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Abstract
In this paper, we investigate a class of nonlinear fractional Schrödinger systems

{
(–�)su + V(x)u = Fu(x,u, v), x ∈ R

N ,
(–�)sv + V(x)v = Fv(x,u, v), x ∈ R

N ,

where s ∈ (0, 1), N > 2. Under relaxed assumptions on V(x) and F(x,u, v), we show the
existence of infinitely many high energy solutions to the above fractional Schrödinger
systems by a variant fountain theorem.
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1 Introduction
In the work, we are concerned with the existence of infinitely many high energy solutions
for the following fractional Schrödinger systems:

{
(–�)su + V (x)u = Fu(x, u, v), x ∈R

N ,
(–�)sv + V (x)v = Fv(x, u, v), x ∈R

N ,
(1.1)

where s ∈ (0, 1), N > 2 and Fu(x, u, v), Fv(x, u, v) ∈ C(RN ×R×R,R). We assume that there
exists F(x, u, v) ∈ C(RN × R × R,R) such that ∇F = (Fu, Fv), where ∇F denotes the gra-
dient of F in (u, v) ∈ R

2. The operator (–�)s is the fractional Laplacian of order s, which
can be defined by the Fourier transform (–�)su = F –1(|ξ |2sF u). On the calculation and
application of classical fractional differential equations and other aspects in mathematics,
we refer the reader to [1–5] and the references therein.

Over the past years, the fractional Laplacian (–�)s (0 < s < 1), as one of the fundamen-
tal nonlocal operators, has increasingly had impact on a number of important fields in
science, technology and other fields. As a result, much attention has been focused on the
problem of fractional Laplacians. For instance, Teng [6] studied the following fractional
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Schrödinger equation:

(–�)su + V (x)u = f (x, u), x ∈R
N , (1.2)

and proved the existence of infinitely many nontrivial high or small energy solutions by
variant fountain theorems. Du and Mao [7] obtained a sufficient condition for the exis-
tence of infinitely many nontrivial high energy solutions by variant fountain theorems for
(1.2). Some interesting results can be found in [8–23] and the references therein.

Recently, Di Nezza et al. [16] have proved that (–�)s can be reduced to the standard
Laplacian –� as s → 1. If s = 1, Eq. (1.2) reduces to the classical Schrödinger equation

–�u + V (x)u = f (x, u), x ∈R
N . (1.3)

With the aid of variational method and critical theorems, for the potential V (x) and non-
linearity f (x, u) under various conditions, the results of existence and multiplicity for
Eq. (1.3) have been extensively investigated in the literature; see [24–27] and the refer-
ences therein.

In recent decades, extensive attention of researchers has been devoted to the existence
of solutions to the elliptic systems. Zhang and Zhang [28] considered some nonlinear el-
liptic systems and obtained the existence of weak solutions by using variational methods.
Cao and Tang [29] considered the superlinear elliptic system. They presented the exis-
tence of infinitely many solutions which were characterized by the number of nodes of
each component under some conditions on the nonlinear term. Pomponio [30] discussed
the asymptotically linear cooperative elliptic system at resonance. They proved the exis-
tence of a non-zero solution and the existence of N – 1 pairs of nontrivial solutions due
to the difference between the Morse index at zero and the Morse index at infinity by a pe-
nalization technique. In recent years, many interesting results have been presented on the
class of systems; see [31–38] and the references therein. However, the above literature is
concerned with the problem of integer order Laplacian and there is little literature which
discusses the Schrödinger systems with fractional order Laplacian. Based on the situation,
we consider fractional Schrödinger systems (1.1). In this work, we will show the existence
of infinitely many nontrivial high energy solutions by variant fountain theorems.

For convenience, we firstly present the following hypotheses:
(V1) V ∈ C(RN ) satisfies inf V (x) > 0 and there exist r0 > 0 and M > 0 such that

lim|y|→∞ meas{x ∈ R
N : |x – y| ≤ r0, V (x) ≤ M} = 0, where meas denotes the

Lebesgue measure in R
N .

(f1) F ∈ C1(RN ×R×R,R), Fu(x, u, v)u + Fv(x, u, v)v ≥ 0 for all (x, u, v) ∈ R
N ×R×R,

Fu(x, u, v) ≤ c(1 + |(u, v)|p–1) and Fv(x, u, v) ≤ c(1 + |(u, v)|q–1) for some 2 < p, q < 2∗
s ,

where c denote different positive constants and |(u, v)| = (u2 + v2) 1
2 .

