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Abstract
In this study, the approximate solutions of the predator–prey system with delay have
been obtained by using the modified Chebyshev collocation method. The main
technique is that this method transforms the original problem into a system of
nonlinear algebraic equations. By using the residual function of the operator
equations, error differential equations are constructed and thus the approximate
solutions are corrected. A numerical example is given to confirm the reliability and
applicability of the method, and comparisons with existing results are given. The
numerical results show that the obtained solutions are in good agreement with
earlier studies.
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1 Introduction
The predator–prey model is the essential model in studying the population dynamics of
many species, which was initially proposed by Lotka and Volterra (see [1, 2]). It has wide
application in various research areas, such as chemical processes (see [3, 4]), bioparticles
granulation (see [5]), the interaction of microorganisms and ecosystems (see [6, 7]). In
recent years, many researchers have worked on the Lotka–Volterra type predator–prey
system. In particular, Zhu et al. [8] focused on competitive Lotka–Volterra model in ran-
dom environments. Li et al. [7] studied the canard phenomenon for predator–prey sys-
tems with response functions of Holling types. Badri et al. [9] dealt with the stabilization
of the feasible equilibrium point of a special class of nonlinear quadratic systems known
as Lotka–Volterra systems.

In order to get a more realistic model, the time delay has been taken into account in the
predator–prey system. The analytical and dynamical aspects of such time delay models
have been studied extensively by many researchers (see [10–12]). Also, there have been
many studies interested in obtaining numerical solutions to the predator–prey system.
For example, Capobianco [13] solved the numerical solution of Lotka–Volterra by us-
ing high performance parallel numerical methods. Susmita Paul [14] explained how to
solve the Lotka–Volterra predator–prey model by using the Runge–Kutta–Fehlberg (RKF)
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method. Gokmen [15] used Taylor’s collocation method to find the numerical solution of
the predator–prey system with delay.

Nowadays, more and more attention is focused on the fractional predator–prey dynam-
ical system. However, few of the fractional equations can be solved explicitly, but the broad
application attracts many authors to devote themselves to numerical methods of these
equations (see [16–30]). Very recently, many numerical methods have been developed
for solving the fractional predator–prey dynamical system. Particularly, hybrid analytic
approach [31], Haar wavelet and Adams–Bashforth–Moulton methods [32], Bernstein
wavelet and Euler methods [33], and a numerical scheme based on the homotopy anal-
ysis transform technique [34].

Chebyshev polynomials have become very important in numerical analysis. They are
widely used because of their advantages, such as the roots of the first kind of Chebyshev
polynomials (Gauss–Lobatto nodes) being used in polynomial interpolation for minimiz-
ing the Runge phenomena, providing the best uniform approximation of polynomials in
continuous functions (see [35–37]). Most commonly used techniques with Chebyshev
polynomials have been examined in [38–40] and the references therein.

Motivated by the above discussion, we are mainly interested in applying a modified
Chebyshev collocation method for the time-delay predator–prey model in [10] as fol-
lows:

⎧
⎨

⎩

y′
1(t) = y1(t)[r1 – a11y1(t – τ ) – a12y2(t)],

y′
2(t) = y2(t)[–r2 + a21y1(t) – a22y2(t)],

t ∈ [0, T] (1)

with initial conditions

y1(0) = α,

y2(0) = β ,

where y1(t) and y2(t) are interpreted as the densities of prey and predator respectively,
r1 > 0 is the growth rate of prey in the absence of predators, a11 > 0 denotes the self-
regulation constant of prey, a12 > 0 describes the predation of prey by predators, r2 > 0
is the death rate of predators in the absence of prey, a21 > 0 is the conversion rate for
predators, a22 > 0 describes the intraspecific competition among predators and τ is the
generation time of the prey species, α, β are constant.

The objective of this paper is to obtain the approximation solutions of system (1) in
the form of truncated Chebyshev series. The primary benefit of this method is the non-
linear term that can easily be dealt with without any extra efforts. Other advantages in-
clude this method being nondifferential, nonintegral, and easily implemented on a com-
puter.

