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Abstract
This work studies the blow-up result of the solution of a coupled nonlocal singular
viscoelastic equation with general source and localized frictional damping terms
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1 Introduction
This paper is devoted to a study of the blow-up of the following system of two singular
nonlinear viscoelastic equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – 1
x (xux)x +

∫ t
0 g1(t – s) 1

x (xux(x, s))x ds + μ(x)ut = f1(u, v), in Q,

vtt – 1
x (xvx)x +

∫ t
0 g2(t – s) 1

x (xvx(x, s))x ds + μ(x)vt = f2(u, v), in Q,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, L),

u(L, t) = v(L, t) = 0,
∫ L

0 xu(x, t) dx =
∫ L

0 xv(x, t) dx = 0,

(1)

where
⎧
⎨

⎩

f1(u, v) = a1|u + v|2(r+1)(u + v) + b1|u|r .u.|v|r+2,

f2(u, v) = a1|u + v|2(r+1)(u + v) + b1|v|r .v.|u|r+2,
(2)

and Q = (0, L) × (0, T), L < ∞, T < ∞, μ ∈ C1((0, L)), g1(·), g2(·) : R+ → R
+ and f1(·, ·),

f2(·, ·) : R2 −→ R are functions given in (2).
The problems related with localized frictional damping have been extensively studied by

many teams [5], where the authors obtained an exponential rate of decay for the solution
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of the viscoelastic nonlinear wave equation:

utt – �u + f (x, t, u) +
∫ t

0
g1(t – s)�u(s) ds + a(x)ut = 0 in (0, L) × (0, T),

for a damping term a(x)ut that may be null for some part of the domain.
We used the techniques of [5], and we have proved in [3] the existence of a global so-

lution using the potential well theory for the following viscoelastic system with nonlocal
boundary condition and localized frictional damping:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – 1
x (xux)x +

∫ t
0 g1(t – s) 1

x (xux(x, s))x ds + a(x)ut

= |v|q+1|u|p–1u, in (0, L) × (0, T),

vtt – 1
x (xvx)x +

∫ t
0 g2(t – s) 1

x (xvx(x, s))x ds + a(x)vt

= |u|p+1|v|q–1v, in (0, L) × (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0,α),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0,α),

u(α, t) = v(α, t) = 0,
∫ α

0 xu(x, t) dx =
∫ α

0 xv(x, t) dx = 0.

(3)

Very recently, in [2] we have studied the following singular one-dimensional nonlinear
equations that arise in generalized viscoelasticity with long-term memory:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt – 1
x (xux)x +

∫ t
0 g1(t – s) 1

x (xux(x, s))x ds = f1(u, v), in (0, L) × (0, T),

vtt – 1
x (xvx)x +

∫ t
0 g2(t – s) 1

x (xvx(x, s))x ds = f2(u, v), in (0, L) × (0, T),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (0, L),

u(L, t) = v(L, t) = 0,
∫ L

0 xu(x, t) dx =
∫ L

0 xv(x, t) dx = 0.

(4)

Also in the field of blow-up, in [14], the authors studied the blow-up in finite time of
solutions of an initial boundary value problem with nonlocal boundary conditions for a
system of nonlinear singular viscoelastic equations.

In view of the articles mentioned above in [2, 3, 5] and a supplement to our recent study
in [2], much less effort has been devoted to the blow-up of solutions of two singular non-
linear viscoelastic equations, where nonlocal boundary conditions, general source terms
and localized frictional damping are considered.

The structure of the work is as follows: we start by giving the fundamental definitions
and theorems on function spaces that we need, then we state the local existence theorem.
Finally, we state and prove the main result, which under suitable conditions gives the blow-
up in finite time of solutions for system 1.

2 Preliminaries
Let Lp

x = Lp
x((0, L)) be the weighted Banach space equipped with the norm

‖u‖Lp
x

=
(∫ L

0
x|u|p dx

) 1
p

. (5)
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Let H = L2
x((0, L)) be the Hilbert space of square integral functions having the finite norm

‖u‖H =
(∫ L

0
xu2 dx

) 1
2

. (6)

Let V = V 1
x ((0, L)) be the Hilbert space equipped with the norm

‖u‖V =
(‖u‖2

H + ‖ux‖2
H
) 1

2 (7)

and

V0 =
{

u ∈ V such that u(L) = 0
}

. (8)

Lemma 1 (Poincaré-type inequality) For any v in V0 we have

∫ L

0
xv2(x) dx ≤ Cp

∫ L

0
x
(
vx(x)

)2 dx (9)

and

V0 =
{

v ∈ V such that v(L) = 0
}

.

Remark 2 It is clear that ‖u‖V0 = ‖ux‖H defines an equivalent norm on V0.