(f2) lim|(u,v)|→0
Fu(x,u,v)
|(u,v)| = 0 and lim|(u,v)|→0

Fv(x,u,v)
|(u,v)| = 0 uniformly in x ∈R

N .
(f3) There exists σ ∈ [1, min{p, q}) such that lim inf|(u,v)|→∞ F(x,u,v)

|(u,v)|σ ≥ d > 0 uniformly for
x ∈R

N .
(f4) lim|(u,v)|→∞ F(x,u,v)

|(u,v)|2 = ∞ uniformly in x ∈R
N .

(f5) There exist μ > 2 and c > 0 such that

Fu(x, u, v)u + Fv(x, u, v)v – μF(x, u, v) ≥ c
(
1 +

∣∣(u, v)
∣∣2), for all x ∈R

N .
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The paper is arranged as follows. In Sect. 2, we introduce preliminaries for proof of main
results and variational setting. In Sect. 3, we present our main results and their proofs.

2 Preliminaries
Let us address a Hilbert space

Hs(
R

N)
=

{
u ∈ L2(

R
N)

:
|u(x) – u(y)|
|x – y| N

2 +s
∈ L2(

R
N ×R

N)}
. (2.1)

The space is endowed with the natural norm

‖u‖Hs =
(∫

RN

∣∣u(x)
∣∣2 dx +

∫
RN

∫
RN

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

(2.2)

and with the inner product

〈u,ϕ〉 =
∫
RN

u(x)ϕ(x) dx +
∫
RN

∫
RN

(u(x) – u(y))(ϕ(x) – ϕ(y))
|x – y|N+2s dx dy. (2.3)

By means of the Fourier transform, the space Hs(RN ) can be defined by

Hs(
R

N)
=

{
u ∈ L2(

R
N)

:
∫
RN

(
1 + |ξ |2)s∣∣F u(ξ )

∣∣2 dξ < +∞
}

. (2.4)

For Eq. (1.2), the Hilbert space H is defined by

H =
{

u ∈ Hs(
R

N)
:
∫
RN

|ξ |2s∣∣F u(ξ )
∣∣2 dξ +

∫
RN

V (x)|u|2 dx < +∞
}

, (2.5)

with the following inner product and norm:

〈u,ϕ〉H =
∫
RN

|ξ |2s∣∣F u(ξ )
∣∣∣∣F ϕ(ξ )

∣∣dξ +
∫
RN

V (x)uϕ dx (2.6)

and

‖u‖H =
(∫

RN
|ξ |2s∣∣F u(ξ )

∣∣2 dξ +
∫
RN

V (x)|u|2 dx
) 1

2
. (2.7)

Then H × H is a Hilbert space with the following the inner product 〈·, ·〉 and norm for any
(u, v), (ϕ,ψ) ∈ H × H :

〈
(u, v), (ϕ,ψ)

〉
= 〈u,ϕ〉 + 〈v,ψ〉

and

∥∥(u, v)
∥∥2 =

〈
(u, v), (u, v)

〉
= ‖u‖2

H + ‖v‖2
H .

Under the hypothesis (V1), we have the following lemma.
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Lemma 2.1 The Hilbert space H × H is compactly embedded in Lt(RN ) × Lt(RN ), where
t ∈ [2, 2∗

s ) and 2∗
s = 2N

N–2s .

Proof Let {un, vn} ⊂ H × H be a sequence such that un ⇀ u, vn ⇀ v in H . Then {un, vn}
is bounded in H × H and un → u, vn → v in Lt

loc(RN ) for t ∈ [2, 2∗
s ). Using the famous

Gagliado–Nirenberg inequality, we obtain un → u, vn → v in Lt(RN ). Thus, the proof is
completed �

An element (u, v) ∈ H × H is called a weak solution of the systems (1.1), if the equation
∫
RN

|ξ |2s∣∣F u(ξ )
∣∣∣∣F ϕ(ξ )

∣∣dξ +
∫
RN

V (x)uϕ dx +
∫
RN

|ξ |2s∣∣F v(ξ )
∣∣∣∣F ψ(ξ )

∣∣dξ

+
∫
RN

V (x)vψ dx

=
∫
RN

Fu(x, u, v)ϕ dx +
∫
RN

Fv(x, u, v)ψ dx (2.8)

holds for all (ϕ,ψ) ∈ H × H . A weak solution of the systems (1.1) corresponds to a critical
point of the energy functional