This paper is organized as follows: In Sect. 2, a brief review of the shifted Chebyshev
polynomial and its properties is provided. In Sect. 3, we apply the collocation method for
system (1) using the shifted Chebyshev polynomial. In Sect. 4, we construct a fundamental
matrix equation for system (1). In Sect. 5, we introduce the technique of residual error
correction in order to check the accuracy of the method. Finally, a numerical example is
presented to verify the efficiency and accuracy of the proposed method.
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2 Shifted Chebyshev polynomials and their properties
In this section, we introduce Chebyshev polynomials. The Chebyshev polynomials are the
sets of orthogonal polynomials and they are simply related to the trigonometric functions
(see [41, 42]) by the formula

Tn(cos θ ) = cos(nθ )

with θ ∈ [0,π ]. The Chebyshev polynomial Tn(x) of the first kind is a polynomial in x of
degree n, defined by the following relation [43]:

Tn(x) = cos
(
n arccos(x)

)
, n = 0, 1, . . . , x ∈ [–1, 1].

Since we use polynomial on t ∈ [0, L] for any real number L > 0, we can obtain the shifted
Chebyshev polynomials T∗

n (t) = Tn( 2t
L – 1) by introducing the change of variable x = 2t/L –

1, t ∈ [0, L]. The shifted Chebyshev polynomial T∗
n (t) satisfies the recurrence relation as

follows:

T∗
(n+1)(t) = 2

(
2t
L

– 1
)

T∗
n (t) – T∗

(n–1)(t), n ∈ N , (2)

with the boundary condition

T∗
n (0) = (–1)n, T∗

n (L) = 1.

And T∗
n (t) satisfies the discrete orthogonality condition

N∑

k=0

′′T∗
i (tk)T∗

j (tk) =

⎧
⎪⎪⎨

⎪⎪⎩

0, i �= j,

N , i = j = 0,
N
2 , i = j �= 0,

(3)

where the interpolation points tk are chosen to be the Chebyshev–Gauss–Lobatto asso-
ciated with the interval [0, L] and tk = L

2 (1 – cos(k π
N )), k = 0, 1, 2, . . . , N . The summation

symbol with double primes denotes a sum with both the first and last term halved [43].

3 Method of solution
Continuous and bounded functions ys(t) (s = 1, 2) can be approximated in terms of shifted
Chebyshev polynomials in the interval [0, L] as follows:

ysN (t) =
N∑

k=0

′′cskT∗
k (t). (4)

Using the discrete orthogonality relation (3), coefficient csk in (4) is given by

csk =
2
N

N∑

i=0

′′ys(ti)T∗
k (ti). (5)
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Our aim is to obtain the unknown coefficients ys(ti) for i = 0, 1, 2, . . . , N , and the method
of solution being considered should be programmable in a computer.

From equations (4) and (5) we can obtain the function ysN (t) as follows:

ysN (t) = T(t) · P · Ys, (6)

where

T(t) =
[
T∗

0 (t), T∗
1 (t), T∗

2 (t), . . . , T∗
N (t)

]
,

P =

⎡

⎢
⎢
⎢
⎢
⎣

1
2N T∗

0 (t0) 2
2N T∗

0 (t1) · · · 2
2N T∗

0 (tN–1) 1
2N T∗

0 (tN )
1

2N T∗
1 (t0) 2

2N T∗
1 (t1) · · · 2

2N T∗
1 (tN–1) 1

2N T∗
1 (tN )

...
...

...
1

2N T∗
N (t0) 2

2N T∗
N (t1) · · · 2

2N T∗
0 (tN–1) 1

2N T∗
N (tN )

⎤

⎥
⎥
⎥
⎥
⎦

,

Ys =
[
ys(t0), ys(t1), . . . ys(tN )

]′.

We know that

T ′(t) = T(t) · K ,

where K = 2
L M and M is the operational matrix.

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 2 0 5 · · · m1
0 0 4 0 8 0 · · · m2
0 0 0 6 0 10 · · · m3
...

...
...

...
...

...
...

...
0 0 0 0 0 0 · · · 2N
0 0 0 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

.

where m1, m2, and m3 are respectively N , 0, 2N for odd N and 0, 2N , 0 for even N . Then
from the above equation we can write y′

sN (t) as follows:

y′
sN (t) = T(t) · K · P · Ys. (7)

4 Fundamental matrix equation for system (1)
To obtain the fundamental matrix equations of system (1), we substitute equations (6) and
(7) into system (1). We get the fundamental matrix system

⎧
⎨

⎩

T(t)KPY1 = T(t)PY1[r1 – a11T(t – τ )PY1 – a12T(t)PY2],

T(t)KPY2 = T(t)PY2[–r2 + a21T(t)PY1 – a12T(t)PY2].
(8)

Let

PY1 = Z1, PY2 = Z2.
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We write equations (8) as follows:

