Charandabi et al. Advances in Difference Equations (2020) 2020:301 ® Advances in Difference Eq uations
https://doi.org/10.1186/513662-020-02765-z a SpringerOpen Journal

RESEARCH Open Access

On a fractional hybrid version of the

Check for
updates

Sturm-Liouville equation

Zohreh Zeinalabedini Charandabi', Shahram Rezapour®**'@® and Mina Ettefagh®

"Correspondence:
shahramrezapour@duytan.edu.vn;
rezapourshahram@yahoo.ca;
sh.rezapour@azaruniv.ac.ir
?Institute of Research and
Development, Duy Tan University,
Da Nang 550000, Vietnam
*Department of Medical Research,
China Medical University Hospital,
China Medical University, Taichung,
Taiwan

Full list of author information is
available at the end of the article

@ Springer

Abstract

It is well known that the Sturm-Liouville equation has many applications in different
areas of science. Thus, it is important to review different versions of the well-known
equation. The technique of a-admissible a-yr-contractions was introduced by Samet
etal.in (Nonlinear Anal. 75:2154-2165, 2012). Our aim in this work is to study a
fractional hybrid version of the Sturm-Liouville equation by mixing the technique of
Samet. In fact, by using the technique of @-admissible a-y-contractions, we
investigate the existence of solutions for the fractional hybrid Sturm-Liouville
equation by using the multi-point boundary value conditions. Also, we review the
existence of solutions for a fractional hybrid version of the problem under the integral
boundary value conditions. Finally, we provide two examples to illustrate our main
results.

MSC: Primary 34A08; secondary 34A12

Keywords: «--contraction; Fractional hybrid version; Multi-point boundary value
conditions; Sturm-Liouville equation

1 Introduction and preliminaries

What mathematics needs today is various applications to improve the standard of living
of humanity. Although mathematics has had many uses in different fields so far, it can still
have more beneficial effects in society. One of the most profitable ways to make mathemat-
ics more relevant in today’s world is to produce modern software to reduce the consump-
tion of minerals in chemical laboratories. Some chemistry experiments in software can
be performed with high repeatability and by examining different pressure, temperature,
and distinct conditions. It is a great advantage to do many experiments without the use of
minerals. Computer software companies should pay particular attention to this issue.

It is logical that researchers concentrate on complicated fractional differential equations
to increase their abilities for modeling of more real phenomena in the world. One of im-
portant methods in this way is working on different versions of well-known fractional
differential equations. It is known that one of the famous ones is the Sturm—-Liouville dif-
ferential equation.

The Sturm-Liouville differential equation is an important differential equation in
physics, applied mathematics, and other fields of engineering and science, and it has wide
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applications in quantum mechanics, classical mechanics, and wave phenomena (see, for
example, [2] and [3] and the references therein). The existence of solutions and other prop-
erties for Sturm-Liouville boundary value problems have received considerable attention
from many researchers during the last two decades (see, for example, [4—17]). Finally, a
hybrid version of differential equations has a special appeal to everybody.

Nowadays, many researchers are currently studying various types of advanced mathe-
matical modeling using fractional differential equations and its related inclusion version
with more general boundary value conditions. Indeed, they try to model the processes so
that it covers many general cases. In this situation, mathematicians would like to solve a
wide range of these boundary value problems with advanced and complicate boundary
conditions. Recently, many papers have been published on the existence of solutions for
different fractional boundary value problems (see, for example, [18-34]). In the last few
decades, fractional hybrid differential equations and inclusions with hybrid or non-hybrid
boundary value conditions have received a great deal of interest and attention of many re-
searchers (see, for example, [35-41]).

As you know, the Riemann-Liouville fractional integral of order « > 0 for the function

u €1 1[0, T] is given by I*u(¢) = f(f (t}s()z)_ ! u(s) ds, and the Caputo fractional derivative of
order n—1 < « < n for the function u is given by D*u(¢) = I"™* ;; u(t) = ft (trs: Z) ! d};[,s s) s

In 2011, Zhao et al. studied the fractional hybrid problem CD"‘(g fu ) ) = f(¢, u(t)) with
boundary value condition #(0) = 0, where 0 < o < 1, °D* denotes the Caputo fractional
derivative, g € C(I x R,R\ {0}) and f € C(I x R, R) [41]. In 2019, El-Sayed et al. reviewed
the fractional version of the Sturm-Liouville equation D (p(£) ' (¢)) + q(¢) u(t) = h(t)f (u(t))
with multi-point boundary condition #/(¢) = 0, Y ", &u(a;) = v Z] L nju(b)), where « lies
in (0,1], °D* denotes the Caputo fractional derivative, p € C'(I,R), g(t ) and h(t) are ab-
solutely continuous functions on I = [0, T], T < oo with p(f) #0 forallt e I, f: R — R is

defined and differentiable on the interval I, 0 <a; <ay <---<a,<c,d<b;y<by<---<
b,<T,c<d,and &,...,&4, n1,..., N, and v are real constants [42].

Assume that @ € (0,1), °D* is the Caputo fractional derivative of order «, I = [0, T] with
T < o0, p,p € CHI,R), p(t), q(t), and k() are absolutely continuous functions on I with
p) #0forallz e, f, f :R — R are defined and differentiable on the interval I and 0 <
aj<ay<-<auy<cd=<b <by<---<b,<T,c<d,and &,...,&,, n1,...,n,, and v are
real constants with ) ", & — v ;':1 nj 7 0. Now, by mixing the main idea of the works, we
investigate the general fractional hybrid version of the Sturm-Liouville equation with the

hybrid multi-point boundary value condition

D*(p(t) (7 — PO () + q)u@) = hO)f (), (€D,
(7e0)r0 = (BBF (u(®))-0, (1)

g(tu(t) /¢ -
)

m e u(a) _ no o ulb
208 atan) =¥ L

Moreover, we review the following problem under integral boundary value conditions:

D (p(t) (s - P (w(2))) + q(B)u(z) = hO)f (u(0)), (¢ 1),
(o t)f(u(t) >t0—o )

&,

f;(g(gf()en_[’(e)f(( )=v [3 (5 eu(e PO ) dv(6),
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where @ (0) and v(f) are increasing functions, the integrals are in the Riemann-Stieltjes
sense,and 0 <a<c<d<e<T.

We consider the norm ||u|| = sup,(o 7} [4(t)| on the space C(/,R) and ||u]| = fOT |u(s)| ds
on L [0, T']. The Riemann-Liouville fractional integral of order « for a function f is de-
fined by I“f(¢) = ﬁ fot (t —s)*If(s)ds (a > 0), and the Caputo derivative of order « for
a function f is defined by D*f(t) = I"~ "‘dtnf(t) = Fous a) 0 t—s"‘ M
[43, 44]. Denote by ¥ the family of nondecreasing functions v : [0, +00) — [0, +00) such
that Y 2, ¥"(¢) < +oo for all ¢ > 0, where " is the nth iterate of . Let T: X — X be a
self-map and & : X x X — [0, +00) be a function. We say that T is «¢-admissible whenever
alx,y) > 1 implies a(Tx, Ty) > 1 [1]. Let ¥ € ¥ and @ : X x X — [0, +00) be a map. A self-
map T : X — X is called an a-y-contraction whenever «(x, y)d(Tx, Ty) < ¥ (d(x, y)) for all

ds, where n = [a] + 1

%,y € X [1]. We need the next result.