I(u, v) =
1
2

∫
RN

|ξ |2s∣∣F u(ξ )
∣∣2 dξ +

1
2

∫
RN

V (x)u2 dx

+
1
2

∫
RN

|ξ |2s∣∣F v(ξ )
∣∣2 dξ +

1
2

∫
RN

V (x)v2 dx –
∫
RN

F(x, u, v) dx (2.9)

that is well defined. Furthermore, I is C1(H × H ,R) functional with derivative given by

〈
I ′(u, v), (ϕ,ψ)

〉
=

∫
RN

|ξ |2s∣∣F u(ξ )
∣∣∣∣F ϕ(ξ )

∣∣dξ +
∫
RN

V (x)uϕ dx

+
∫
RN

|ξ |2s∣∣F v(ξ )
∣∣∣∣F ψ(ξ )

∣∣dξ +
∫
RN

V (x)vψ dx

–
∫
RN

Fu(x, u, v)ϕ dx –
∫
RN

Fv(x, u, v)ψ dx. (2.10)

Let H × H be Banach space with the norm ‖(·, ·)‖ and let {Hj} be a sequence of subspace
of H , dim Hj is finite for j ∈ N . Set Yk :=

⊕k
j=0 Hj and Yk = Yk × Yk , Zk =

⊕∞
j=k+1 Hj and

Zk = Zk × Zk , then H = Yk ⊕ Zk and H × H = Yk ⊕ Zk .
Let

Bk =
{

(u, v) ∈ Yk :
∥∥(u, v)

∥∥ ≤ ρk
}

and

Sk =
{

(u, v) ∈ Zk :
∥∥(u, v)

∥∥ = rk
}

,

for ρk > rk > 0. Consider a classical C1-functional Φλ(u, v) : H × H →R defined by

Φλ(u, v) = A(u, v) – λB(u, v), λ ∈ [1, 2]. (2.11)

Now, we state two variant fountain theorems which come from the idea of Zou in [39].
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Theorem 2.2 Assume that the functional Φλ(u, v) satisfies
(B1) Φλ(u, v) maps bounded sets to bounded sets uniformly for λ ∈ [1, 2], and Φλ(–u, –v) =

Φλ(u, v) for all (λ, u, v) ∈ [1, 2] × H × H ;
(B2) B(u, v) ≥ 0 for all (u, v) ∈ H × H , and B(u, v) → ∞ as ‖(u, v)‖ → +∞ on any finite

dimensional subspace H × H ;
(B3) there exists ρk > rk > 0 such that

ak(λ) = inf
(u,v)∈Zk ,‖(u,v)‖=ρk

Φλ(u, v) ≥ 0,

bk(λ) = max
(u,v)∈Yk ,‖(u,v)‖=rk

Φλ(u, v) < 0, ∀λ ∈ [1, 2],

and

dk(λ) = inf
(u,v)∈Zk ,‖(u,v)‖≤ρk

Φλ(u, v) → 0 as k → +∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, (un(λn), vn(λn)) ∈ Yn such that

Φ ′
λn

∣∣
Yn

(
u(λn), v(λn)

)
= 0 and Φλn

(
u(λn), v(λn)

) → ck , as n → +∞,

where ck ∈ [dk(2), dk(1)]. Especially, if {(u(λn), v(λn))} has a convergent subsequence for ev-
ery k, then Φ1 has infinitely many nontrivial critical points {uk , vk} ∈ H × H \ {0, 0} satis-
fying Φ1(uk , vk) → 0– as k → +∞.

Theorem 2.3 Assume that the functional Φλ(u, v) satisfies
(A1) Φλ(u, v) maps bounded sets to bounded sets uniformly for λ ∈ [1, 2], and Φλ(–u, –v) =

Φλ(u, v) for all (λ, u, v) ∈ [1, 2] × H × H ;
(A2) B(u, v) ≥ 0 for all (u, v) ∈ H ×H , A(u, v) → +∞ or B(u, v) → +∞ as ‖(u, v)‖ → +∞;

or
(A3) B(u, v) ≤ 0 for all (u, v) ∈ H × H , B(u, v) → –∞ as ‖(u, v)‖ → +∞;
(A4) there exists ρk > rk > 0 such that

bk(λ) = inf
(u,v)∈Zk ,‖(u,v)‖=rk

Φλ(u, v) > ak(λ) = max
(u,v)∈Yk ,‖(u,v)‖=ρk

Φλ(u, v), ∀λ ∈ [1, 2].