Theorem 3 (See [1]) For any v in V0 and 2 < p < 4, we have

∫ L

0
x|v|p dx ≤ C∗‖vx‖p

H=L2
x(0,L), (10)

where C∗ is a constant depending on L and p only.

We prove the blow-up result under the following suitable assumptions.
(A1) g1, g2 : R+ →R+ are differentiable and decreasing functions such that

g1(t) ≥ 0, 1 –
∫ ∞

0
g1(s) ds = l1 > 0,

g2(t) ≥ 0, 1 –
∫ ∞

0
g2(s) ds = l2 > 0.

(11)

(A2) There exist constants ξ1, ξ2 > 0 such that

g ′
1(t) ≤ –ξ1g1(t), t ≥ 0,

g ′
2(t) ≤ –ξ2g2(t), t ≥ 0.

(12)

(A3) μ : [0, L] →R+ is a C1 function so that

μ ≥ 0, μ > 0 in (L0, L]. (13)
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Theorem 4 Assume (11), (12), and (13) hold. Let
⎧
⎨

⎩

–1 < r < 4–n
n–2 , n ≥ 3;

r ≥ –1, n = 1, 2.
(14)

Then, for any (u0, v0) ∈ V 2
0 and (v1, v2) ∈ H2, problem (1) has a unique local solution

u ∈ C
((

0, T∗); V0
) ∩ C1((0, T∗); H

)
,

for T∗ > 0 small enough.

Lemma 5 There exists a function F(u, v) such that

F(u, v) =
1

2(r + 2)
[
uf1(u, v) + vf2(u, v)

]

=
1

2(r + 2)
[
a1|u + v|2(r+2) + 2b1|uv|r+2] ≥ 0,

where

∂F
∂u

= f1(u, v),
∂F
∂v

= f2(u, v).

We take a1 = b1 = 1 for convenience.

Lemma 6 ([9]) There exist two positive constants c0 and c1 such that

c0

2(r + 2)
(|u|2(r+2) + |v|2(r+2)) ≤ F(u, v) ≤ c1

2(r + 2)
(|u|2(r+2) + |v|2(r+2)). (15)

We now define the energy functional.

Lemma 7 Assume (11), (12), (13), and (14) hold, let (u, v) be a solution of (1), then E(t) is
non-increasing, that is,

E(t) =
1
2
‖ut‖2

H +
1
2
‖vt‖2

H +
1
2

l1‖ux‖2
H +

1
2

l2‖vx‖2
H

+
1
2

(g1oux) +
1
2

(g2ovx) –
∫ L

0
xF(u, v) dx (16)

satisfies

E′(t) = –
∫ L

0
xμ(x)u2

t dx –
∫ L

0
xμ(x)v2

t dx +
1
2

g ′
1 ◦ ux +

1
2

g ′
2 ◦ vx

–
∫ t

0
g1(s) ds

∫ L

0
xu2

x dx –
∫ t

0
g2(s) ds

∫ L

0
xv2

x dx

≤ 0, (17)

where
∫ L

0
xF(u, v) dx =

1
2(r + 2)

(‖u + v‖2(r+2)
L2(r+2)

x
+ 2‖uv‖(r+2)

L(r+2)
x

)
(18)
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and

(g ◦ ux)(t) =
∫ L

0

∫ t

0
xg(t – s)

∣
∣ux(x, t) – ux(x, s)

∣
∣2 ds dx. (19)

Proof By multiplying (1)1, (1)2 by xut , xvt , respectively, and integrating over (0, L), we get

d
dt

{
1
2
‖ut‖2

H +
1
2
‖vt‖2

H +
1
2

l1‖ux‖2
H +

1
2

l2‖vx‖2
H +

1
2

(g1 ◦ ux)

+
1
2

(g2 ◦ ux) –
∫ L

0
xF(u, v) dx

}

= –
∫ L

0
xμ(x)u2

t dx –
∫ L

0
xμ(x)v2

t dx +
1
2

g ′
1 ◦ ux +

1
2

g ′
2 ◦ vx

–
(∫ t

0
g1(s) ds

)

‖ux‖2
H –

(∫ t

0
g2(s) ds

)

‖vx‖2
H . (20)

And by using (11), (12) and (13), we obtain (17). �

3 Blow-up
In this section, we prove the blow-up result of solution of problem (1).

Now we define the functional

H(t) = –E(t)

= –
1
2
‖ut‖2

H –
1
2
‖vt‖2

H –
1
2

l1‖ux‖2
H –

1
2

l2‖vx‖2
H

–
1
2

(g1oux) –
1
2

(g2ovx)

+
1

2(r + 2)
[‖u + v‖2(r+2)

L2(r+2)
x

+ 2‖uv‖r+2
Lr+2

x

]
. (21)

Theorem 8 Assume (11)–(13), and (14) hold. Assume further that E(0) < 0, then the solu-
tion of problem (1) blows up in finite time.