Lemma 1 ([1]) Let (X,d) be a complete metric space and T : X — X be an a-admissible
a-y-contraction. Suppose that there exists xy € X such that o(xy, Txg) > 1 and a(x,,x) > 1
for all n whenever {x,} is a sequence in X such that a(x,_1,%,) > 1 foralln > 1 and x,, — x.
Then T has a fixed point.

2 Main results
Now, we are ready to state and prove our main results. For study of problem (1), we con-
sider the following hypotheses. i
(D1) The functions f, f : R — R are differentiable on the interval [0, T] and % and %
are bounded on [0, T'] with % <K and % < K, respectively.
(Dy) The function p € CY(I,R) has this property that p(¢) # 0 for all £ and inf,¢; |p(£)| =
Also, p(t), q(t), and h(t) are absolutely continuous functions on I.
(D3) The function g: I x R — R\ {0} is continuous in its two variables and there exists
a function ¢(¢) > 0 (V¢ € I) such that |g(¢,x) — g(¢,y)| < ¢(8)|x — y| for all (¢,%,y) in
I xR xR.
(D4) There exists a number r > 0 such that

(lpllr+go)(Arr+ Ay) <r and (A1 + A)lpll +goAr < 1,

where Ay = Z(K|p)| + TUALED ) (B[S 1] + v X, Ingl) + 1),

I'(a+2)

(fo|| I+ M’)(|E|<Z|sl|+|v|2|n,>+1)

fo = fO), fo = [f(0)], and g = sup,; g(¢,0).

Lemma 2 Assume that hypotheses (D1)—(D,) hold. Then problem (1) is equivalent to the
integral equation

n

u(t) = g (¢, u(t)) |:Ev

Ps)- ps) -
m/o Gy (40) s EZ&/O o) (40 ds

j=1

+EZ§,/O —I°‘ q(s)uls)) ds - EvZn,/O ﬂl"‘(q(s)u(s))
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+EUZ;7, / —1“ (h(s)f (u(s))) ds

Zl [ 6 ) ds
/ P f( (S))dS—/O I%I“(q(s)u(s))ds

p(s)
Lt
+ —I(h u(s))) ds |, 3
| () ®
whereE = W .Also, we have —— ( ;€ CY(I,R) and(g(tu Y" € L(I,R). Moreover,

if (¢(t, u(t))) € CU,R), then u € C'(I, R).

Proof Note that equation (1) can be written as

- ( [()( e ))) p(t)f(u(t))D 4(0u(t) + HOF (u0).

Hence, Il((]hf [p(t)( tu(t —ﬁ(t)f(u(t))]) = =I*(g@®)u(?)) + I*(h(£)f (u(t))), and so

u®) \ . - u) ' . -

= —I*(q()u(®)) + I* (h)f (u(2))).

u(t) ), 0_(!’ Flute

Since (g( )t FO )_ we get

(0) (%) = BOF () ~ I* (q(Ou®)) + 1 (W(0)f (1(2))),

gt u(t
and so
M(t) / P 7 1 o 1 o
<g(t u(t))) o f (ut6)) = o5 (aOu®) + o (H0)f ((1)))- @
Thus, we obtain
u(t) ~ ti .
gt u(®) _/ (s )f( 5)) ds /0 p(s)l (a(s)uls)) ds
t 1 N
+/ EI (h( )f(bt(s)))ds, (5)

where ¢ = ( ;- For simplicity, put A(¢) = f >f(zxt(s))ds,B(t) f L1 51 (q(s)u(s)) ds, and
c@=[, pl I"‘(h(s)f(u(s))) ds. Then we get

m

= I/l(dl') il ~ m 4 N m | | | |
Zgl (g(ﬂi; M(&ll))) - ;E;g = ;&A(m) ;&B(ﬂz) + Zétc(ﬂz) (6)

i=1 i=1
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and

n u(b]) ) n
: - 0
iy - n’(g(bp u(by)) v;n’

=
=v Y nAb) -v Y nBB)+v Y nCby). )
j=1 j=1 j=1

By subtracting (6) from (7) and applying

- , u(a;) _ - . u(bj) )
,Zél(g(ai, u(m))) =Y ;ﬂ; (g(b,», u(b)))’

=1

C=EvY nA(b)-EY &Ala)+E ) &Bla;)-EvYy nB(b)
j=1 i=1 i=1 j=1

+EvY niClh) -E Y &Clay),
j=1 i=1

where E = -. By substituting the value of £ in (5), we conclude that

anlfz VZ,” 17

u(t) = g(t,u(t)) [Ev D WA —EY &A(a)+E) EB(a)—Ev Yy nB(b)

j=1 i=1 i=1 j=1

+EvZn, (b) - EZ&C( )+ / Do) ds- [ 1 (aus)ds

t 1 N
+/0 m[ (h(s)f(u(s)))ds:|.

For the next part, by using (4) we have

ue) \' _pl); 1 . ! e
() = 7o) - s au(0) + s (O (ut0) € CLR), )

and so & (p(t) (425 ~ PO @(e))) = L1 (q(e)u(t)) + LI°(h(e)f (u(t))). Hence,

1-a d u(t) ' ~(N\F _ _gl-« d o
e (P ) ~PO7(0) ) =1 S (atoto)
d
1 (0 (u(0),

and so

« M(t) /_ ~(NT 1-o ja d
D (P(t) (g(t,u(t))) p(t)f(u(t))) -1 (q(t)u(t))

+11“1“ ((Qf(( )

tOll

1-«a
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Thus, we obtain

. ® \ .. L d
D (”(”(m) B (u(0) ) = -1 5 a(Ou0) + I 5 (0 ()

= q(0)u(0) + h(0)f (x(0))
= —q()u(t) + h(O)f (u(?)).
By using (4), we get (g(fo() )))’ = (Z E) (u4(2)))¢=0- Also, by using simple computations
and (3), we obtain Y 7", cSi(g;:,—l =V —) Now, we show that (57 z(t()t)))” €
L[0,1]. From (4) and (iii), we have
u®) \” p(t)- .
(m) E[p(t f(u(t)) + EI (- Q(t)u(t)+h(t)f(u(t)))]
_(P®) p@)p (o) p@) f w®)
) (p(t) =0 )f( O+ e e “O
'(t) o
- D (o) + o) ()
d
+ 20 %(—q(t)u(t) +h(t)f (u(2)))
a-1

+ m @ (q(0)u(0) + h(0)f (u(0)).

Now, we can write
ut) \" Ol p@llp (t)l) = [zl
‘(g(uu(t))) : ( por o ) e e e |
O ot ot s
1 (t—s)

oolh TT@ <|q(s)||u(s)|+Iq(s)||u(s)|+|h(s)|lf(u(s))|
+ |h(s)|’7af (2

9) |u/(s)|) ds

1ot
+ _—
lp(®)] I (er)
Hence,

T M(t) )//
d
/0 <g(t,u<t)) g
Ir i1 ol Iﬁ(t)llp/(t)|>~ B()]| 9f , }
d
5/0 [(wn* O o T [l |

T / t(r_ a1
[ [ (o] ) wo)  ds |

/ [wn/ o (iq(s)l 5)] + |7)]|s'(5)|

(la@)[[#©] + [AO]|f ((0)]).