Then

bk(λ) ≤ ck(λ) = inf
γ∈Γk

max
(u,v)∈Bk

Φλ

(
γ (u, v)

)
, ∀λ ∈ [1, 2],

where Γk = {γ ∈ C(Bk , H × H) : γ is odd,γ |∂Bk = id} and k ≥ 2. Furthermore, for almost
every λ ∈ [1, 2], we have a sequence {(uk

n(λ), vk
n(λ))} such that

sup
n

∥∥(
uk

n(λ), vk
n(λ)

)∥∥ < +∞, Φ ′
λ

(
uk

n(λ), vk
n(λ)

) → 0,

and

Φλ

(
uk

n(λ), vk
n(λ)

) → ck(λ) as n → +∞.
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In order to present our main work by the above variant fountain theorems, we define
the functional A, B and Φλ(u, v) on the space H × H by

A(u, v) =
1
2

∫
RN

|ξ |2s∣∣F u(ξ )
∣∣2 dξ +

1
2

∫
RN

V (x)u2 dx +
1
2

∫
RN

|ξ |2s∣∣F v(ξ )
∣∣2 dξ

+
1
2

∫
RN

V (x)v2 dx,

B(u, v) =
∫
RN

F(x, u, v) dx,

and

Φλ(u, v) = A(u, v) – λB(u, v).

3 Proofs of the main results
In this section, we will present the main results and their proofs.

Lemma 3.1 For any finite dimensional subspace E of H × H \ {(0, 0)}, we claim that there
exists a positive constant ε0 > 0 such that

meas
{

x ∈R
N :

∣∣(u, v)
∣∣ ≥ ε0

∥∥(u, v)
∥∥} ≥ ε0, for any (u, v) ∈ E.

Proof We argue by contradiction. Assume (un, vn) ∈ E such that

meas
{

x ∈R
N :

∣∣(un, vn)
∣∣ ≥ 1

n
∥∥(un, vn)

∥∥}
<

1
n

, for any n ∈ N . (3.1)

For any n ∈ N , let (τn,ωn) = (un ,vn)
‖(un ,vn)‖ , then ‖(τn,ωn)‖ = 1 and

meas
{

x ∈R
N :

∣∣(τn,ωn)
∣∣ ≥ 1

n

}
<

1
n

. (3.2)

Using the boundedness of (τn,ωn), up to a subsequence, assume that (τn,ωn) → (τ ,ω) with
‖(τ ,ω)‖ = 1 for (τ ,ω) ∈ E. Since E is a finite dimension space, by Lemma 2.1 and the Hölder
inequality, we have

∫
RN

∣∣(τn,ωn) – (τ ,ω)
∣∣2 dx =

∫
RN

∣∣(τn – τ ,ωn – ω)
∣∣2 dx

≤
(∫

RN
|τn – τ |4 dx

) 1
2
(∫

RN
|ωn – ω|4 dx

) 1
2

→ 0. (3.3)

On the other hand, because of (τ ,ω) �= (0, 0), there exists a constant ρ0 > 0 such that

meas
{

x ∈R
N :

∣∣(τ ,ω)
∣∣ ≥ ρ0

} ≥ ρ0. (3.4)
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We set

Ωn =
{

x ∈R
N :

∣∣(τn,ωn)
∣∣ <

1
n

}
,

Ωc
n =

{
x ∈R

N :
∣∣(τn,ωn)

∣∣ ≥ 1
n

}
,

Ω0 =
{

x ∈R
N :

∣∣(τ ,ω)
∣∣ ≥ ρ0

}
.

From (3.2) and (3.4), there exists N0 such that, for ∀n > N0, we have

meas(Ωn ∩ Ω0) ≥ meas(Ω0) – meas
(
Ωc

n
) ≥ (N0 – 1)ρ0

N0
.

Consequently, as n → +∞,

∫
RN

∣∣(τn,ωn) – (τ ,ω)
∣∣2 dx ≥

∫
Ωn∩Ω0

∣∣(τn,ωn) – (τ ,ω)
∣∣2 dx

≥
∫

Ωn∩Ω0

[∣∣(τn,ωn)
∣∣2 – 2(τn,ωn)(τ ,ω) +

∣∣(τ ,ω)
∣∣2]dx

≥
∫

Ωn∩Ω0

[∣∣(τ ,ω)
∣∣2 – 2(τn,ωn)(τ ,ω)

]
dx

≥
∫

Ωn∩Ω0

[∣∣(τ ,ω)
∣∣2 – 2

∣∣(τn,ωn)
∣∣∣∣(τ ,ω)

∣∣]dx

≥ ρ0

(
ρ0 –

2
n

)
meas(Ωn ∩ Ω0)

≥ ρ0

(
ρ0 –

2
n

)
(N0 – 1)ρ0

N0

≥ (N0 – 1)ρ3
0

N0

> 0, (3.5)

which leads to a contradiction. The proof is completed. �

Lemma 3.2 Assume that (f1) and (f3) hold. Then B(u, v) ≥ 0 for all (u, v) ∈ H × H and
B(u, v) → +∞ as ‖(u, v)‖ → +∞ on any finite dimensional subspace of H × H .