Proof From (17), we have

E(t) ≤ E(0) ≤ 0. (22)

Therefore

H
′(t) = –E′(t) ≥ 0.

By (18) and (15), we have

0 ≤ H(0) ≤ H(t) ≤ 1
2(r + 2)

[‖u + v‖2(r+2)
L2(r+2)

x
+ 2‖uv‖r+2

L(r+2)
x

]

≤ c1

2(r + 2)
[‖u‖2(r+2)

L2(r+2)
x

+ ‖v‖2(r+2)
L2(r+2)

x

]
. (23)
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We set

K(t) = H
1–α + ε

∫ L

0
x(uut + vvt) dx +

ε

2

∫ L

0
xμ(x)

(
u2 + v2)dx, (24)

where

0 < α <
2r + 2

4(r + 2)
< 1. (25)

By multiplying (1)1, (1)2 by xu, xv and taking the derivative of (24), we get

K′(t) = (1 – α)H–α
H

′(t) + ε
(‖ut‖2

H + ‖vt‖2
H
)

– ε
(‖ux‖2

H + ‖vx‖2
H
)

+ ε

∫ L

0
ux

∫ t

0
g1(t – s)xux(s) ds dx + ε

∫ L

0
vx

∫ t

0
g2(t – s)xvx(s) ds dx

+ ε
[‖u + v‖2(r+2)

L2(r+2)
x

+ 2‖uv‖r+2
L(r+2)

x

]
, (26)

we have

ε

∫ t

0
g1(t – s) ds

∫ L

0
ux.xux(s) dx ds

= ε

∫ t

0
g1(t – s) ds

∫ L

0
ux.

(
xux(s) – xux(t)

)
dx ds + ε

(∫ t

0
g1(s) ds

)

‖ux‖2
H

≥ ε

(
1
2

∫ t

0
g1(s) ds

)

‖ux‖2
H –

ε

2
(g1 ◦ ux), (27)

ε

∫ t

0
g2(t – s) ds

∫ L

0
vx.xvx(s) dx ds

= ε

∫ t

0
g2(t – s) ds

∫ L

0
vx.

(
xvx(s) – xvx(t)

)
dx ds + ε

(∫ t

0
g2(s) ds

)

‖vx‖2
H

≥ ε

(
1
2

∫ t

0
g2(s) ds

)

‖vx‖2
H –

ε

2
(g2 ◦ ux). (28)

We obtain, from (26),

K′(t) ≥ (1 – α)H–α
H

′(t) + ε
(‖ut‖2

H + ‖vt‖2
H
)

– ε

((

1 –
1
2

∫ t

0
g1(s) ds

)

‖ux‖2
H +

(

1 –
1
2

∫ t

0
g2(s) ds

)

‖vx‖2
H

)

–
ε

2
(g1 ◦ ux) –

ε

2
(g2 ◦ vx) + ε

[‖u + v‖2(r+2)
L2(r+2)

x
+ 2‖uv‖r+2

L(r+2)
x

]
. (29)

For 0 < a < 1, from (21)

ε
[‖u + v‖2(r+2)

L2(r+2)
x

+ 2‖uv‖r+2
L(r+2)

x

]
= εa

[‖u + v‖2(r+2)
L2(r+2)

x
+ 2‖uv‖r+2

L(r+2)
x

]

+ 2ε(r + 2)(1 – a)H(t)

+ ε(r + 2)(1 – a)
(‖ut‖2

H + ‖vt‖2
H
)
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+ ε(r + 2)(1 – a)
(

1 –
∫ t

0
g1(s) ds

)

‖ux‖2
H

+ ε(p + 2)(1 – a)
(

1 –
∫ t

0
g2(s) ds

)

‖vx‖2
H

+ ε(r + 2)(1 – a)(g1 ◦ ux)

+ ε(r + 2)(1 – a)(g2 ◦ vx). (30)

Substituting in (29), we get

K′(t) ≥ (1 – α)H–α
H

′(t) + ε
[
(r + 2)(1 – a) + 1

](‖ut‖2
H + ‖vt‖2

H
)

+ ε

[

(r + 2)(1 – a)
(

1 –
∫ t

0
g1(s) ds

)

–
(

1 –
1
2

∫ t

0
g2(s) ds

)]

‖ux‖2
H

+ ε

[

(r + 2)(1 – a)
(

1 –
∫ t

0
g2(s) ds

)

–
(

1 –
1
2

∫ t

0
g2(s) ds

)]

‖vx‖2
H

+ ε

[

(r + 2)(1 – a) –
1
2

]

(g1oux + g2ovx)

+ εa
[‖u + v‖2(r+2)

L2(r+2)
x

+ 2‖uv‖r+2
L(r+2)

x

]
+ 2ε(r + 2)(1 – a)H(t). (31)