Page 6 of 29
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1 $)|f (uls)) | + |h(s)|'M

(s )ds]dt

T
- [|p<t>| e )””I‘O)””(O)l Ih<0>|lf(u<0>)|)]dt. o
Note that
TP, OO B a;(u(t)) /
/o[<lp(t)|+ P20 )V(”(t))“ !u(t)!}dt

E/(;T[(IIIZII IIPLHpII)”f” IIPII ” H}

T[(Plliﬂ/ll ;!ﬁllllp’ll)”f” s IE”%””M ”}

It is obvious that

T 1
/0 Ip(t)l (t 8)* q(s)|[u(s)| + [(s)||f (u(s))|) ds dt

(¢

) T @) (-9
/ (|q<s>Hu<s>!+!h@W(”(S))')"Ss POl T
Ip/ 1T+t

< (lg@ [« + [N D 2r 075

and

T 1 t(t_s)a—l , , ,
[ ] o (7611 ][] [0 )
+ \h(s)\‘@ |u/(s)|) dsdt

< (1 V[ | 7 4 b0 K o | )

tal

Furthermore, o F@ (4O + [hO)f@O))dt < 75 gO)u(©)] +
|7(0)||f (u(0))]). By using (9) we can deduce that

T u(t) )//
/0 (g(t,u(t» at
<T[(pllﬁ’ll+||[9||||p’||>|w 1Bl B, H]
< 7| (A

lp' || T+
+ (la@ @] + [T N D ST

+ (1 Do+ Mg |7+ [ 0+ KRN T) ey

TO(

(400 1) + O (0.

. u(t)
That is, (g( 1)

)" € L1[0,1].
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Finally, assume that ¢(t) = ( (f(ut ). From (8) we know that ¢(¢) € C(I,R). Let (g(t,
u(t))) € C(I,R). Then

() = < u(t) >/ _ w(0g(t, u(t)) - (6, u(0))) u(t)
g(t, u(t)) (g(&u(t))?
_ v @u@))u)
gu(t)) (gt u(0))?

which implies /'(¢) = g(¢, u(t))[¢ () + %] € C(I,R). This completes the proof. [
Now we are ready to state and prove our main result.

Theorem 3 Assume that hypotheses (D1)—(Da4) hold. Then the fractional hybrid Sturm—

Liouville problem (1) has a solution u € X = C(I,R). Moreover, if (g(t, u(t))) € C(I,R), then

u e CY(I,R).

Proof By using Lemma(6), problem (1) is equivalent to the integral equation (3). Define
the map © : X — X by Ou(t) = g(¢, u(t))Hu(t), where

o) = E”Z"’/ p(S) u(s)) ds EZ& f i() u(s)) ds
" a4 1 n b}, 1
+EI=ZI%'1/O m]a(q(s)u(S)) dS—EUFZIr]l/O %]a(q(s)u(s)) ds
+E“Zm [ o) as

Zs, / —1“ (h(s)f (u(s))) ds
“Bls)- t cq
+/ (s) ( ()) /0 %1 (q(s)”(s))ds"'/(; ml (h(S)f(u(S)))dS

By using (D,), there exists r > 0 such that
(lplr +g0)(Arr+ Ay) <7 and  (2A17 + Ay) @]l +goAr < 1.
Consider the closed ball B,, where B, = {u € X : ||u|| < r}. Clearly, B, is a closed and

bounded subset of X. Define the map o : X x X — [0, 00) by @(u,v) = 1 whenever u,v € B,

and a(u,v) = 0 otherwise. Note that

IF((9) | = [F (u(s)) = F(0) + F(O)| < |F((s)) - F(0)] + [F(©)]
< K|u(s))| + [f©O)] < Kllull +fo,

lg(s, ()] < Il Nl + go, and |f(e(s))| < K|zl + fo. We prove that the operator © satisfies
the conditions of Lemma 1. We prove it in some steps.
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Step 1: In this step, we prove ||@u|| < r whenever u € B,.

Let u € B,. Then we have

|E||v|2| ,|f PO uts) s

- ENWIBI 2l +fo) X7y 1ilby

V4
_ VIR +fo) Xy Iyl T
p
_ TIEIMIBIE Y, ml - TIEIVIIBI X
V4 p

and

“ “ B TIE|IpIK 7, &
E i ds <
| |§i=1j|5| fo D (o) s r

p

, TIEIBIA X, 18

p

. S (s— a-1 o
Since I%(1) = [, (slf()a) dt = w7, we get

IE |Z|a|/ 1*(|a)||u()]) ds
'E”'q””””zlftlf ([ Sqesar)as

- TV E|lqll Y7 1&|
pl(a+2)

and

T YENvlligl 2oL, Il

|E||v|Z|n;|/ ml" (la@)|u(s)]) ds < Pl +2)

Moreover, we have

T“”’CIEIIVIIIhIIZ —11mjl

IEIIVIZImIf I (|1(s)[|f ((s)) ) ds

T E vl lfo Yoy Iyl
+

T KIE| Al Y0, 16l .

m a; 1 .
|E| 21: |s,»|f0 |p(—s)|1 (|A()]|f (u(s))]) ds < DTarD)

. T UE||Afo D07 1&i]

plr(a+2)

(10)

(11)

(12)

(13)

(14)

(15)

Page 9 of 29
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PO ) s < TKIpI . Thip)

Z0] - p p (16)
t . T ql
|p—)|1 (|g(9)||u(s)]) ds p]"(ot+2)r (17)
and
t Tqu,Cnhn Ta+1||h||fb
/0 por ) ) ds < e o (18)
Since
|Hu(t |
<|EIIUIZ|77;I/ :”EN (u(s))| ds +|E|Z|a|/ :”EN )| ds

vIE |Z|s,|/ (a9 s
+|E||v|2|n,|/o'm(%)'f“(|q<s>uu(s)|)ds
+|EIIvIZ|m|/| h(s)||f (u(s))[) ds

+|E|Z|sl|/ e (ol o)) ds

L1p(s)l
o 1p@)l

- 1
V(u(s))|ds+f0 |p(—s)|1“(|q(s)}|u(s)|)ds

+ e S V(u(s))|)ds,

by using (10)—(18), we find |Hu(t)| < A;r + Ay, where

TIEIWIRIK X Il TIENBIR Y, 1&)
+
p V4
N TV E|lqll 7% 1&]
pl(a+2)
Ta“|E||V|||61||Z;l:1|’71| Ta*llCE||V|||h||Z;1:1|’71|
+
pl(a+2) pl(a+2)
N T CE|||h) Y27 16
plr(a+2)
N TK||pll N T q|| N T C| k||
p plr(a+2) plr(a+2)

T|BIK ’” !
= ﬂ(m(Zm ¥ |v|Z|n,|> + 1)
p i=1 j=1

1=

Page 10 of 29
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+prf:“ Km(z &1 + IVIZIn, ) + 1>(|Iq|| +IC||h||):|

j=1

~ « +IC||\h
- %(Kllﬁll + w> <|E|<Z &1+ 1o Z In ) ‘ 1)

and Ay = (G151 + T (EI(CT, 161 + v X, Inyl) + 1). Thus,

|Ou(®)| = |g(t,u®))||Hu(®)| < (Ipllr + o) (Arr + Ay) <r

Hence, ||®ul|| <rand so ®B, C B,.
Step 2: Let u, v € B,. By using a similar method to that in step 1, we get