T(t)KZ1 – r1T(t)Z1 + a11T(t – τ )Z1T(t)Z1 + a12T(t)Z2T(t)Z1 = 0,

T(t)KZ2 + r2T(t)Z2 – a21T(t)Z1T(t)Z2 + a22T(t)Z2T(t)Z2 = 0.
(9)

Then we can rewrite equations (9) as follows:

(
D1(t) + A11(t – τ , t)Z1 + A12(t, t)Z2

)
Z1 = 0,

(
D2(t) + A21(t, t)Z1 + A22(t, t)Z2

)
Z2 = 0,

(10)

where

D1(t) = T(t)K – r1T(t), A11(t – τ , t) = a11T(t – τ )T∗(t),

A12(t, t) = a12T(t)T∗(t), A22(t, t) = a22T(t)T∗(t),

D2(t) = T(t)K + r2T(t), A21(t, t) = –a21T(t)T∗(t),

and

T∗(t) =

⎡

⎢
⎢
⎢
⎢
⎣

T(t) 0 · · · 0
0 T(t) · · · 0
...

. . .
...

0 0 · · · T(t)

⎤

⎥
⎥
⎥
⎥
⎦

.

By substituting the interpolation points tk into equations (10), we have two nonlinear
systems

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1(t0) + A11(t0 – τ , t0)Z1 + A12(t0, t0)Z2

D1(t1) + A11(t1 – τ , t1)Z1 + A12(t1, t1)Z2

·
·
·

D1(tN ) + A11(tN – τ , tN )Z1 + A12(tN , tN )Z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Z1 = 0 (11)

and

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D2(t0) + A21(t0, t0)Z1 + A22(t0, t0)Z2

D2(t1) + A21(t1, t1)Z1 + A22(t1, t1)Z2

·
·
·

D2(tN ) + A21(tN , tN )Z1 + A22(tN , tN )Z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Z2 = 0. (12)
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Let

W1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1(t0) + A11(t0 – τ , t0)Z1 + A12(t0, t0)Z2

D1(t1) + A11(t1 – τ , t1)Z1 + A12(t1, t1)Z2

·
·
·

D1(tN ) + A11(tN – τ , tN )Z1 + A12(tN , tN )Z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

and

W2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D2(t0) + A21(t0, t0)Z1 + A22(t0, t0)Z2

D2(t1) + A21(t1, t1)Z1 + A22(t1, t1)Z2

·
·
·

D2(tN ) + A21(tN , tN )Z1 + A22(tN , tN )Z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (14)

In addition, by the initial value, we have

T(t0)Z1 = α, T(t0)Z2 = β .

Thus, replacing first rows of the argument matrix W1, W2 by T(t0), we have

W̃1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T(t0)
D1(t1) + A11(t1 – τ , t1)Z1 + A12(t1, t1)Z2

·
·
·

D1(tN ) + A11(tN – τ , tN )Z1 + A12(tN , tN )Z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)

and

W̃2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T(t0)
D2(t1) + A21(t1 – τ , t1)Z1 + A22(t1, t1)Z2

·
·
·

D2(tN ) + A21(tN – τ , tN )Z1 + A22(tN , tN )Z2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

Then we can rewrite equations (11) and (12) as follows:

WA = B, (17)

where

W =

(
W̃1 0
0 W̃2

)

, A =

(
Z1

Z2

)

, B =

(
b1

b2

)

and b1 = [α, 0, 0, . . .]T , b2 = [β , 0, 0, . . .]T .
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5 Error estimation and residual correction
This section is devoted to checking the accuracy of our method. Since the exact solu-
tion of system (1) cannot be obtained, we will use the residual correction to obtain better
approximate solutions. Residual correction is a process when the obtained approximate
solution is substituted into the original equation, and a system whose solution is the error
corresponding to the approximate solution is obtained. In the sequence, substituting the
approximate solution ysN (t) (s = 1, 2) into system (1), we obtain

E1N (t) = y′
1N (t) – y1N (t)

[
r1 – a11y1N (t – τ ) – a12y2N (t)

]
,

E2N (t) = y′
2N (t) – y2N (t)

[
–r2 + a21y1N (t) – a22y2N (t)

]
,

where EsN (t) (s = 1, 2) denotes the residual functions.
We define the error corresponding to y1N (t) and y2N (t) as follows:

e1N (t) = y1(t) – y1N (t)

and

e2N (t) = y2(t) – y2N (t).