Proof Obviously, for all (u, v) ∈ H × H , B(u, v) ≥ 0 by the hypothesis (f1).
Next, for any finite dimensional subspace of H × H , we show that B(u, v) → +∞ as

‖(u, v)‖ → +∞. By the hypothesis (f3), there exists R > 0 such that

F(x, u, v) ≥ d
∣∣(u, v)

∣∣σ , for x ∈R
N and

∣∣(u, v)
∣∣ > R. (3.6)

Let D(u,v) := {x ∈ R
N : |(u, v)| > ε0‖(u, v)‖} for (u, v) ∈ H × H \ {(0, 0)}. by Lemma 3.1, for

any (u, v) ∈ H × H with ‖(u, v)‖ ≥ R
ε0

, we have |(u, v)| > R, for all x ∈ D(u,v). Consequently,
for any (u, v) ∈ H × H with ‖(u, v)‖ ≥ R

ε0
, from (f3) and (3.6), with the help of Lemma 3.1,
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we get

B(u, v) =
∫
RN

F(x, u, v) dx

≥
∫

D(u,v)

F(x, u, v) dx

≥
∫

D(u,v)

d
∣∣(u, v)

∣∣σ dx

≥ dεσ
0
∥∥(u, v)

∥∥σ
meas(D(u,v))

≥ dεσ+1
0

∥∥(u, v)
∥∥σ . (3.7)

This implies B(u, v) → +∞ as ‖(u, v)‖ → +∞ on any finite dimensional subspace of H ×H .
The proof is completed. �

Lemma 3.3 Assume (f1), (f2) and (f4) hold, then there exist two sequences ρk > rk > 0 such
that

bk(λ) = inf
(u,v)∈Zk ,‖(u,v)‖=rk

Φλ(u, v) > ak(λ) = max
(u,v)∈Yk ,‖(u,v)‖=ρk

Φλ(u, v), ∀λ ∈ [1, 2].

Proof . For ∀ε > 0, by (f1) and (f2), there exists cε such that

∣∣Fu(x, u, v)
∣∣ ≤ ε

∣∣(u, v)
∣∣ + cε

∣∣(u, v)
∣∣p–1,

∣∣Fv(x, u, v)
∣∣ ≤ ε

∣∣(u, v)
∣∣ + cε

∣∣(u, v)
∣∣q–1,

(3.8)

and

∣∣F(x, u, v)
∣∣ =

∣∣F(x, u, v) – F(x, 0, 0)
∣∣

≤
∫ 1

0

∣∣Fu(x, tu, tv)
∣∣|u|dt +

∫ 1

0

∣∣Fv(x, tu, tv)
∣∣|v|dt

≤ ε

[
1
2
∣∣(u, v)

∣∣|u| +
1
2
∣∣(u, v)

∣∣|v|
]

+ cε

[
1
p
∣∣(u, v)

∣∣p–1|u| +
1
q
∣∣(u, v)

∣∣q–1|v|
]

, (3.9)

where (x, u, v) ∈ R
N × H × H . Therefore, for (u, v) ∈ Zk and ε small enough, by (3.9) and

the Hölder inequality, one has

Φλ(u, v) =
1
2

∫
RN

|ξ |2s∣∣F u(ξ )
∣∣2 dξ +

1
2

∫
RN

V (x)u2 dx +
1
2

∫
RN

|ξ |2s∣∣F v(ξ )
∣∣2 dξ

+
1
2

∫
RN

V (x)v2 dx – λ

∫
RN

F(x, u, v) dx

≥ 1
2
∥∥(u, v)

∥∥2 – λ

∫
RN

ε

[
1
2
∣∣(u, v)

∣∣|u| +
1
2
∣∣(u, v)

∣∣|v|
]

+ cε

[
1
p
∣∣(u, v)

∣∣p–1|u| +
1
q
∣∣(u, v)

∣∣q–1|v|
]

dx

≥ 1
2
∥∥(u, v)