Sl [ POz 7
|E||v|j2=1:|n,| fo o [/ (0) = (9) | s

_ TEIVIBIK S, |
B p

E |Z|&|/ l "”)' )~ F (1) ds

- T\E||pIK Yo &l |
B p

u_V”’

|M_V||)

_TE g
IE] Z il / —1“ (|q(s)]|ues) - ()] ds Lﬁ'(‘i ||+2231 i

|E||v|Z|n,|f Tn’“ (1265 |1t5) - )] s

- T HENlligl 2oL, Il

u-v|,
pl(a+2) I I

IE[|v| Z ] / ml" ([ If (u()) ~ £ (v(5)) ) ds

- T”‘“/CIEIIvIIIhH > i1 njl
pl(a+2)

|E|Z|§,|/ —1“ ([1&)]|f (u(s)) —f (v(s))|) ds

- T UCIE| Bl Y2 16
- pl(a+2)

lloe v,

llue v,

Ot :ig;: If (u(s)) = F (v(s)) | ds < TICIJLI}” llu—vl,

T‘“lll l
[ o ) - vl ds = Mgy,
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and [y il ()11 (u(s) — F ) ds = Tl ju — vl Thus,

pl(a+2)

|Hu(t) - Hv(t)|

b ~
< |E||v|Z|n,|/ :”( 37 (9) -7 (v09)

“ |5(s)| ;
i - d
+|E|;|§| /0 D7) =0 ds
+ 'E'Z'é"' /0 i@Ia(wu)uu(s)—v(s)y)ds
+|E||v|Z|n,|f mlﬂ (1) [s65) - v(5)]) s

; IEIIVIZInJI / M—)'P (1165)|[f () — £ (v) ) s

+|E|Z|g,| / mﬂ (|1(s)|[f (u(s)) —f (v())]) s

1PG)I [f(u( ) (v(s))|ds +

+ o p@)l 4 ()|1 (|q(s)||u(s) u(S)D
/0 |p<s>|1 ()] ((5)) ~ £ (v)) ) s
<Ailu-vl.

Hence, |Hu(t) — Hv(t)| < A;|lu — v||. This implies that

|Ou(t) — Ov(t)| = |g(t ul®))Hu(t) — g (¢, v(6)) Hv(t)|
= |g (& u(®))Hu(t) — g(, u(t)) Hv(e) + g(t, u(t)) Hv(¢) — g(t, v(£)) Hv(?)|
= [g (&, () [Hu(t) - Hv(®)] + Hv()[g (&, (1)) - (& V(1)) ]|
lg (&, u(®)) || Hu(t) — Hv(8)| + | Hv(2)||g( u(®)) - g(2,v(0))|
< (Iolr +go) Arllu = vl + (Arr + A Il 1w~ v|
(@A + A8l +goAr) Il = vll,

IA

and so [|Ou — Ov| < (2A1r + A) o]l + goA1) |l — v|| for all u, v € B,. Now, consider the
map ¥ (£) = (A1 + A9l + goA1)t. Then ¢ € ¥ and [|Ou — Ov|| < ¥ (||lu — v||) for all
u,v € B,. Thus, a(u,v)||Ou — Ov| < ¥ (||lu—v|) for all u,v € C(I,R), that is, @ is an a-y-
contraction. Now, we show that ® is an «-admissible map. Let a(z,v) > 1. Then u, v € B,.
By using the first step, Ou, @v € B, and so a(Ou, @v) > 1. Assume that {u,} is a sequence
in C(I,R) such that «(u,_1,u,) > 1 for all # > 1 and u, — u € C(I,R). Then {u,} is a
sequence in B,. Since B, is closed, u € B, and so «(u,,u) > 1 for all n. Let uy € B, C X.
Since ®B, C B,, Oug € B, and so a(up, Ouy) > 1. Now, by using Lemma 1, ® has a fixed
point in C(Z, R) which is a solution for problem (1). |
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Example 1 Consider the fractional hybrid Sturm-Liouville differential equation

D5 (600v < 0 u(t))) - % (% sin u(t) + 1>) + e‘*/zu(t)

=e‘costtan™ (u(t) + 1) (19)

with boundary value conditions

ult) v _ 1 1
(g(t,u(t)) t=0 = goo00 (34(0) + 1),

s g, Wb L3 1, 4 (20)
2ia W(W) T Al _O’(g(;m;»)’

where g(¢, u(t)) = 24 IL”‘%')‘ + le0te27t Pute =2, T=1,r=0.1,& = 55, 62 = g0550 11 =
~ —L

T M2 = 1050 M3 = Ta550 P(E) = 600v/1 + 82, p(t) = <5, q(0) = e’ﬁ h(t) = et cost, f(u(t)) =

tan‘l( () +1), andf(u(t))— sinu(t) + 1. Thenwehave| |<1—ICfo-—, af(:)|§

1
38
=K. fo=1,p=600, |pll = 155, lgll = 1, ||| = 1. Also,

[sint]  [lu@)] - [v(®)]] _ |sint|
t,u(t)) —glt, vt < t)—v(t
o6 u0) ~g(ev0)| = = T+ @)1+ @) ~ 27 u(6) = v(®)].
Note that 4]l = 5~ and g = 3, 0 505 — 107 fl(l) = o5~ T = — 10 70 and
E =-4000. Then [E|(Y7, &1 + v Y27, [njl) + 1=4000( 535 + 37 7o) + 1 = 8, and so

Tz Tgl + Kkl
fh-;(/cnpn F(—><|E|<Z|s,|+|v |) )

8 (1 2
= —( == + — ) ~ 0.0159506855,
600\ 300 ' (%)

N P ST
Ay = p<f0||19||+ F(Mz))uﬂ(;m+|v|jZl|n,|>

8 (1
= — (== + —2 ) ~0.006379699,
600\100 * 4r (%)

0.1
(||¢||r +g0)(A1r + Ay) & <_71 + —)(0 0159506855 x 0.1 + 0.0063796996)

~0.0041143065 < 0.1 =r,

and

A+ A)lld |l + goAr
1 1
~ (2 x 0.0159506855 x 0.1 + 0.0063796996) x 2— + 5 x 0.0159506855
T

~ 0.0094984296 < 1.

Now, by using Theorem 3, problem (19)—(20) has a solution.
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We will need the following corollary in the next section.
In Theorem 3, put g(¢,x) = 1 for all t € / and x € R. Then conditions (D;) — (D) reduce
to the following conditions:
(M;) The functions f, f R — R are differentiable on [0, T] and . are bounded on
[0, 7] with £ <K and £ <K.
(M,) The function p € C1(I,R) with p(t) # 0 for all t € I, inf,¢; |p(£)| = p and p € C* (I, R).
Also, p(2), q(¢), and h(t) are absolutely continuous functions on I.

