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Abstract
Anti-viral therapy is comparatively very effective for patients who get affected by the
hepatitis B virus. It is of prime importance to understand the different relations
among the viruses, immune responses and overall health of the liver. In this paper,
mathematical modeling is done to analyze and understand the effect of antiviral
therapy using LHAM which describes the possible relation to HBV and target liver
cells. The numerical simulations and error analysis are done up to a sixth-order
approximation with the help of Matlab. This paper analyzes how the number of
infected cells largely gets reduced and also how the liver damage can be controlled.
Therefore, the treatment is successful for HBV infected patients.
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1 Introduction
The study on the hepatitis B virus has gained great attention among the researchers for
several decades [1]. This is because of the necessity to know in detail about a life threat-
ening virus and, moreover, to know how it spreads. This disease spreads through physical
contact, blood transfusion, and gets transmitted from the affected mother to child during
the pregnancy [2, 3]. The hepatitis B virus possibly leads to acute liver diseases. It has been
noticed that most of the patients get affected with chronic HBV during birth or after the
birth. A solution can be offered by mathematical models by understanding the virulence
of Hepatitis B. Min et al. [4] proposed HBV infection model of ordinary differential equa-
tions of the population of uninfected target cells, infected cells and the density of virus,
which will be written as

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt = α – ϕVX – dT X,
dY
dt = ϕVX – bY ,
dV
dt = rY – cZ,

(1.1)

where X, Y and V represent the concentration of uninfected target cells, infected cells,
and virus particles at time t, respectively. The parameters α, dT , ϕ, b, r, c are positive
constants, where α is the production constant of the hepatocyte, dT is the death rate of
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the hepatocyte, ϕ is the rate of infectivity, b is the infected hepatocyte killing rate, r is the
virus production, c is the virus clearance rate from the system.

In this model, a strong antitherapy is given to patients who have average immune re-
sponse to clear the infected cells. Zou et al. [5] assumed that this therapy would be fit for
the patients, but it is understood that it would not be suitable for the virus data. Therefore,
Thornle et al. [6] introduced a better model that also does not have an effective produc-
tiveness. Though the earlier introduced methods fail to possess efficacy, a new parameter ε

is introduced to prohibit the growth of new virus and ε = 1 means that therapy completely
prohibits virus growth [7]. So the model is written as

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt = α – ϕZX – dT X,
dY
dt = ϕZX – bY ,
dV
dt = (1 – ε)rY – cZ.

(1.2)

Zou et al. [8] introduced some changes in the model. Unlike HIV infected cells, infected
hepatocytes have the ability to recover because the virus does not integrate. Thus, it can
be eliminated. Equation (1.2) can be modified to

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt = α – ϕZX – dT X + bY ,
dY
dt = ϕVX – δY – bY ,
dV
dt = (1 – ε)rY – cZ.

(1.3)

Zhang et al. [9] applied this model for prohibiting the virion production and then they
investigated the drug efficacy to see whether the virion production is blocked or not. The
model is written as

⎧
⎪⎪⎨

⎪⎪⎩

dX
dt = α + rXX(1 – X+Y

K ) – (1 – η)ϕVX – dT X + bY ,
dY
dt = rY Y (1 – X+Y

K ) + (1 – η)ϕVX – δY – bY ,
dV
dt = (1 – ε)vY – cZ.

(1.4)

Mann et al. [10] included to increase target cells and infected cells, rX and rY , respec-
tively, and the carrying capacity. This was included in [4] together with another parameter
η which explains the effectiveness of the drug in blocking infection. Analogously to ε, the
range for η is [0, 1].

