing tools and techniques may result in enhancing the attractiveness of respective
messages and stabilizing the system. As portrayed in Fig. 4, when we vary M2 harvesting
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Figure 7 Time series showing the existence of periodic solutions at the neighborhood of the steady state
equilibrium giving birth to a stable limit cycle in A and the phase portrait in B for M1(0) = 0.6, M2(0) = 0.02,
a1 = 0.07, b1 = 0.039, V = 30, a2 = 0.023, b2 = 0.06, a3 = 0.13, n = 0.99999,m = 0.68

coefficient significantly, the system exhibits rich dynamical behavior. The existence of pe-
riodic orbits and stable limit cycle at the vicinity of the unique positive equilibrium point,
as illustrated in Figs. 5, 6, and 7, is interesting from system control perspective [25, 26].

As interacting messages have strong correlation due to resources limitation, varying m
and n will result in affecting significantly the amplitude of oscillations and directly the
limit cycle at the vicinity of the steady state equilibrium. Adjusting these parameters may
end up in optimizing resources allocation in a closed environment when competition is
intensive to maintain system stability, as portrayed in Figs. 6 and 7.

Readers’ interest for a subject will drop when there are more choices as competition will
intensify. To reach a larger number of views, choosing trusted and reliable publishers is a
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key in controlling information propagation among social networks targeted community
or reducing propagating rumors negative effects on human mind and social wellbeing.

To support the decision in promoting broadcasted authoritative information and reduce
the negative effect of rumor, decision makers need to analyze targeted community’s social
ties, network structure and to release the curative content at the right time. The key control
parameters m and n will be difficult to determine scientifically with accuracy, as they are
related to users’ behavior which is stochastic in nature.

2—By varying control parameters m and n, interaction coefficient value and rescaling
population size to 100, we obtained feasible results illustrated in Figs. 8, 9, and 10. A sta-
ble coexistence between the current rumor and the related authoritative information is
shown. After the release of M2 via the authority, the trending M1 containing harmful
contents shrinks at relative speed as more and more users enter in contact with M2 as
displayed in Fig. 8. By choosing a3 = 0.13, n = 0.7, m = 0.01, we gave M2 more time to as-
similate captured resources and benefit from interaction, here attracting more users, as
shown in Fig. 9. When the authoritative information is relatively attractive to the targeted
community, the amplitude of oscillations is significantly affected.

Figure 8 System dynamic for M1(0) = 19, M2(0) = 4, a1 = 0.03, b1 = 0.9, V = 100, a2 = 0.58, b2 = 0.03, a3 = 0.03,
n = 0.03,m = 0.9

Figure 9 System dynamic for M1(0) = 19, M2(0) = 4, a1 = 0.03, b1 = 0.9, V = 100, a2 = 0.3, b2 = 0.03, a3 = 0.13,
n = 0.7,m = 0.01
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Figure 10 Dynamics of interaction for M1(0) = 20, M2(0) = 1, a1 = 0.03, b1 = 0.9, V = 100, a2 = 0.16, b2 = 0.07,
a3 = 0.32, n = 0.99,m = 0.2

Figure 10 illustrates an ideal scenario for a2 = 0.16, b2 = 0.07, a3 = 0.32, n = 0.99, m = 0.2,
where the authoritative information overpowered the persistent rumor M1, resulting in
less and less people propagating the latter. However, even when the majority of people
are reading and propagating M2, there are still users who continue to be interested in M1,
which is consistent with human mind and people inclination to experiment themselves
what they hear about.

6 Conclusion
In this paper, to model the interaction effect of two messages traveling through social net-
works sharing the same interest for readers, we proposed a two-species logistic interactive
model with Holling type functional response and maturation parameters for both interact-
ing species. We considered respective attractiveness and thresholds for each message in
respect to logistic growth and control parameters. We showed that controlling a strategic
node or a publisher with highest reliability has a direct influence on system stability and re-
sources availability for covering a larger audience in the targeted community. By applying
stability theory and studying the system qualitatively, we found in numerical results that
the system exhibited rich dynamical behavior, interaction dynamics was predictable, and
the system could be stable for a given set of parameters value. Both species’ dynamics are
submitted to initial conditions, resources availability, marketing strategy, and publisher
reliability through respective control parameters. From the field data at hand, we showed
that maturation parameters and assimilation coefficient have significant impact on the
steady state equilibrium dynamics, as the amplitude of oscillations changes when we vary
respective parameters, shaping the system’s asymptotic and global behavior.
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