Corollary 1 Assume that hypotheses (My)—(My) hold and there exists a number r > 0 such

1
< _
that r, where E = ST e S

T (= . Tlqll + KAkl i -
C = ;(/CH[JH + w) <|E|<;|‘§,| + |V|;|U1|> + 1) <1,

Co = L(hlIpI + LRI, &1+ v S i) + 1), fo = [f(0)], and fo = [F(0)]. Then the
fmctwnal hybrid Sturm—Liouville differential equation

D (p(Ou' () - pOF (u(t))) + q()ule) = WD) (u(D)) (1)

with hybrid multi-point boundary condition

(22)

u'(0) —(p POF (u(t)));-0,
oty Slai) = v 3 mu(by)

has a solution u € C'(I,R) if and only if u solves the integral equation

EvZn,/ p(s) u( )) ds — EZS,/O _s)~ s))ds
+EZ§,/ pil" S)u S) EvZn,/ —I“ q(s)u( s))
+EvZn]/ —I“ h(s)f u(s) ds—EZE,/O ﬁl"‘(h(s)f(u(s)))

7o) ‘1 .
R /0 2O uts) ds- /0 @) ds /O g e (o)) ds

Proof Note that problem (21)—(22) is a special case of problem (1) with g(¢,x) = 1 for all
t € I and x € R. Now, by using Theorem 3, we can conclude that problem (21)—(22) has a
solution u# € C'(I,R). O

In Theorem 3, put p(t) =0 forallt € I andf(x) =0 for all x € R. Then (D;) — (D3) reduce
to the following conditions:
(L1) The function f : R — R is differentiable on [0, T] and % is bounded on [0, T'] with

du —
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(L) The function p € C1(I,R) with p(t) #0 for all ¢ € I, inf;; |p(¢)| = p. Also, g(t) and
h(t) are absolutely continuous functions on /.

(L3) The function g: I x R — R\ {0} is continuous in its two variables and there exists
a function ¢(£) > 0 (Vt € I) such that |g(¢,x) — g(¢,9)| < ¢(t)|x — y| for all (¢,x,y) €
I xR xR.

In this case, we obtain the next result.

Corollary 2 Assume that hypotheses (L1)—(Ls) hold and there exists a number r > 0 such
that (|| |lr + go)(Bir + By) < r and (2B1r + By)||p|| + goBB1 < 1, where

_ T Y(llqll + K|141l) “ .
Bi=— D (IEI<;I&I+IVI;|W,-I)+1>,

~ Ta+1||h|[ﬁ) m n
B, = m(m(; &+ [v] ;'”") + 1>,

E= W, fo = |f(0)], and gy = sup,; g(¢,0). Then the hybrid Sturm—Liouville prob-
i=1 57V 2j=1 7

lem

“D*(p()( 5, ff()t)))’) +q()u(t) = h(e)f (u(t)),
(g<ZL-‘3z>>)2:o =0, (23)

m u(a;) _ n u(bj)
2 Elatan) = ¥ 2o W )

has a solution u € C(I,R). Moreover, if (g(t, u(t))) € C(I,R), then u € C*(I,R).

Proof By a method similar to that in the proof of Corollary 1, we can conclude that prob-
lem 23 has a solution # € C(I,R) (also, u € C!(I,R) whenever (g(t, u(t))) € C(I,R)). a

3 Continuous dependence

In this section we are going to investigate continuous dependence(on the coefficient §;
and 7); of the hybrid multi-point condition) of the solution of the fractional hybrid Sturm-
Liouville differential equation (21) with the hybrid multi-point boundary condition (22).
Note that the main theorem of this section is a hybrid version of Theorem 3.2 in [42].

Definition 4 (see [42]) The solution of the fractional hybrid Sturm-Liouville differential
equation (21) is continuously dependent on the data &; and #); if, for every € > 0, there exist
81(€) and 83(¢) such that, for any two solutions u(t) and #(¢) of (21) with the initial data
(22) and

i (0) = (55 (@(®))i-o,

~ (24)
> &iilan) = v 3L (b)),

respectively, one has > ", | — & < 8, and 27:1 Inj — 7j] < 82, then [u —ii|| <€ forall t € I.

Theorem 5 Assume that the assertions of Corollary (1) are satisfied. Then the solution of
the fractional hybrid Sturm-Liouville problem (21)—(22) is continuously dependent on the
coefficients &; and n; of the hybrid multi-point boundary condition.

Page 15 of 29
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Proof Let u be solution of the fractional hybrid Sturm-Liouville problem (21)—(22), and
let

(S) pls) ~
E‘)Z / (s ))ds —E 2;5/0 mf( (s))ds
+E 3 é/ ‘1%)1“( (s)u(s) ds EvZn,/ —I“ (s)u(s))

by
+Ev Nj/o %I“(h(s)f u(s) ds — EZE,/O LI"‘ h(s)f(u(s)))

ti,} S)~ . t N _ N _
+/0 p—sf(u(s))ds—/0 ml (q(s)u(s))ds+/0 m] (h(s)f (ia(s))) ds

be a solution of the fractional hybrid Sturm-Liouville differential equation (21) with hy-
brid multi-point boundary condition (24). Hence

|ua(t) — a(t) |
e
e o e
+ Eéa /0 %I‘* 4(6)uls)) ds - EZ& / p—l“ (¢6)is)) ds
+ Evzn, / —1“ (a(s)uls) ds+EvZn, /0 prcd (q()iu(s)) ds

+ EvZn}/ .—I°‘ h(s)f u(s) ds — EvZn]/ —I“ h(s)f u(s ))

+ —EZ& /0 —1‘* h(s)f(u(s)))ds+E;§i /0 ﬁI‘Y(h(s)f( 5))) ds

p(s) p(s) -
' /o oy 49 45— / e ) ‘

+ _/Otlﬁja(GI(s)u(s))d /Of 1 L 1o(gs)iuts)) ds

p(s)

[ e as- [ o) s

(25)

On the other hand,

EvZn]/ u(s) ds — EvZn,//p(s

Zn,/o u(s)dsEZ/ () (a(s))

Page 16 of 29
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+EvZn]/ S) () ds— Ev Zn]/ p(s
. ’ /'[9(3 p(s
+Evj21:n]/0 p(s (s) ds — Ev Z /

and so

<|E||v|Z|/I 0 |p(s)| u(s) = f ()| ds

+|E - E|lv]| Z |n,-|f0 ’ :223: If (iu(s)) | ds

1% (s
+|E||V|Z|771 n/f P |ds

- TIEIIVIIIPIIICZ;:1 |1
h p

Il — 2]

EvZn, /0 ‘: (u(s)) ds - Evzn, / pgf(ﬁ(s)) ds

Page 17 of 29

ds

’

TR HBIE il +f6) Y Il

+ |E|E| (Z &= &l + v D Inj— ﬁj|)
i=1 j=1

) TIE|w IRl +£0) X7y Iny =
. .