In this model, we extend the work of Khalid Hattaf et al. [11] in which the immune re-
sponse of CTL cells is added in the fourth compartment. It is an action occurring in a
in-host model among liver cells (uninfected and infected) and the virus, and the immune
response of CTL cells is obtained by the mathematical model. Here, X means the target
uninfected cells (uninfected hepatocytes), Y means the infected cells (infected hepato-
cytes), V means the HBV virus and Z represents the immune response of the CTL cells.
This model stands for the target cells infected at the rate ϕ and infection happens because
of the association with target cells and virus. Initially, this target cell produces the hepa-
tocytes at the rate α and the natural death rate is dT . The infected cells die at a rate of δ

and they are returned to uninfected hepatocytes at the rate a for which they get infected.
These infected cells are killed by the immune response of the CTL cell at a rate of b and
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Figure 1 Compartmental diagram for HBV virus dynamics model

Table 1 The parameter values of the proposed model

Parameter Description Range Unit

α Hepatocytes production rate 1 Cell day–1 ml–1

dT Hepatocytes death rate 0.01–9 × 10–4 day–1

ϕ Infectivity rate 1 × 10–10–6.6 × 10–8 ml virions–1 day–1

δ Death rate of infected hepatocytes 0.06–0.25 day–1

a Return to uninfected cell rate 0.17 Cell day–1 ml–1

b Infected cells killing rate by CTL response 51.02–58.9 Cell day–1 ml–1

r Virus production rate 1.4–164 Virions cell–1 day–1

c Decay rate –0.7–43.8 Cell day–1 ml–1

s CTL stimulation rate 0.4 day–1

ε Viral load 3 × 10–4 ml
σ Rate of antigenic stimulation in decay absence 1.7 × 108 cells day–1

ρ export of precursor CTL cells 427.1 cells

production of new virus at a rate of r. The rate of decay is c, CTL cells can expand the
immune response to viral antigen which is derived from Y at a rate sYZ/(ε + Y ), here the
CTL stimulation rate is s and the viral load is ε. The rate of antigenic stimulation without
decay is σ . The export rate of precursor CTL cells from the thymus is ρ . The immune re-
sponse of CTL cells has the potentiality to kill the infected cells. These assumptions lead
to the model shown in Fig. 1.

We have taken four cells: uninfected target cells, the infected cells, hepatitis B virus and
the CTL cells [12]. This model expresses the relation to the target liver cells and the HBV
[13]. Due to the strong immune response, the HBV infection is completely cured. The
compartmental diagram for HBV virus dynamics model is shown in Fig. 1 and the en-
tire value of parameters are shown in Table 1. When our model is compared to the Min,
Su, and Kuang [4] model, the rate of recovery is not given in the target uninfected cells
compartment and they did not discuss the effect of therapy in blocking infection and the
effect of a drug in blocking new virus production. Similarly, Zhang, Wang, and Zhang,
and Zou, Zhang, and Ruan [7, 8] did not discuss the effect of therapy in blocking infec-
tion in the compartmental target uninfected cells and infected cells. However, we elabo-
rately discussed in our model whatever they did not discuss in their models. Already we
have analyzed the nonlinear problem which matches with Mojtaba Hajipour et al.’s work
[14, 15] who studied the accurate discretization of highly nonlinear boundary value prob-
lems. This work proposes a sixth-order approximation [16]; however, our work not only
proposes a sixth-order approximation but also possibly a higher-order approximation for
the same problem. Baleanu. et al. [17, 18] discussed a new mathematical model for HIV
and the human liver using a homotopy analysis method. One also used in this work the
Caputo-Fabrizio function applied to a higher-order differential equation under different
conditions [19–22]. We have to use the parametric estimation for the numerical simula-
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tion [23]. This model becomes

dX
dt

= α – dT X – ϕVX + bYZ,

dY
dt

= ϕVX – δY – (a + b)YZ,

dV
dt

= rY – cV ,

dZ
dt

= ρ +
sYZ
ε + Y

– σZ.

(1.5)

The initial and boundary conditions of finding the solution of Eq. (1.5) are

X(0) = 0; Y (0) = 0; Y (0) = 0; Z(0) = 0;

X(0) = 108; Y (0) = 10–2; V (0) = 10; Z(0) = 100.

This forms the basis of this paper. The parameters show that some patients very quickly
are cured due to the immunity response when the treatment is given but it works relatively
slow for other patients [24]. So, the treatment is stopped and it is observed how the virus
is degenerated in patients [25]. In this paper, we tried to have the highest understanding
of the transition of the viral infection by having antiviral therapy for HBV infection. Such
knowledge of understanding helps to know what treatment is to be given, when to start
and how long this treatment is to be continued [26–29]. The prime objective of this pa-
per is to obtain greater knowledge and understanding on HBV antiviral therapy for young
researchers in the field of science and medicine. Generally, it is quite complex to find the
analytical solution for this model. But we found the analytical solution with the use of
the LHAM method in this model. Our model can be very useful for finding the analyti-
cal solution and numerical simulation in the easiest way for the similar equations using
MATLAB.