Substituting y1(t) and y2(t) into system (1), we have

(y1N + e1N )′(t) = (y1N + e1N )(t)
[
r1 – a11(y1N + e1N )(t – τ ) – a12(y2N + e2N )(t)

]
,

(y2N + e2N )′(t) = (y2N + e2N )(t)[–r2 – a21(y1N + e1N (t) – a22(y2N + e2N )(t).
(18)

We can rewrite Eq. (18) as follows:

e′
1N (t) = r1y1N (t) – a11y1N (t)e1N (t) – a11y1N (t – τ )e1N (t) – a11e1N (t)e1N (t)

– a12y1N (t)e2N (t) – a21y2N (t) – a12e1N (t)e2N (t) – E1N (t),
(19)

e′
2N (t) = –r2y2N (t) + a21y2N (t)e1N (t) + a21y1N e2N (t) + a21e2N (t)e1N (t)

– 2a22y2N (t)e2N (t) – a22e2N e2N (t) – E2N (t).

Similar to system (1), this system is also nonlinear delay differential system with initial
values e1N (0) = 0 and e2N (0) = 0. The unknown functions are e1N (t) and e2N (t). We will
apply the method of Sect. 3 to Eq. (19) in order to obtain the approximate solutions. Let
e1N ,M(t) and e2N ,M(t) be the estimation solutions of errors e1N (t) and e2N (t). We can obtain
the new approximate solutions as follows:

y1N ,M(t) = y1N (t) + e1N ,M(t),

y2N ,M(t) = y2N (t) + e2N ,M(t).

Then y1N ,M(t) and y2N ,M(t) are the correction solutions which are more accurate than
y1N (t) and y2N (t). We will use the residual functions to measure the accuracy of numerical
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solutions by using y1N ,M(t) and y2N ,M(t) instead of y1N (t) and y2N (t). In the next section we
use an example to demonstrate the above idea.

6 Numerical application
In this section, we demonstrate our method by a detailed example. We give the values of
approximate solutions ysN (t), (s = 1, 2) at selected points of the given interval for different
N values.

Example 1 ([44]) We consider the following system:

⎧
⎨

⎩

y′
1(t) = y1(t)[1 – y1(t – τ ) – 0.5y2(t)],

y′
2(t) = y2(t)[–1 + 2y1(t) – 4y2(t)],

0 < t < 5, (20)

with α = 1 and β = 0.2. In order to obtain y1N (t) and y2N (t) with N = 5, 6, and 7, we apply
the method of Sect. 3 for Eq. (20). Then we have

y15(t) = 0.9141 – 9.0596 × 10–3T∗
1 (t) + 9.1229 × 10–2T∗

2 (t)

– 4.6658 × 10–3T∗
3 (t) – 1.6735 × 10–2T∗

4 (t) + 2.3208 × 10–3T∗
5 (t),

y25(t) = 0.19536 – 1.1644 × 10–2T∗
1 (t) + 1.046 × 10–2T∗

2 (t)

+ 1.2809 × 10–2T∗
3 (t) – 4.6031 × 10–3T∗

4 (t) + 5.4663 × 10–5T∗
5 (t)

for N = 5,

y16(t) = 0.91389 – 5.1691 × 10–3T∗
1 (t) + 8.3874 × 10–2T∗

2 (t)

– 8.3620 × 10–3T∗
3 (t) – 1.3075 × 10–2T∗

4 (t) + 4.7651 × 10–4T∗
5 (t)

+ 2.2600 × 10–3T∗
6 (t),

y26(t) = 0.195521 – 8.7581 × 10–3T∗
1 (t) + 1.0145 × 10–2T∗

2 (t)

+ 1.0997 × 10–2T∗
3 (t) – 3.9419 × 10–3T∗

4 (t) – 3.0842 × 10–4T∗
5 (t)

+ 2.0641 × 10–4T∗
6 (t)

for N = 6, and

y17(t) = 0.9322 – 8.8302 × 10–3T∗
1 (t) + 8.0857 × 10–2T∗

2 (t)

– 7.2591 × 10–3T∗
3 (t) – 1.1632 × 10–2T∗

4 (t) – 2.7616 × 10–4T∗
5 (t)

+ 1.0363 × 10–3T∗
6 (t) – 1.4866 × 10–4T∗

7 (t),

y27(t) = 0.195691 – 9.2694 × 10–3T∗
1 (t) + 9.1533 × 10–3T∗

2 (t)

+ 1.0748 × 10–2T∗
3 (t) – 3.6569 × 10–3T∗

4 (t) – 1.7423 × 10–4T∗
5 (t)