Since Y 7", |& — &| < 81 and > i1 Inj =7l < 82, we get

- TIEIIUIIIPIIICZ,=1 [mjl
h p

Il — ]

T I KNl +o) S, Il
p

+|EIE| (81 + [v]8,)

. TIEIV PN & + )8
p

Similarly,

_Ezg,/ e F(us) ds+EZa/ pﬁs;f( (s)) ds

0

- TIENBIK X7, 14|
- p

lloe —

" b 5(s) ~
Z /p() u(s))ds—EvZﬁ,-/o %f(ﬁ(s))ds
j=1

p
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TIpIR "1t
ﬂmﬂc]aauwdlm )”M(WUMZME

TIEIIIPII(/CIIuII +fo) 2 1€ - i
p

_ TIENBIK YT, 14

TIBIC Nl +fo) Y0, 1
p

lloe — aall + |EIIE| (81 + [v]82)

. TIENBIE] @] + )8
p

Also,

m

EY & /O ; 1% I (g(s)uls)) ds - E,Z; 3 fo " L (o) ds

o p(s)

_ T HENgl E, &

pl(a+2) e =l
T\ gl ENE il 3, 1] (51 + 10182 + T\ q||E|]|i]|8;
pl(a+2) ! 2 pl(a+2)

Similarly,

—EvZn,/ —I"‘ q(s)u s) ds+EvZn,/0 —Io‘ q(s)u(s))

- T HENvllgl 2oL, Il

pl(a+2) loe = ]
T |q|||v]|E||E[|| ] Zlelnfl( v152) T gl Iv|E| || ]| 8
+ +
pl(a+2) ! > pl(a+2)

Again,

Y L .
EvZn,/O —I"‘ h(s)f(u(s)))ds—Ev}Zl:nj/O IEI (h(s)f(u(s)))ds

THENWIAIK 30, Tl

- -
- pl(a+2) loe = ]
T il W IENEN(K |l + /o) ey Il
+ (81 + [v82)
pl(o+2)
T k||| |E|(K || @]l +£0)8
pl(a+2)

Similarly,

m

_EZ :, /Oﬂi I%Ia (h(s)f(u(s))) ds + EZZ::é foai I%Ia (h(s)f(it(s))) ds

i=1

_ THENRIK Y, &

pl(a+2) ot = ul
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s T || [ENEIKNE) +£5) Y0 1€
pl(a+2)
N T\ |EJ(KC i +f0)d1
pl(a+2)

(81 + [v]82)

Note that

POz onas [Pz asl o [Pz -7
[, S o= [ S @)= [ 57 t0) -t s

Kipl, .
< = u— .

Also,

t 1 " ) ]
‘—fo p(—sl (q(s)uls)) ds+/0 —I*(q(s)it(s)) ds

O U . U -
+ /0 %1 (h(s)f (iu(s))) ds — /0 %1 (h(s)f (a(s))) ds
- TN (KA + lql)
- pl(o+2)

Il — 2.

So from (25) we have
|u(t) - it(t)|

<Cillu—iall + Ay(81 + [v]82) + Az (81 + [v]82)

=Crllu— il + (Ay + Ag)(81 + [v]82),

where
- TEIE ] +fo) Sk njl - TIBNK il +fo) Yo, |&
A, = |EIE] = IPINCNEN +fo) 2_il4 1&il
r
N T Y| | ENENal 320, 1&] N T lglIvIENE @l Y7Ly 1l
pl(a+2) pl(a+2)
N T vl ENEN (Kl +fo) 20y Il
pl(a+2)
. T RNENEIC#] +£0) Yo 1€
plr(a+2)
and
n, _ TIENPNK ) +fo) T lighENNil) T IAIIENC] ] +fo)
> p pl(a+2) pl(a+2)
Hence,

lu—itll < e=(1-C1) (A1 + Ag) (81 +|v]82).
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So we proved that for every € > 0 there exist §; (¢) and 85(¢) such that >_"; |& — & <81 and
Z;’zlmj—ﬁ,l < 8y, then ||u — | <e. O

4 Fractional hybrid Sturm-Liouville equation with integral boundary value
conditions
In this section, we investigate the fractional hybrid Sturm—Liouville equation with integral

boundary value conditions.

Lemma 6 Assume that hypotheses (D1)—(D,) hold. Then problem (2) is equivalent to the

integral equation

E(s—1)* g(t)u(r)
u(t) = gtu(t [/// PO (@) dt dsdw (0)

_f / / S(S_T)a h(@)f (u(z)) dt dsdw ()
() (ax)

vE(s— t)“ La(t)u(t)
drdsd
/ / / POT (@) sav(e)
vE(s — )% h(t)f (u(x))
/ / / PO Ardsavl)
(s - 1) Tg(2)u(r)
/ / T el

s —1)* () (u(t)) - :|
/ / e drds s e (o) | (26)

where £ = w(c)_w(a)_lv(u(e)_v(d)), w(c) — w(a) # v(v(e) — v(d)), w(0) and v(O) are increas-
ing functions, the integrals are in the Riemann— Stzelt]es sense,and 0 <a<c<d<e<T.

Also, (;‘T p(t)f(u(t))) e CYI,R) and ( tu p(t)f(u(t)))” € L1[0,1]. Moreover, if
(g(t, u(t))) € C(I,R), then u € C'(I,R).

Proof Note that equation (2) can be written as

(G0 (s -peru) ) |) =gt ey (uo).

Hence, I' (4 [p(0)( s - BO)F u(®))']) = ~I*(q(t)u(t)) + I*(h(£)f (1)), and s0

!’

Wt Wy
P) (g(t, u@) ¥ (t)f(”(t))) v “”(g(t @) ? (t)f(”(t))>

= —I*(q()u(®)) + I* (h()f (u(2))).

t=0

Since (g % t) p(t)f(u 1)), = 0, we get

(0 (g(t”‘:zt)) —i)(t)f(u(t))) _ 1 (q(Oul®) + I (W) (u0)),
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and so
ult) - o1, L
(s =BT (o) ) == T a(0ut0) 1 () @)
Thus, we obtain
u(t) L
gum) PV 0) -
- "L (gloyuts)) ds + | L syt () s, (28)
o p(s) p(s)
where £ = 0540)0) O)f(u(O)) For simplicity, put A(¢) = ¢ LI‘)‘(q(s)u(s))ds and B(t) =

N pl Ia(h(S)f(u(s)))ds Then we get

/ (g(eu(j()e)) —13(9)j7(u(9))> dw(@)—(/ dw (0)

- —ch(Q)dw(G) + fCB(e)dw(G)

and
e u(e) 5 - e
v‘/d (g(@,u(@)) —p(Q)f(u(@))) dv(@)—ﬁv/d dvu(0)
:—vﬁ A(Q)du(9)+v/d B(9)dv(0).
Hence,
/ ( u©) —ia(e)f(uw))) dw (6) — (w0 - (@)
a \g(0,u(9))
= —/CA(Q)dw(Q) + /CB(H)dw(Q) (29)
and

o u®) -
v_/d (m —P(Q)f(u(G))) dv(9) - tv(v(e) - v(d))

=—v/d A(G)du(9)+v/d B(9) dvu(6). (30)

By subtracting (29) from (30) and applying

(MO e uwe)
/a <g(9,u(9)) A (e)f(”“’))) dw (9) =v /d ( 26.560) —p(e)f(u(e))) dv(0),
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we get £ = Ef AO)dw (0)- & [ BO)dw (0)—vE [; A(6) dv(6) +vE [ B() du(6), where