This article has six parts. The initial part is an introduction dealing with existing lit-
erature and proposed work. The second and third parts are for the LHAM method and
applications which are used to find the solutions. The fourth part is for the numerical ex-
periments, and an error analysis forms the fifth part of the paper. The final part of the
paper is for our conclusion.

2 Liao’s Homotopy Analysis Method (LHAM)
We consider the equation

K
[
a(t)

]
= 0.

Then

(1 – p)�[
ψ(t; p) – a0(t)

]
= hpA(t)K

[
ψ(t; p)

]
, p ∈ [0, 1], h �= 0. (2.1)

The above zeroth-order deformation equation stems from [30–34].
Here � is an auxiliary linear operator such that �[xi] = 0 for integral constants

xi (i = 1, 2, 3).
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When p = 0 and p = 1, (2.1) can be written as

χ (t; 0) = a0(t).

χ (t; 1) = a(t).

Using a Taylor series expansion of χ (t; p) with respect to p we get

χ (t, p) = a0(t) +
∞∑

i=0

ai(t)pi. (2.2)

Here ai = 1
i!

∂ iχ (t;p)
∂pi |p=0.

Differentiating the equation i times with respect to p, then setting p = 0, and finally
dividing them by i!, we get the ith order deformation equations,

�[
ai(t) – ξiai–1(t)

]
= hA(t)βi

[
�ai–1(t)

]
. (2.3)

Here,

βi

[
�ai–1(t)

]
=

1
(i – 1)!

∂ i–1
R[ψ(t; p)]
∂pn–1

∣
∣
∣
∣
p=0

and also

ξi =

{
0 i ≤ 1
1 i > 1

}

.

3 Applications
The solution of Eq. (1.5) is defined by using LHAM method as follows:

dX
dt

– α + dT X + ϕVX – bYZ = 0, (3.1)

dY
dt

– ϕVX + δY + (a + b)YZ = 0, (3.2)

dV
dt

– rY + cV = 0, (3.3)

dZ
dt

– ρ –
sYZ
ε + Y

+ σZ = 0. (3.4)

To obtain the analytical solution, the homotopy is

(1 – p)
(

dX
dt

– α + dT X
)

= hp
(

dX
dt

– α + dT X + ϕVX – bYZ
)

, (3.5)

(1 – p)
(

dY
dt

+ δY
)

= hp
(

dY
dt

– ϕVX + δY + (a + b)YZ
)

, (3.6)

(1 – p)
(

dV
dt

– rY + cV
)

= hp
(

dV
dt

– rY + cV
)

, (3.7)

(1 – p)
(

dZ
dt

– ρ + σZ
)

= hp
(

dZ
dt

– ρ –
sYZ
ε + Y

+ σZ
)

. (3.8)
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Equating p0 terms we get

p0 :
(

dX0

dt
– α + dT X0

)

= 0, (3.9)

p0 :
(

dY0

dt
+ δY0

)

= 0, (3.10)

p0 :
(

dV0

dt
– rY0 + cV0

)

= 0, (3.11)

p0 :
(

dZ0

dt
– ρ + σZ0

)

= 0. (3.12)

From Eq. (3.9) ⇒ X0 = (108 – α
dT

)e–dT t + α
dT

.
From Eq. (3.10) ⇒ Y0 = 10–2e–δt .
From Eq. (3.11) ⇒ V0 = (10 – r10–2

c )e–ct + r10–2

c .
From Eq. (3.12) ⇒ Z0 = (100 – ρ

σ
)e–σ t + ρ

σ
.