∥∥2 – λε

(
1
2
∥∥(u, v)

∥∥
2‖u‖2 +

1
2
∥∥(u, v)

∥∥
2‖v‖2

)
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– λcε

[
1
p
∥∥(u, v)

∥∥p–1
p ‖u‖p +

1
q
∥∥(u, v)

∥∥q–1
q ‖v‖q

]

≥ 1
2
∥∥(u, v)

∥∥2 – λε

[
1
2
∥∥(u, v)

∥∥2
2 +

1
2
∥∥(u, v)

∥∥2
2

]

– λcε

[
1
p
∥∥(u, v)

∥∥p
p +

1
q
∥∥(u, v)

∥∥q
q

]
,

where ‖ · ‖t denotes the usual norm of Lt(RN ). Let βk(2) := sup(u,v)∈Zk ,‖(u,v)‖=1 ‖(u, v)‖2,
βk(p) := sup(u,v)∈Zk ,‖(u,v)‖=1 ‖(u, v)‖p, βk(q) := sup(u,v)∈Zk ,‖(u,v)‖=1 ‖(u, v)‖q, then βk(2) → 0,
βk(p) → 0, βk(q) → 0 as k → ∞ (cf.[40]). Consequently,

Φλ(u, v) ≥ 1
2
∥∥(u, v)

∥∥2 – λεβ2
k (2)

∥∥(u, v)
∥∥2 –

1
p
λcεβ

p
k (p)

∥∥(u, v)
∥∥p –

1
q
λcεβ

q
k (q)

∥∥(u, v)
∥∥q

≥
(

1
2

– λεβ2
k (2)

)∥∥(u, v)
∥∥2 –

1
p
λcεβ

p
k (p)

∥∥(u, v)
∥∥p

–
1
q
λcεβ

q
k (q)

∥∥(u, v)
∥∥q, (3.10)

for all (u, v) ∈ Zk . We choose the appropriate ε > 0 and λ such that 1
2 – λεβ2

k (2) ≥ 1
4 , and

we have

Φλ(u, v) ≥ 1
4
∥∥(u, v)

∥∥2 –
1
p
λcεβ

p
k (p)

∥∥(u, v)
∥∥p –

1
q
λcεβ

q
k (q)

∥∥(u, v)
∥∥q.

Note that p, q > 2; without loss of generality, assume p < q, then, for ‖(u, v)‖ := rk :=
( 8

pλcεβ
p
k (p) + 8

q λcεβ
q
k (q))

1
2–p or ‖(u, v)‖ := rk := ( 8

pλcεβ
p
k (p) + 8

q λcεβ
q
k (q))

1
2–q for any (u, v) ∈

Zk , one has

Φλ(u, v) ≥ 1
8

r2
k > 0. (3.11)

The above inequality implies that

bk(λ) = inf
(u,v)∈Zk ,‖(u,v)‖=rk

Φλ(u, v) > 0.

Therefore, by Lemma 3.1, for any k ∈ N , there is a constant εk > 0 such that

meas(D(u,v)) ≥ εk , for all (u, v) ∈ Yk × Yk \ {
(0, 0)

}
, (3.12)

where D(u,v) = {x ∈ R
N : |(u, v)| ≥ εk‖(u, v)‖}. By the hypothesis (f4), for ∀k ∈ N , there is a

constant Rk > 0 such that

F(x, u, v) ≥ 1
ε3

k

∣∣(u, v)
∣∣2, for all

∣∣(u, v)
∣∣ ≥ Rk . (3.13)

By (3.12), we know that, for (u, v) ∈ Yk ×Yk \ {(0, 0)} with ‖(u, v)‖ ≥ Rk
εk

, we obtain |(u, v)| ≥
Rk for x ∈ D(u,v). Therefore, by (3.12) and (3.13) for (u, v) ∈ Yk × Yk \ {(0, 0)} with ‖(u, v)‖ ≥
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Rk
εk

, one has

Φλ(u, v) =
1
2

∫
RN

|ξ |2s∣∣F u(ξ )
∣∣2 dξ +

1
2

∫
RN

V (x)u2 dx +
1
2

∫
RN

|ξ |2s∣∣F v(ξ )
∣∣2 dξ

+
1
2

∫
RN

V (x)v2 dx – λ

∫
RN

F(x, u, v) dx

=
1
2
∥∥(u, v)

∥∥2 – λ

∫
RN

F(x, u, v) dx

≤ 1
2
∥∥(u, v)

∥∥2 – λ

∫
D(u,v)