== e (ﬂ)_v(v(e)_u( 77+ BY substituting the value of £ in (28), we conclude that
c 0
u(t) :g(t, u(t)) |:5/ﬂ /0 ﬁ[“ (q(s)u(s)) dsdw ()
c pb
—5/ / LI“ (h(s)f (u(s))) ds deo (0)
- vé'/ f —I"‘ q(s)u( s) dsdvu(0) + VE/ / —IO‘ h(s u(s) )dst(Q)
+p(t)f(u(t)) f %1" (q(s)u(s)) ds + /0 %1"‘ (h(s)f (u(s))) ds],
where £ = w(g)_w(a)_lv(u(e)_v( 7+ Note that
1 1 [S(s—1)*2(7) S (s—1)%1z(1)
————dt=| ————=dfr,
v DGl @ T e O

where z is a function. Hence, we can write

(s =) 'q(r)u(z)
u(t) = gtu(t |: /f/ p(s)F(a) dt dsdw (0)

_g/// 5~ rasl)hr(a)u(t))drdsdw(e)

(s =) 'q(r)u(r)
—US/ // s)F(a) dt dsdv(0)

(s — 7)* ' h(T)f (u(1))
+v5/ / / PO @) dt dsdv(0)

_/ * (s =) 'q(@)u(r)
0 Jo p)I(a)

t s (s— o) h(r)f (u(r)
+A 0 P (@)

drt ds

dr ds +[9(t)f(u(t)):|,

where € =

1 .
T Om @@ For the next part, by using (27) we have

(g( tu (Mtz ) —ia(t)f(u(t)))/ = —1%1“ (g(Ou(t)) + 1%1“ (h(o)f (u(9))) € CU,R),

and so dt(p(t)(g(;‘g t)f(u(t) = dllo‘(q(t)u(t)) + %I"‘(h(t)f(u(t))). Hence,

((((ﬁZ» ty@m»)

— _ l—ai o« 1—o¢i o
=-1 dtl (q(O)u(®) +1 dtl (h(@)f (u(2))),
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and so

u(t) 7 '
2 (0 ey 7 W”))

d
= I (q(Ou(e) + ' (h(t)f(u(t)))

Il—a ta—l
I'(x)

q(0)u(0) + '™ & h(O)f(u(O))

(

Thus, we obtain

cya (t) ~ T ' d
D (0 g ~POF () ) ) =1 5 (o) + 1 (40 )

— q(0)u(0) + h(0)f (1(0))
= —q(Ou(t) + h(O)f (u(t)).

By using (27), we get ( p(t)f(u(t)))t o = 0. Also, by using simple computations and
(26), we obtain

‘ u(®) = (0\F B ¢ u(0) .
[ (G POV w0 ) o) =v [ (s - 5 o) ) dveo.

By a similar method to that in the proof of Lemma 2, we can conclude that

ueC,R) and ( (”(t)

A0 ‘[’(”f(”(f))> e L1[0,1].

This completes the proof. g

_ T (lqll+KliAL) ( @ (0)-w @)+vI(v(e)-v(d
Put Aj = Tl ) (ZO e e + 1) + Kbl and

e T Alfy (W(C) —w(a) + [vl(v(e) - v(d))

Cpl(a+2) \|w(c) - w(a) - v(v(e) — v(d))] + 1) +follpl,

where @ (c) — @ (a) # v(v(e) — v(d)), @ (0) and v() are increasing functions, the integrals
are in the Riemann—-Stieltjes sense,and 0 <a<c<d<e<T.

Theorem 7 Assume that hypotheses (D1)—(Ds) hold and there exists a number r > 0 such
that (|@llr + go)(Air + A%) < r and 2A;r + AP + g0 A} < 1. Then the fractional hy-
brid Sturm—Liouville problem (2) has a solution u € X = C(I,R). Moreover, if (g(t, u(t))) €
C(I,R), then u € C'(I,R).

Proof By using Lemma(6), problem (2) is equivalent to the integral equation (26). Define
the map ©® : X — X by Ou(t) = g(¢, u(t))Hu(t), where

[P EGs =) g(n)ul)
Hu(t)—/// POT @) dt dsdw (0)

E(s = 1) h()f ()
/ / / POl rhsdm©)
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vE(s — 1)*1g(r)u(r)
/ / / POT@  TEWO

vE(s — 7)* Th(z)f (u(r))
*/ / / PO () drdsdv®)

// (s— 1) g( t)u(r)dtds
ps)I(a)

(s = 1) h(r)f () e
+/0 /0 O @) dtds +P(t)f(u(t)),

By using the hypothesis, there exists r > 0 such that
(||¢||r +g0) (A’{r + A;) <r and (2A*{r + A;) ol + goAs < 1.

Consider the ball B, = {u € X : |u| < r}. Clearly, B, is a closed and bounded subset of
X. Define the map o : X x X — [0,00) by a(u,v) = 1 whenever u,v € B, and a(u,v) =0
otherwise. Note that £ (u(s))| < Kllul| +f, |g(s,u(s))| < 6|1l +go and £ (u(s))| < Kllul +
fo- We prove that the operator ® satisfies all the conditions of Lemma 1. We prove it in

some steps.
Step 1: In this step, we prove ||@ul|| < r whenever u € B,.
Let u € B,. Then we have

1€1(5 - 2L lq(o) ()]
/ / / POTE O

|5|||q||r/ / / (Sp(t): 60 dsdw (©)

- 7°"\E)||qll(w (c) — w (a))
pl(a+2)

/f/lgl )‘”Ih(f)llfu(T) drdsdw(e)
I'(a)

- T“*1|8|||h||IC(w(c)—w(a))

)

pl(a+2)
. T E| || hlfo(w (c) — @ (a))
pl(a+2) ’
/ / / WIIE(s — ) 1|q(t)||u(t)|dtd$dv(9)§ T“*llglllqlllvl(v(e)—v(d)),
()| I (@) pl(a+2)
WIEI(s — T)* Hh(T)|f (u(z))]
/ / / PO @) drdsdu(6)
- T ENRIKIv|(v(e) - v(d))
r
- pl(a+2)
THE | AllfolvI(v(e) — v(d))
pl(a+2) ’
L (s— o) Hg(o)l|u(r)] T q|
/ / lp(s)II" () drds = pra+2)”

/ / s = 1) (D) If (u( W e ds < T‘“l’CIIhIIH T Alfy
lp(s)I I () Tpr+2)  prle+2)
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and [p(0)f (u(t))| < KIplr +foll Pl Since

L0 IENs - )% ()] u(z)]
|Hu(t)| < / / PO @ dr dsdw (0)

1€1(s = ) L) (o))
/ / / P6)I T (@) drdsdw (6)

* IIEN s = ) g0 ()]
/ / P6) 1T () dr dsdv(f)

S IEI(s = T)* Hh(o)I|f (u(t))]
+ / / PO @ dt dsdv(0)

// (s—1)* Hg( t)Hu(T)'dtds
|p(s)| 1" (ax)
//(S 7)Ao |[f (u(1))]
[p($)| T ()

dvds + |pOf (u(®)],

we get |Hu(t)| < Ajr + A}, where

T (gl + KliAl)

Ar= pl(a+2)

(I€1(@ (0) - @ (@) + [vI(v(e) - v(d))) + 1) + K|l

and A% = Wb (1€ (2 (¢) — (@) + |v](v(e) — v(d))) + 1) + follpl. Thus,

pl(a+2)

|Ou(t)| = |g(t, u®))|[Hu®)] < (1ol + go) (Ajr+ A3) <7

Hence, ||®u|| <rand so ®B, C B,.
Step 2: Let u,v € B,. By using a method similar to that in step 1, we get