Again equating p1 terms we get

p1 :
dX1

dt
+ dT X1 –

dX0

dt
– dT X0 = h

(
dX0

dt
– α + dT X0 + ϕV0X0 – (a + b)Y0Z0

)

, (3.13)

p1 :
dY1

dt
+ δY1 –

dY0

dt
– δY0 = h

(
dY0

dt
– ϕV0X0 + δY0 + (a + b)Y0Z0

)

, (3.14)

p1 :
dV1

dt
– rY1 + cV1 –

dV0

dt
+ rY0 – cV0 = h

(
dV0

dt
– rY + cV0

)

, (3.15)

p1 :
dZ1

dt
+ σZ1 –

dZ0

dt
– σZ0 = h

(
dZ0

dt
– ρ –

sY0Z0

ε + Y0
+ σZ0

)

. (3.16)

From Eq. (3.13) ⇒ X1 = (108 – λ1
δ+σ–dT

– λ2
δ–dT

– λ3
c+dT

– λ4
dT

)e–dT t + λ1e–(δ+σ )t

δ+σ–dT
+ λ2e–δt

δ–dT
+ λ3e–ct

c+dT
+ λ4

dT
.

Here

λ1 = b10–2
(

100 –
ρ

σ

)

; λ2 =
bρ

σ
; λ3 = hϕ

(

10 –
r10–2

c

)

+
hr10–2

c
;

λ4 =
α

dT
(1 + h) – hα.

From Eq. (3.14) ⇒ Y1 = (10–2 + λ6
c–δ+dT

+ λ7
dT –δ

+ λ8
c + λ9

δ
)e–δt + tλ5e–δt – λ6e–(c+dT )t

c–δ+dT
– λ7e–dT t

dT –δ
–

λ8e–(δ+c)t

c + λ9
δ

. Here

λ5 =
hρ(a + b)

σ
; λ6 = hϕ

(

10 –
r10–2

c

)(

108 –
α

dT

)

;

λ7 =
(

hϕr10–2

c

)(

108 –
α

dT

)

; λ8 = 10–2h(a + b)
(

100 –
ρ

σ

)

;

λ9 =
10–2hϕrα

cdT
.
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From Eq. (3.15) ⇒ V1 = [10 – ψ1
c–δ

+ ψ3
dT

+ ψ4
c–dT

+ ψ5
δ

+ ψ6
c ]e–ct + e–δt

c–δ
(ψ1 – tψ2) + ψ3e–(c+dT )t

dT
+

ψ4e–dT t

c–dT
+ ψ5e–(δ+c)t

δ
+ ψ6

c , where

ψ1 = r
[

λ6

c + dT – δ
+

λ7

dT – δ
+

λ8

c
–

λ9

δ
– 10–2h

]

; ψ2 = rtλ5; ψ3 =
rλ6

c + dT – δ
;

ψ4 =
rλ7

dT – δ
; ψ5 =

rλ8

c
; ψ6 = r

(

10–2 + h +
λ9

δ

)

.

From Eq. (3.16) ⇒ Z1 = (100 – ξ1
δ–σ

+ ξ2
δ

)e–σ t + 2t(–100σ + ρ)e–σ t + ξ1e–δt

δ–σ
– ξ2e–(δ+σ )t

δ
.

Here

ξ1 =
hσ s

ε + 10–2 ; ξ2 =
10–2hsρ
ε + 10–2 .

The analytical solution of this model using the LHAM is

X(t) = λe–dT t +
λ1e–(δ+σ )t

δ + σ – dT
+

λ2e–δt

δ – dT
+

λ3e–ct

c + dT
+

λ4

dT
.

Here λ = 99980099.99, λ1 = 58.89999852, λ2 = 0.000147978, λ3 = 0.003196348, λ4 = 199.

∴ X(t) = 99980099.99e–0.01t + 3.76 × 10–7e–170000000.1t

+ 2.9596 × 10–3e–0.06t + 7.796 × 10–3e0.7t + 19900.

Y (t) = � e–δt + tλ5e–δt –
λ6e–(c+dT )t

c – δ + dT
–

λ7e–dT t

dT – δ
–

λ8e–(δ+c)t

c
+

λ9

δ
.

(3.17)

Here � = 7.362624103, λ5 = 1.484046882 × 1012, λ6 = 2.0999979, λ7 = –2 × 10–4, λ8 =
59.06999852, λ9 = 3.196347032 × 10–12.