F(x, u, v) dx

≤ 1
2
∥∥(u, v)

∥∥2 – λ

∫
D(u,v)

1
ε3

k

∣∣(u, v)
∣∣2 dx

≤ 1
2
∥∥(u, v)

∥∥2 – λε2
k
∥∥(u, v)

∥∥2 meas(D(u,v))
ε3

k

≤ 1
2
∥∥(u, v)

∥∥2 – λ
∥∥(u, v)

∥∥2. (3.14)

Because λ ∈ [1, 2],

Φλ(u, v) ≤ 1
2
∥∥(u, v)

∥∥2 –
∥∥(u, v)

∥∥2 = –
1
2
∥∥(u, v)

∥∥2. (3.15)

Now, we only need to choose ρk > max{rk , Rk
εk

}; one has

ak(λ) = max
(u,v)∈Yk ,‖(u,v)‖=ρk

Φλ(u, v) = –
ρk

2
< 0, (3.16)

where k ∈ N and λ ∈ [1, 2]. The proof is completed. �

Theorem 3.4 Assume (f1)–(f5) hold, Fu(x, –u, –v) = –Fu(x, u, v) and Fv(x, –u, –v) =
–Fv(x, u, v) for (x, u, v) ∈ R

N × H × H . Then the system (1.1) possesses infinitely many high
energy solutions (uk , vk) ∈ H × H for all k ≥ K0 with K0 ∈ N , i.e., as k → +∞

Φλ

(
uk , vk) =

1
2

∫
RN

|ξ |2s∣∣F uk(ξ )
∣∣2 dξ +

1
2

∫
RN

V (x)
∣∣uk∣∣2 dx +

1
2

∫
RN

|ξ |2s∣∣F vk(ξ )
∣∣2 dξ

+
1
2

∫
RN

V (x)
∣∣vk∣∣2 dx – λ

∫
RN

F
(
x, uk , vk)dx

→ +∞. (3.17)

Proof By the hypothesis (f1), we conclude that B(u, v) ≥ 0 for all (u, v) ∈ H × H and
A(u, v) → +∞ as ‖(u, v)‖ → +∞. Furthermore, Φλ(–u, –v) = Φλ(u, v) for (u, v) ∈ H × H
and λ ∈ [1, 2]. Considering (f4), (f5) and Lemma 2.1, Φλ(u, v) maps a bounded set into a
bounded set uniformly for any λ ∈ [1, 2]. By Lemma 3.3, we can verify (A3), (A4) of The-
orem 2.3. Consequently, from Theorem 2.3, there exists a sequence {(uk

n(λ), vk
n(λ))}∞n=1 for

λ ∈ [1, 2] such that

sup
n

∥∥(
uk

n(λ), vk
n(λ)

)∥∥ < ∞, Φ ′
λ

(
uk

n(λ), vk
n(λ)

) → 0 (3.18)
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and

Φλ

(
uk

n(λ), vk
n(λ)

) → ck(λ), (3.19)

as n → ∞. By Theorem 2.2 and (3.11), for p, q > 2, we see

ck(λ) ≥ bk(λ) ≥ 1
8

r2
k = b̄k → +∞ as k → +∞. (3.20)

In addition

ck(λ) = inf
γ∈Γk

max
(u,v)∈Bk

Φλ

(
γ (u, v)

) ≤ max
(u,v)∈Bk

Φ1(u, v) = c̄k .

Therefore

b̄k ≤ ck(λ) ≤ c̄k , (3.21)

where k > K0. By (3.18) and (3.19), we can choose a sequence λm → 1, as m → ∞, then the
sequence {(uk

n(λm), vk
n(λm))}∞n=1 is bounded. Obviously, the sequence {(uk

n(λm), vk
n(λm))}∞n=1

has a strong convergent subsequence as n → ∞. Hence, for m ∈ N and k > K0, we suppose
uk

n(λm) → uk(λm), vk
n(λm) → vk(λm) as n → +∞. By (3.18)–(3.21), one has

〈
Φ ′

λm

(
uk(λm), vk(λm)

)
,
(
uk(λm), vk(λm)

)〉
= 0 (3.22)

and

Φλm

(
uk(λm), vk(λm)

) ∈ [b̄k , c̄k] (3.23)

for k > K0. By Lemma 3.5, {(uk(λm), vk(λm))}∞m=1 has a strong convergent subsequence with
uk(λm) → uk , vk(λm) → vk for k > k0. Consequently, the (uk , vk) is the critical point of
Φ(uk , vk) = Φ1(uk , vk) with Φ(uk , vk) ∈ [b̄k , c̄k]. Since b̄k → +∞ as k → +∞, we get in-
finitely many nontrivial solutions with high energy for systems (1.1). The proof is com-
pleted. �

Lemma 3.5 {(uk
n(λm), vk

n(λm))}∞n=1 is bounded in H × H .