In this point, we take a > 0 small enough so that

α1 = (r + 2)(1 – a) – 1 > 0

and we assume

max

{∫ ∞

0
g1(s) ds,

∫ ∞

0
g2(s) ds

}

<
(r + 2)(1 – a) – 1

((r + 2)(1 – a) – 1
2 )

=
2α1

2α1 + 1
; (32)

then we have

α2 =
{

(r + 2)(1 – a) – 1) –
∫ t

0
g1(s) ds

(

(r + 2)(1 – a) –
1
2

)}

> 0,

α3 =
{

(r + 2)(1 – a) – 1) –
∫ t

0
g2(s) ds

(

(r + 2)(1 – a) –
1
2

)}

> 0,

we pick ε small enough such that

H(0) + ε

∫ L

0
x(u0u1 + v0v1) dx > 0.

Thus, for some β > 0, estimate (31) becomes

K′(t) ≥ β
{
H(t) + ‖ut‖2

H + ‖vt‖2
H + ‖ux‖2

H + ‖vx‖2
H

+ (g1oux) + (g2ovx) +
[‖u + v‖2(r+2)

L2(r+2)
x

+ 2‖uv‖r+2
L(r+2)

x

]}
. (33)
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By (15), for some β1 > 0, we obtain

K′(t) ≥ β1
{
H(t) + ‖ut‖2

H + ‖vt‖2
H + ‖ux‖2

H + ‖vx‖2
H

+ (g1oux) + (g2ovx) +
[‖u‖2(p+2)

L2(r+2)
x

+ ‖u‖2(r+2)
L2(r+2)

x

]}
(34)

and

K(t) ≥K(0) > 0, t > 0. (35)

Next, using Hölder’s and Young’s inequalities, we have

∣
∣
∣
∣

∫ L

0
x(uut + vvt) dx

∣
∣
∣
∣

1
1–α ≤ C

[‖u‖ θ
1–α

L2(r+2)
x

+ ‖ut‖
μ

1–α
H

+ ‖v‖ θ
1–α

L2(r+2)
x

+ ‖vt‖
μ

1–α
H

]
, (36)

where 1
μ

+ 1
θ

= 1.
We take θ = 2(1 – α), to get

μ

1 – α
=

2
1 – 2α

≤ 2(r + 2).

Subsequently, for s = 2
(1–2α) and by using (21), we obtain

‖u‖ 2
1–2α

L2(r+2)
x

≤ d
(‖u‖2(r+2)

L2(r+2)
x

+ H(t)
)
,

‖v‖ 2
1–2α

L2(r+2)
x

≤ d
(‖v‖2(r+2)

L2(r+2)
x

+ H(t)
)
, ∀t ≥ 0.

Therefore,

∣
∣
∣
∣

∫ L

0
x(uut + vvt) dx

∣
∣
∣
∣

1
1–α ≤ c3

[‖u‖2(r+2)
L2(r+2)

x
+ ‖v‖2(r+2)

L2(r+2)
x

+ ‖ut‖2
H + ‖vt‖2

H + H(t)
]
.

Subsequently,

K 1
1–α (t) =

(

H
1–α + ε

∫ L

0
x(uut + vvt) dx +

ε

2

∫

0
xμ(x)

(
u2 + v2)dx

) 1
1–α

≤ c
{

H(t) +
∣
∣
∣
∣

∫ L

0
x(uut + vvt) dx

∣
∣
∣
∣

1
1–α

+ ‖u‖ 2
1–α
H + ‖v‖ 2

1–α
H

}

≤ c
[
H(t) + ‖ut‖2

H + ‖vt‖2
H + ‖ux‖2

H + ‖vx‖2
H + (g1oux)

+ (g2ovx) + ‖u‖2(r+2)
L2(r+2)

x
+ ‖v‖2(r+2)

L2(r+2)
x

]
. (37)

From (33) and (37), we have

K′(t) ≥ λK 1
1–α (t), (38)

where λ > 0, this depends only on β1 and c.
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By integration of (38), we obtain

K α
1–α (t) ≥ 1

K –α
1–α (0) – λ α

(1–α) t
.

Hence, K(t) blows up in time

T ≤ T∗ =
1 – α

λαKα/(1–α)(0)
.

Then the proof is completed. �

4 Conclusion
Mixed non-local problems for hyperbolic and parabolic PDEs have been studied inten-
sively in recent decades. Such equations or systems with constraints modelize many time-
dependant physical phenomena. These constraints can be data measured directly on the
boundary or giving integral boundary conditions (see for example [1, 4–7, 10–13]). In view
of the articles mentioned above in [2, 3, 5] and a supplement to our recent study in [2, 8],
we have proved in this work the blow-up of solutions of two singular nonlinear viscoelas-
tic equations, where nonlocal boundary conditions, general source terms and localized
frictional damping are considered.
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