∴ Y (t) = 7.362624103e–0.06t + t1.484046882 × 1012e–0.06t – 5.999994e0.71t

– 4 × 10–3e–0.01t – 1.348630103e0.64t + 5.327245053 × 10–11,

V (t) = ςe–ct +
ψ1e–δt

c – δ
–

ψ2te–δt

c – δ
+

ψ3e–(c+dT )t

dT
+

ψ4e–dT t

c – dT
+

ψ5e–(δ+c)t

δ
+

ψ6

c
.

(3.18)

Here ς = –861.7346244, ψ1 = 10.27967374, ψ2 = 2.077665635 × 1012, ψ3 = 8.3999916,
ψ4 = 0.0056, ψ5 = 1.888082144, ψ6 = 1.414.

∴ V (t) = –861.7346244e0.7t + 0.23501769e–0.06t – 4.750035745e–0.06t

+ 839.99916e0.69t + 1.27883 × 10–4e–0.01t + 31.46803573e0.64t

+ 3.2283105 × 10–2, (3.19)

Z(t) = ϑe–σ t + 2t(–100σ + ρ)e–σ t +
ξ1e–δt

δ – σ
–

ξ2e–(δ+σ )t

δ
.

Here ϑ = 2903.236246, ξ1 = 6601941748, ξ2 = 165.8640777.

∴ Z(t) = 2903.236246e–1.7×108t – 3.399999915 × 1010te–1.7×108t

– 38.83495148e–0.06t – 2764.401295e–170000000.1t . (3.20)
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4 Numerical experiment
Let us consider the values for numerical results are

X0 = 108, Y0 = 10–2, V0 = 10, Z0 = 100.

Let us use Matlab software to obtain the sixth-order expansions for X(t), Y (t), V (t) and
Z(t):

X(t) = 10,00,00,000 + 9,99,80,234.978ht + 8,87,34,454.347h2t

+ 47,58,843.56h3t + 7,54,53,444.757h4t + 4,66,76,678.34h5t

+ 92,392.342h6t + 46,347.647h2t2 + 6,37,299.23h3t2 + 2,326.8293h4t2

+ 789.737h5t2 + 6.67889h6t2 + 0.63467343h3t3

+ 2.6646h4t3 + 10.2980376h5t3 + 0.9864763638h6t3 + · · · (4.1)

Y (t) = 0.01 + 0.03889431ht + 0.04545347h2t + 0.0845956h3t

+ 0.75743507h4t + 0.043455634h5t + 0.420346045h6t

+ 0.63242347h2t2 + 0.22478453h3t2 + 0.18200093h4t2

+ 0.700037h5t2 + 0.6734889h6t2 + 0.00634343h3t3

+ 0.05464646h4t3 + 0.1046667465h5t3 + 0.9354378h6t3 + · · · (4.2)

V (t) = 10 + 620.5464546761ht + 4.4746545h2t + 30.3465436576h3t

+ 2.7346566h4t + 0.05575634h5t + 1.444567045h6t + 5.45656347h2t2

+ 0.22765803h3t2 + 140.74687649h4t2 + 45.4455657h5t2

+ 99.645465698h6t2 + 80.00698765h3t3 + 00.976534646h4t3

+ 6.196465465h5t3 + 750.32126378h6t3 + · · · (4.3)

Z(t) = 100 + 464.85565555ht + 46.654222h2t + 355.255015h3t

+ 587.466621336h4t + 54.22233021h5t + 41.555501h6t

+ 23.517347h2t2 + 78.15553697h3t2 + 102.6879412h4t2

+ 478.66987132h5t2 + 785.6694125h6t2 + 74.68841269h3t3

+ 2.3698455h4t3 + 40.368715h5t3 + 72.3684156h6t3 + · · · (4.4)