Proof We argue by contradiction. Suppose that ‖(uk
n(λm), vk

n(λm))‖ → ∞ as n → ∞. We
consider (τn,ωn) := (uk

n(λm),vk
n(λm))

‖(uk
n(λm),vk

n(λm))‖ . Then, up to a subsequence, we get

τn ⇀ τ , ωn ⇀ ω in H × H ,

τn → τ , ωn → ω in Lt(
R

N) × Lt(
R

N)
,

τn(x) → τ (x), ωn(x) → ω(x) a.e. x ∈R
N .

(3.24)

We consider two cases:
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Case 1: If |(τ ,ω)| �= 0 in H ×H . Since 〈Φ ′
λm (uk

n(λm), vk
n(λm)), (uk

n(λm), vk
n(λm))〉 = 0, one has

0 =
〈
Φ ′

λm

(
uk

n(λm), vk
n(λm)

)
,
(
uk

n(λm), vk
n(λm)

)〉
=

∥∥(
uk

n(λm), vk
n(λm)

)∥∥2

– λm

∫
RN

[
Fu(x, uk

n(λm), vk
n(λm)uk

n(λm) + Fv(x, uk
n(λm), vk

n(λm)vk
n(λm)

]
dx.

Thus, by Fatou’s lemma and conditions (f3) and (f4)

1 = λm

∫
RN

1
‖(uk

n(λm), vk
n(λm))‖2

[
Fu(x, uk

n(λm), vk
n(λm)uk

n(λm)

+ Fv(x, uk
n(λm), vk

n(λm)vk
n(λm)

]
dx

≥ λmμ

∫
RN

F(x, uk
n(λm), vk

n(λm))
‖(uk

n(λm), vk
n(λm))‖2 dx

= λmμ

∫
RN

∣∣(τn,ωn)
∣∣2 F(x, uk

n(λm), vk
n(λm))

|(uk
n(λm), vk

n(λm))|2 dx → +∞ as n → +∞.

This is a contradiction.
Case 2: If |(τ ,ω)| = 0 in H × H . By (3.22), (3.23) and (f4), we obtain

μΦλm

(
uk

n(λm), vk
n(λm)

)
–

〈
Φ ′

λm

(
uk

n(λm), vk
n(λm)

)
,
(
uk

n(λm), vk
n(λm)

)〉

=
(

μ

2
– 1

)∥∥(
uk

n(λm), vk
n(λm)

)∥∥2

+ λm

∫
RN

[
Fu(x, uk

n(λm), vk
n(λm)uk

n(λm) + Fv(x, uk
n(λm), vk

n(λm)vk
n(λm)

– μF(x, uk
n(λm), vk

n(λm)
]

dx.

≥
(

μ

2
– 1

)∥∥(
uk

n(λm), vk
n(λm)

)∥∥2 + λm

∫
RN

c
(
1 +

∣∣(uk
n(λm), vk

n(λm)
)∣∣2)dx.

Therefore,

μΦλm (uk
n(λm), vk

n(λm)) – 〈Φ ′
λm (uk

n(λm), vk
n(λm)), (uk

n(λm), vk
n(λm))〉

‖(uk
n(λm), vk

n(λm))‖2

≥
(

μ

2
– 1

)
+ λm

∫
RN

c
(

1 + |(uk
n(λm), vk

n(λm))|2
‖(uk

n(λm), vk
n(λm))‖2

)
dx.

=
(

μ

2
– 1

)
+ λm

∫
RN

c
(

1
‖(uk

n(λm), vk
n(λm))‖2 +

|(uk
n(λm), vk

n(λm))|2
‖(uk

n(λm), vk
n(λm))‖2

)
dx

=
(

μ

2
– 1

)
+ λm

∫
RN

c
(

1
‖(uk

n(λm), vk
n(λm))‖2 +

∣∣(τn,ωn)
∣∣2

)
dx.

Letting n → +∞, we get 0 ≥ μ

2 – 1, i.e. μ ≤ 2; this is a contradiction with the hypothesis
μ > 2. Therefore, {(uk

n(λm), vk
n(λm))}∞n=1 is bounded in H × H . �
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