+ 8.6092 × 10–5T∗
6 (t) – 3.3297 × 10–5T∗

7 (t)

for N = 7.
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Figure 1 Approximate solutions for the prey population with N = 5, 6, and 7 by the present method and the
Taylor collocation method [44]

The approximate solutions of prey and predator and comparison with the results of Ref.
[44] are presented in Fig. 1 and Fig. 2. Figures show that the proposed method preserves
the positivity of the solutions, which is the part of the solutions of Eq. (20). To examine
their accuracy, we considered the absolute residual errors of these approximate solutions.
Figure 3 plots the absolute residual errors of Example 1. In Table 1, we list the absolution
residual errors of the present method and Ref. [44]. It is seen from the table and figures that
the absolute residual error values are decreasing as we increase the parameter N , which
are in good agreement with the results given in Ref. [44].

For implementation residual error correction in Sect. 5, we apply again the method of
Sect. 3 for Eq. (20) with choosing N = 4 and M = 5, 6. The approximate solutions of y14(t)
and y24(t) are found as follows:

y14(t) = 0.91279 – 1.1906 × 10–2T∗
1 (t) + 6.5714 × 10–2T∗

2 (t)

– 1.4116 × 10–2T∗
3 (t) – 4.5221 × 10–3T∗

4 (t),
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Figure 2 Approximate solutions for the predator population with N = 5, 6, and 7 by the present method and
the Taylor collocation method [44]

y24(t) = 0.19698 – 6.3365 × 10–3T∗
1 (t) + 7.2034 × 10–3T∗

2 (t)

+ 7.5775 × 10–3T∗
3 (t) – 2.9467 × 10–3T∗

4 (t).

To realize the error approximate concept in Sect. 5 with N = 4 and M = 5, 6, the esti-
mated errors are obtained, namely

e14,5(t) = 0.0013143 + 2.8461 × 10–3T∗
1 (t) + 2.5515 × 10–2T∗

2 (t)

– 9.4498 × 10–3T∗
3 (t) – 1.2212 × 10–2T∗

4 (t) + 2.3208 × 10–3T∗
5 (t),

e24,5(t) = –0.0016213 – 5.3077 × 10–3T∗
1 (t) + 3.2564 × 10–3T∗

2 (t)

+ 5.2317 × 10–3T∗
3 (t) – 1.6564 × 10–3T∗

4 (t) + 5.4663 × 10–5T∗
5 (t),

e14,6(t) = 2.8176 × 10–3 + 5.1572 × 10–2T∗
1 (t) + 1.557 × 10–2T∗

2 (t)

– 3.149 × 10–2T∗
3 (t) + 1.6031 × 10–4T∗

4 (t) – 2.6291 × 10–4T∗
5 (t)
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Figure 3 Absolute residual errors corresponding to the approximate solutions of prey and predator
population with N = 5, 6, and 7

+ 1.2712 × 10–3T∗
6 (t),

e24,6(t) = –1.0873 × 10–3 + 1.0813 × 10–2T∗
1 (t) + 1.3781 × 10–2T∗

2 (t)

– 2.2536 × 10–3T∗
3 (t) – 3.2036 × 10–3T∗

4 (t) + 7.4238 × 10–4T∗
5 (t)

– 1.8855 × 10–4T∗
6 (t).

Then we can obtain our improved approximate solutions:

y14,5(t) = y14(t) + e14,5(t), y24,5(t) = y24(t) + e24,5(t)

and

y14,6(t) = y14(t) + e14,6(t), y24,6(t) = y24(t) + e24,6(t).
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Table 1 Comparison of absolute errors obtained by the present method and [44] for Example 1

t Residual errors e1N

Present method Ref. [44]

N = 5 N = 6 N = 7 N = 5 N = 6 N = 7

0 3.4405e–01 4.9083e–01 3.7236e–01 4.294e–02 5.503e–03 2.670e–03
1 3.3903e–02 5.8991e–02 5.4357e–02 7.429e–03 1.227e–03 8.449e–04
2 1.7890e–03 4.1996e–03 7.2944e–04 1.424e–02 8.640e–04 6.861e–04
3 7.2261e–04 5.3871e–03 1.9676e–04 1.533e–02 1.796e–04 6.649e–04
4 1.0870e–03 4.0386e–03 7.9089e–05 9.235e–03 1.864e–04 6.439e–04
5 1.2145e–04 2.4864e–02 2.8842e–06 3.087e–02 2.740e–03 1.698e–03

t Residual errors e2N

Present method Ref. [44]