We have plotted the target uninfected cell rate, the infected cell rate, the virus rate and
the CTL cell response rate observing the values of parameters using Wolfram Mathemat-
ica 12 software. For doing the mathematical modeling, we used 12 parameters at different
values that explain the differences seen in the data among patients undergoing combina-
tion therapy. When the antiviral therapy is given, the target rate of uninfected cell is com-
pletely increased [35]. In particular, if the death rate of hepatocytes gets decreased during
the antiviral therapy then the target uninfected cell rate would also increase [36]. After
that, the killing rate of the infected hepatocytes will be increased as we give the treatment.
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Since a prompt treatment is given, the death rate of both hepatocytes and the HBV infec-
tion decreases significantly [7–10, 35]. When the rate of virus clearance increases through
the application of the treatment, the rate of infected cell decreases. At first, we give the
treatment for killing the infected hepatocytes and then the treatment is given for HBV in-
fection. As the rate of virus clearance increases through the proper treatment, the infected
cell rate gets reduced. Consequently, the virus clearance rate of infected cells decreased.

When the regular treatment is given, the death rate of hepatocytes as well as virus rate
will be decreased [37]. When the treatment is continued, the production of new virus and
the virus infectivity rate get massively reduced [38]. The killing rate of infected hepato-
cytes increases as the treatment is regularly given and the virus production is completely
reduced to the percentage zero. The new virus production will be completely blocked
since the treatment is continued for a period of time; therefore the virus production will
be completely decreased to the level zero. Consequently, the patient becomes disease free
as the liver cells get cured completely. He or she can be stable and lead a normal life. This
is possible only due to the therapy; otherwise the death of the patient is inevitable.

5 Error analysis
For getting the convergence solution, we substitute Eqs. (4.1) to (4.4) in (1.5) which is
recommended by Liao [31–34]. Figures 2–9 show the plots of third- and fourth-order
approximations of X(t), Y (t), V (t) and Z(t). It is clear from these curves that the valid
region of ‘h’ is parallel to the horizontal axis. The valid region of h value ranges are given
in Table 2. Figures 10–13 show the residual error function of Eqs. (5.1) to (5.4) using the
third-order approximate solution for the different values of h = –1.1, h = –1.2, h = –0.62
and h = –1.4. Figures 14–17 show the optimum and minimum values of h, the minimum
values are shown in Table 3 and the residual errors are calculated in Table 4. We have

ER1(X, Y , V , Z; h1) =
dφX(t; h1)

dt
– α + dTX(t; h1) + ϕV (t; h1)X(t; h1)

– bY (t; h1)Z(t; h1), (5.1)

Figure 2 The h-curves of the third-order approximations for X(t)
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Figure 3 The h-curves of the third-order approximations for Y(t)

Figure 4 The h-curves of the third-order approximations for V(t)

Figure 5 The h-curves of the third-order approximations for Z(t)
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Figure 6 The h-curves of the fourth-order approximations for X(t)

Figure 7 The h-curves of the fourth-order approximations for Y(t)

Figure 8 The h-curves of the fourth-order approximations for V(t)
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Figure 9 The h-curves of the fourth-order approximations for Z(t)

Table 2 The h value is

X(t) –1.2 ≤ h ≤ –0.5
Y(t) –1.4 ≤ h ≤ –0.7
V(t) –1.5 ≤ h ≤ –0.6
Z(t) –1.6 ≤ h ≤ –0.3

Figure 10 The residual error function of Eq. (5.1)

ER2(X, Y , V , Z; h2) =
dφY (t; h2)

dt
– ϕV (t; h2)X(t; h2) + δY (t; h2)

+ (a + b)Y (t; h2)Z(t; h2), (5.2)

ER3(X, Y , V , Z; h3) =
dφV (t; h3)

dt
– rY (t; h3) + cV (t; h3), (5.3)

ER4(X, Y , V , Z; h4) =
dφZ(t; h4)

dt
– ρ –

sY (t; h4)Z(t; h4)
ε +Y (t; h4)

+ σZ(t; h4). (5.4)

Let us consider the square residual error for sixth order approximation:

RX(h1) =
∫ 1

0

(
ER1(X, Y , V , Z; h1)

)2 dt, (5.5)
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Figure 11 The residual error function of Eq. (5.2)

Figure 12 The residual error function Eq. (5.3)

Figure 13 The residual error function Eq. (5.4)
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Figure 14 The optimum and minimum values of X(t)

Figure 15 The optimum and minimum values of Y(t)

Figure 16 The optimum and minimum values of V(t)
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Figure 17 The optimum and minimum values of Z(t)