1€1(s — )% q(2) | Ju(r) — ()|
/ / / PG| T (@) dr dsdw (0)

T"‘”|5|||q||(a7(6) w (a))
pl(a+2)
/ / $1E1(s — ) Ha()IIf (u(r)) - f(v(1))]
lp($)IT" (o)
T"’*lISIIIhII/C(ZU(C) w (a))
pl(a+2)
WIIEl(s — 7)* g (o) |u(r) — v(T)|
/ / / PO (@) drdsdv(®)
T“+1|5|||61|||V|(U() v(d))
pl(o+2)
/ / / WIIEI(s — 1) A(D)||f (u(r)) — f (v(2))|
lp(s)| 1" (@)
- T HENAIKvI(v(e) — v(d))
- pl(a+2)
/f / (=0 @) v T gl
o Jo lp(s)II" (@) pl(a+2)

llue v,

dt dsdw (0)

llee v,

lloe = vIl,

drt dsdv(0)

llee = vi

lloe = vIl,
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/‘/ s—r)"‘llh(f)Hf“(T)) f(V(T))|deS< w”u—vll,

p(s)| () = pra+2)
and |p(8)||f (u()) — f (v(®))| < K|1plllu— v||. Thus,
’Hu(t) - Hv(t)‘

¢ 105 1E](s = 1) (o) () = v(o)]
drdsdw (0
E/a /0 /0 PO (@) vdsdw (6)

<0 1EIGs = ) A () - f (7))
+/// dt dsdw (0)

P ()
///lvllé’l(s 7)* 151{&?()“)““) YN 4 dsav(e)
+/ f / M'g'S_t)a_;}(ls(;w{oi?m)_f(V(tmdeSdU(e)
[
[ [ T s o)) -0

Hence, |Hu(t) — Hv(t)| < Ajllu — v|. This implies that [|@u — Ov|| < ¥ (||u — v||) for all
u,v € B, where ¥ (£) = (2A5r+ A3)||# || + g0.A7)¢t. By a similar method to that in the proof of
Theorem (3), we can conclude that ® is an «- -contraction, ¢-admissible map, o (u,, u) >
1 for all » whenever o(u,,_1,u,) > 1foralln > 1, u,, - u € C(I,R) and (1o, @upy) > 1 with
uo € B, C X. Now, by using Lemma 1, ® has a fixed point in C(, R) which is a solution for
problem (2). O

Example 2 Consider the fractional hybrid Sturm—-Liouville problem

999 u in
¢D 1000 (e J(# -8 t(wu(t) +3))) + 35 1thz)bt(t)

2 o7 1)+ 1z et
= Lot cot (ult) + v/3),
®
(e = S (agu(d) +3))0 = 0, o

1
1
I s = 5 (g0) +3) (36 + 1)
1+

1l ) sinf
= 5 %(%\u(eglhﬁe_”g - % Eu(9)+3))d(46+2).

Puta=2Z,T=1,r=1, () =39+1,U(9)=49+2,p(t)=6_%,1~9(t) =St () =

1000 ’ 50 ’ 300(1+t2)

h(t) = em S () = cot’l(u(t)+x/_) J? (t) = 35u(t)+3,and g(z, u( ) = 157 |u(B) + 7 e””.
Then |42 <1=K,fy = F, ino—Sp L5l = 4 llgll = 55, i = s
@ (0) =1, w(g) =2, U(z) = 4, v(l) =6. Also, ||¢] = m,go =1and |g(t u(t)) — gL, v(t)| <

t 1 _ 1 _ ~w (0)+v|(v(1)-v(3))
105 14(2) = v(¢)|. Moreover, @ (3) — @ (0) = 1 # 155 = v(v(1) - ( )) é o O M=o )

200 * 1+5./e 200 L 1 01 _ _ mfe 200
1= %5, and so A = o0r(Z) X 9 * a5 X 5 0.0316519809, -Az = ooy X 99

% = 0.0745465529, ([|¢||r + go)(Ajr + A3) ~ 0.1072605191 < 1 =r, and (2Afr + A3) o]l +
goA; ~0.033030486 < 1. Now, by using Theorem 7, problem (31) has a solution.
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Corollary 3 Assume that hypotheses (L1)—(L3) hold and there exists r > 0 such that (||¢||r +
2)(Bir+ B3) <rand 2Bir + B)||¢| + goB < 1, where

By =

T‘”“(Ilqll+’CIIhII)<ID(C)—CU(a)+IVI(v(e) v(d)) 1)
plle+2) | (c) - @ (a) — v(v(e) — v(d))|

Y i A <w(c) —w(a)+ [v|(v(e) — v(d)) .\ 1)
2T pl(a+2) \|o (o) - w(a) - v(v(e) - v(d))|

Jo = |f(0)|, and gy = sup,;g(t,0). Then u € C(I,R) is a solution for the hybrid Sturm-—
Liouville problem

D*(p(t)ds)') + q(@)u(e) = h(e)f (w(z),

(705)0 = O, (32)

fcuﬁ)dw
a gO,u@®

where @ (c) — @ (a) # v(v(e) — v(d)), @ (0) and v(0) are increasing functions, the integrals
are in the Riemann—Stieltjes sense, and 0 < a < c <d < e < T. Moreover, if (g(t,u(t))) €
C(I,R), then u € C'(I,R).

Proof In fact, problem (32) is a special case of problem (2) with p(¢) = 0 for all £ € I and
f(x) = 0 for all x € R. Now, by applying Theorem 7, we can conclude that problem 32 has
a solution. O

Corollary 4 Assume that hypotheses (Ml) (M>) hold and there exists r > 0 such that

c; _ T (gl K1) +|v|< (e) (d)) N = Tkl
ﬁ <r, where C* oL (a+2) (‘w (©)—w (@)—v(v(e)—v( + 1) + IC”P” <1 C* pr(a+2)o S
(Iw & ’ng’a))*‘i‘(g)( + 1) +f0||p|| fo=1f(0), omdfo = [f 0)|. Then u € C'(I,R) is a solution

for the hybrid Sturm—Ltouwlle problem

D*((p(Ou () — PO w(t))) + q(e)u(t) = h(E)f (u(t)),
(u(t) - pOf (@), = 0,
L) - pO) w6))) dw (9) = v [;(u(®) - pO)f (6))) duv(®),

where @ (c) — w (a) # v(v(e) — v(d)), @ (0) and v(0) are increasing functions, the integrals
are in the Riemann—Stieltjes sense,and 0 <a<c<d<e<T.

5 Conclusion

More natural phenomena and processes in the world are modeled by different types of
fractional differential equations. This diversity factor in studying complicate fractional
integro-differential equations increases our ability for exact modeling of more phenom-
ena. This path will lead us in future for making modern software which will help us to
allow for more cost-free testing and less material consumption. In this work, by using
the technique of a-admissible a-1-contractions, we study a fractional hybrid version of
the Sturm-Liouville equation. In fact, we investigate the existence of solutions for the
fractional hybrid Sturm-Liouville equation by using the multi-point boundary value con-
ditions. Also, we review the existence of solutions for a fractional hybrid version of the
problem under the integral boundary value conditions. We provide two examples to illus-

trate our main results.
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