N = 5 N = 6 N = 7 N = 5 N = 6 N = 7

0 1.4697e–02 1.0400e–03 1.7618e–04 4.405e–03 1.422e–04 1.929e–04
1 1.4982e–03 6.1149e–05 1.2629e–06 1.331e–03 3.395e–05 3.404e–05
2 3.7072e–05 6.4177e–05 3.4964e–05 1.164e–03 7.251e–05 1.155e–04
3 2.3864e–04 1.3460e–04 1.4228e–05 3.859e–04 1.711e–04 1.751e–04
4 3.0443e–04 3.6073e–04 3.0842e–05 1.442e–04 2.116e–04 1.587e–04
5 1.4743e–04 1.3612e–04 4.0033e–06 4.583e–03 9.451e–04 7.441e–06

Table 2 Absolute residual error values of ys4,M(t) with s = 1, 2 and N = 4 and M = 5, 6 at some points
(for comparison, one can see [44])

t e14,M e24,M

N = 4 N = 4,M = 5 N = 4,M = 6 N = 4 N = 4,M = 5 N = 4,M = 6

0 1.8532e–01 3.4677e–01 7.6478e–01 7.9220e–03 1.4726e–02 3.1173e–03
0.5 1.2514e–01 1.2920e–01 3.4068e–01 2.1792e–03 2.6024e–04 9.5723e–04
1 7.5154e–02 3.4368e–02 1.3965e–01 1.6174e–03 1.5337e–03 8.3699e–04
1.5 3.8252e–02 4.1932e–03 4.8231e–02 2.2729e–03 2.7637e–04 7.1159e–04
2 1.3902e–02 1.8065e–03 1.1406e–02 1.1969e–03 1.8752e–05 9.6725e–04
2.5 8.0535e–11 1.8300e–03 1.5884e–10 2.6391e–11 2.8032e–04 7.7868e–09
3 5.8527e–03 7.5528e–04 1.5773e–03 5.0326e–04 2.2769e–04 7.8870e–04
3.5 5.8543e–03 5.9818e–04 5.6770e–04 3.6513e–04 2.0922e–04 4.5973e–04
4 2.2951e–03 1.1248e–03 3.9443e–04 7.3925e–05 3.7841e–04 3.9797e–04
4.5 1.5116e–03 6.3471e–05 2.6966e–04 5.3039e–06 1.8942e–05 2.6853e–04
5 8.6549e–11 2.1856e–10 1.3063e–09 2.3356e–11 4.1398e–10 2.0789e–04

The improvement values of y14(t) and y24(t) with M = 5, 6 are given in Fig. 4. It re-
vealed that the proposed technique preserved the positive solutions of the given delayed
prey-predator system. In order to understand how much improvement is provided by this
scheme, the absolute residual errors of the original approximate solutions y14(t) and y24(t)
are shown together with those of corrected solutions in Fig. 5. In Table 2, we list the resid-
ual errors of the improvement solutions at some point on our interval. In view of Fig. 5 and
Table 2, absolute residual errors of y14,5(t) and y24,5(t) are smaller than those of y14(t) and
y24(t) respectively, and absolute residual errors of y14,6(t) and y24,6(t) are smaller. Hence,
we can comment that residual correction in general provides a certain improvement in
the approximate solutions for Eq. (20).
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Figure 4 Graphics of the approximate solutions for the prey and predator with N = 4 and their two
improvements obtained by M = 5, 6

7 Conclusion
In this paper, a modified Chebyshev collocation method based on the residual correction
technique is presented to solve the Lotka–Volterra model with delay. An efficient error
estimation can be made by using this technique. The key advantages of this approach
are its low-cost computing and simplicity of implementation. Also the present method
has the ability to convert the given problem into a system of mathematical equations,
which can be solved easily using MATLAB or MAPLE software. Our numerical results
are compared with the numerical results of [44]. The results show that they are in good
correspondence with the results obtained in [44]. Based on the above facts, the modified
Chebyshev collocation method is a powerful mathematical tool to obtain the numerical
solutions of a nonlinear system. In future the proposed method will be applied to the frac-
tional Lotka–Volterra biological model with and without a time delay. It is hoped that
the biological relevance of the numerical results, such as stability and chaotic behavior,
can be obtained. Similarly, numerical techniques may be designed for fractional reaction
diffusion systems.
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Figure 5 Absolute residual errors for the prey and predator population corresponding to the approximate
solutions with N = 4 and their improvement M = 5, 6
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