Table 3 The minimum values of RX(h1∗), RY(h2∗), RV(h3∗), RZ(h4∗)
h∗ Minimum value

RX(h1) -0.573541 2.354613× 10–6

RY(h2) -0.245765 4.345767× 10–8

RV(h3) -0.765459 5.653789× 10–10

RZ(h4) -0.347556 7.378594× 10–12

Table 4 The residual errors for ER1, ER2, ER3 and ER4 for t ∈ (0, 1)

t ER1(X ,Y ,V ,Z;h1∗) ER2(X ,Y ,Z;h2∗) ER3(X ,Y ,V ,Z;h3∗) ER4(X ,Y ,V ,Z;h4∗)
0.0 1.565422× 10–6 4.644621× 10–5 7.354251× 10–8 5.1546455× 10–8

0.1 8.354617× 10–3 8.362652× 10–6 1.658541× 10–9 6.2414232× 10–5

0.2 2.974233× 10–2 3.652652× 10–4 3.354265× 10–6 2.3454565× 10–7

0.3 7.365425× 10–5 1.362669× 10–3 3.575213× 10–7 4.5448869× 10–3

0.4 8.785251× 10–9 4.895132× 10–4 1.655412× 10–6 9.6548865× 10–7

0.5 2.957532× 10–8 8.654261× 10–6 9.357445× 10–5 7.2154551× 10–4

0.6 6.364586× 10–7 9.315562× 10–5 7.875622× 10–7 1.1455663× 10–9

0.7 2.728225× 10–1 6.795355× 10–4 8.365454× 10–6 8.4688622× 10–3

0.8 5.712805× 10–6 2.354544× 10–6 5.364554× 10–4 3.6455692× 10–1

0.9 7.287916× 10–4 3.478846× 10–7 2.448725× 10–9 7.3514496× 10–2

1 3.148699× 10–5 7.354898× 10–6 4.784662× 10–5 5.6545855× 10–6

RY (h2) =
∫ 1

0

(
ER2(X, Y , V , Z; h2)

)2 dt, (5.6)

RV (h3) =
∫ 1

0

(
ER3(X, Y , V , Z; h3)

)2 dt, (5.7)

RZ(h4) =
∫ 1

0

(
ER4(X, Y , V , Z; h4)

)2 dt. (5.8)

The minimal values of RX(h1), RY (h2), RV (h3) and RZ(h4) are

dRX(h1∗)
dh1

= 0,
dRY (h2∗)

dh2
= 0,

dRV (h3∗)
dh3

= 0,
dRZ(h4∗)

dh4
= 0.

We consider the optimal values of h1∗, h2∗, h3∗ and h4∗ for all of the cases to be

h1∗ = –0.573541, h2∗ = –0.245765, h3∗ = –0.765459, h4∗ = –0.347556.
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It is of prime importance for any patient infected with the hepatitis B virus, to be given an
antiviral therapy which is being considered as one of the very efficient methods of treat-
ment [39]. The hepatics B virus, which leads to acute liver disease, affects most of the
patients during birth or after the birth. The W.H.O. report says that the 90 % of the HBV
infected persons get cured naturally by the biological process in one year [40]. However,
in the rest of the 10% sometimes fail to show any kind of symptom of the disease.

When the patients are severely infected, it concerns around 90% of their liver cells, and
hepatocytes get damaged [41, 42]. It is due to the immune response to the infected hepato-
cytes. There has been no specific treatment for patients with acute infection [43]. In most
of the situations, it does not show any symptoms but in rare situations it shows indica-
tions like extreme fatigue nausea, vomiting and abdominal pain [38, 44–48]. It is assumed
that the acute infection can be easily overcome but the problem is still there as there is
evidence of many deaths. While there are enormous treatment options for the chronic
patients, none of the treatment methods is found to be useful and efficient [49–51]. Clin-
ical data shows that most of the virus gets decayed when the HBV patients undergo the
therapy. Applying the mathematical models to such data shows the result that, if the pa-
tients have an immune response, they get cured very quickly when the treatment is given,
and in other cases the treatment works comparatively slow [52].

Vaccine has been used for HBV infected patients from 1982. However, eradication of
this disease is not possible. Today, the vaccination focused on the highest risk of devel-
oping chronic infection in children who are below 6 years old [53]. The best vaccination
strategy for newborns is that the first dose has to be given within the first 24 h of birth
[54]. Therefore, the children will be protected at the maximum rate from infection at least
for 20 years. It is recommended to vaccinate for reducing the HBV infected patients. It
needs to be extended to groups in high danger, such as patients requiring transplantation
or dialysis, health-care workers, travelers before visiting an endemic area, people in pris-
ons, or people with multiple sexual partners. When the vaccine is given to patients, it gives
positive results for the eradication of the disease [37]. Therefore, we need a good therapy
to cure patients who got infected earlier.

Mathematical models have been one of the very useful methods for the understand-
ing of virus and drug dynamics under drug therapy in infections such as HIV, hepatitis
C (HCV), and HBV. To have a deeper understanding of virus-host dynamics, spectacular
studies have been done combining with the clinical data and mathematical models. How-
ever, Ciupe et al. [55] in their studies showed that a strong immune response can be the
key to overcoming the disease. Similar studies have been continued to find the efficacy of
drugs in curing hepatitis B. For instance, Anna et al. [56] have estimated 95% lamivudine
efficacy in blocking new virus production which can be elevated to 99% when combined
with famcilovir. Thus, we have studied the comparisons of existing work [4, 5, 7]. The
result is given in Table 5. In our result, the number of recovery days is smaller than the
previous result.

6 Conclusion
The hepatitis B virus has been identified as a virulent disease that has claimed numerous
lives. The antiviral therapy is acknowledged as the most appropriate method to cure this
disease. In this paper, we found the mathematical solution for HBV keeping the LHAM
method as a base. From the analysis, it is well understood that the antiviral therapy is very
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Table 5 Comparison study of existing work and proposed work

α ϕ dT r ρ δ c Existing
model

Proposed
model

Reference

X(t) 1 1× 10–10 1× 10–2 1.4 0 0.07 0.67 0.0135 [4, 5, 7]
1 2.5× 10–7 2.7× 10–3 3.5 0 0.22 0.7 0.0124
1 1.9× 10–6 5.3× 10–3 5.6 0 0.25 0.18
1 6.6× 10–8 9× 10–4 6.4 0 0.06 1

Y(t) 1 1× 10–10 1× 10–2 1.4 0 0.07 0.67 0.0026 0.0019 [4, 5, 7]
1 2.5× 10–7 2.7× 10–3 3.5 0 0.22 0.7
1 1.9× 10–6 5.3× 10–3 5.6 0 0.25 0.18
1 6.6× 10–8 9× 10–4 6.4 0 0.06 1

V(t) 1 1× 10–10 1× 10–2 1.4 0 0.07 0.67 0.0248 0.0278 [4, 5, 7]
1 2.5× 10–7 2.7× 10–3 3.5 0 0.22 0.7
1 1.9× 10–6 5.3× 10–3 5.6 0 0.25 0.18
1 6.6× 10–8 9× 10–4 6.4 0 0.06 1

Z(t) 1 1× 10–10 1× 10–2 1.4 0 0.07 0.67 0.2258 0.02345 [4, 5, 7]
1 2.5× 10–7 2.7× 10–3 3.5 0 0.22 0.7
1 1.9× 10–6 5.3× 10–3 5.6 0 0.25 0.18
1 6.6× 10–8 9× 10–4 6.4 0 0.06 1

much required for the infected patients since the virus eradication fully depends on the
power of the drugs. There is no possibility to root out the virus without antiviral therapy,
as has been analyzed and shown through mathematical modeling in this paper. We also
have calculated and studied the comparison of the existing work with our proposed study.
Thus, we strongly stress that our work takes minimum number of days to cure HBV. This
research paper may be used as a platform to do a further research and to design an effective
antiviral therapy and drug by opening the new future avenues in the research of nonlinear
modeling in different directions. Moreover, the work of Baleanu et al. [57, 58] will be a
great resource to extend this for further research. If two of their works are understood, we
could extend our work effectively with some other parameter estimation.
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