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Abstract
Integral operators have a very vital role in diverse fields of science and engineering. In
this paper, we use ϕ-convex functions for unified integral operators to obtain their
upper bounds and upper and lower bounds for symmetric ϕ-convex functions in the
form of a Hadamard inequality. Also, for ϕ-convex functions, we obtain bounds of
different known fractional and conformable fractional integrals. The results of this
paper are applicable to convex functions.
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1 Introduction and preliminaries
Some very interesting properties of convex functions make them important in mathe-
matical analysis. It should be noted that in new problems related to convexity, generalized
assumptions about convex functions are necessary to obtain applicable results. During the
recent era, there have been several attempts to generalize the notion of convex functions.
Many important generalizations can be found for convex functions, such as α-convex,
m-convex, h-convex, (α, m)-convex, (h, m)-convex, s-convex, (s, m)-convex, GA-convex,
GG-convex, and preinvex functions [1, 3, 5, 9, 11, 13, 14, 17, 18, 20, 24].

Definition 1 ([21]) A function f : I −→R is said to be convex if

f
(
tx + (1 – t)y

) ≤ tf (x) + (1 – t)f (y) (1.1)

for all x, y ∈ I and t ∈ [0, 1], where I ⊆ R is an interval. If inequality (1.1) is reversed, then
f is called a concave function.

Definition 2 ([7]) A function f : I −→R is said to be ϕ-convex if

f
(
tx + (1 – t)y

) ≤ f (y) + tϕ
(
f (x), f (y)

)
(1.2)

for all x, y ∈ I and t ∈ [0, 1], where I ⊆ R is a convex set, and ϕ : f (I) × f (I) −→ R is a
bifunction.
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For ϕ(x, y) = x – y, the ϕ-convex functions reduce to the convex functions. Note that
every convex function is ϕ-convex, but the converse is not true.

Example 1 ([7]) The function

f (x) =

⎧
⎨

⎩
–x, x ≥ 0,

x, x < 0,
(1.3)

where ϕ : (–∞, 0] × (–∞, 0] →R is defined by

ϕ(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

x, y = 0,

–y, x = 0,

–x – y, x < 0, y < 0,

(1.4)

is ϕ-convex but not a convex function.

Integral operators play a very vital role in the study of fractional derivatives and frac-
tional integrals. Next, we give definitions of some integral operators, which will be utilized
in the results of this paper.

Definition 3 ([15]) Let f ∈ L[x0, y0], and let g be a positive increasing function on (x0, y0]
with continuous derivative on (x0, y0). The left- and right-sided fractional integral opera-
tors of f with respect to g on [x0, y0] of order μ, where �(μ) > 0, are given by

μ
g Ix+

0
f (x) =

1
Γ (μ)

∫ x

x0

(
g(x) – g(t)

)μ–1g ′(t)f (t) dt, x > x0, (1.5)

μ
g Iy–

0
f (x) =

1
Γ (μ)

∫ y0

x

(
g(t) – g(x)

)μ–1g ′(t)f (t) dt, x < y0, (1.6)

where Γ is the gamma function.

Definition 4 ([16]) Let f ∈ L[x0, y0], and let g be positive increasing function on (x0, y0]
with continuous derivative on (x0, y0). The left- and right-sided k-fractional integral oper-
ators of f with respect to g on [x0, y0] of order μ, where �(μ), k > 0, are given by

μ
g Ik

x+
0
f (x) =

1
kΓk(μ)

∫ x

x0

(
g(x) – g(t)

)μ
k –1g ′(t)f (t) dt, x > x0, (1.7)

μ
g Ik

y–
0
f (x) =

1
kΓk(μ)

∫ y0

x

(
g(t) – g(x)

)μ
k –1g ′(t)f (t) dt, x < y0, (1.8)

where Γk is the k-gamma function.

Definition 5 ([2]) Let f ∈ L1[x0, y0] and x ∈ [x0, y0]. Also, let η,μ,α, ξ ,γ , ζ ∈ C, �(μ),�(α),
�(ξ ) > 0, �(ζ ) > �(γ ) > 0 with p ≥ 0, δ > 0, and 0 < k ≤ δ + �(μ). Then the left- and right-
sided generalized fractional integral operators ε

γ ,δ,k,ζ
μ,α,ξ ,η,x+

0
f and ε

γ ,δ,k,ζ
μ,α,ξ ,η,y–

0
f are defined by

(
ε

γ ,δ,k,ζ
μ,α,ξ ,η,x+

0
f
)
(x; p) =

∫ x

x0

(x – t)α–1Eγ ,δ,k,ζ
μ,α,ξ

(
η(x – t)μ; p

)
f (t) dt, (1.9)
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(
ε

γ ,δ,k,ζ
μ,α,ξ ,η,y–

0
f
)
(x; p) =

∫ y0

x
(t – x)α–1Eγ ,δ,k,ζ

μ,α,ξ
(
η(t – x)μ; p

)
f (t) dt, (1.10)

where Eγ ,δ,k,ζ
μ,α,ξ (t; p) is the extended generalized Mittag-Leffler function defined as

Eγ ,δ,k,ζ
μ,α,ξ (t; p) =

∞∑

n=0

βp(γ + nk, ζ – γ )
β(γ , ζ – γ )

(ζ )nk

Γ (μn + α)
tn

(ξ )nδ

. (1.11)

Farid [6] (see also [16]) defined unified integral operators and proved that these integral
operators are bounded, linear, and thus continuous.

Definition 6 ([6]) Let f , g : [x0, y0] −→ R, where 0 < x0 < y0, be functions such that f is
positive and integrable over [x0, y0] and g is differentiable and strictly increasing. Also, let
Ψ
x be an increasing function on [x0,∞), and let α, ξ ,γ , ζ ∈C, p,μ, δ ≥ 0, and 0 < k ≤ δ + μ.

Then for x ∈ [x0, y0], the left and right integral operators are given by

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; p) =

∫ x

x0

Gy
x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(y)f (y) dy, (1.12)

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; p) =

∫ y0

x
Gx

y
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(y)f (y) dy, (1.13)

where

Gy
x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)

=
Ψ (g(x) – g(y))

g(x) – g(y)
Eγ ,δ,k,ζ

μ,α,ξ
(
η
(
g(x) – g(y)

)μ; p
)
. (1.14)

For the particular choice of Ψ , g and the parameters involved in Mittag-Leffler functions,
several conformable and fractional integrals can be obtained; see [16, Remarks 6 and 7].
In [16], some bounds of the above operators have been proved for convex functions.

Theorem 1 Let f : [x0, y0] −→ R be a positive convex function for 0 < x0 < y0, and let g :
[x0, y0] −→ R be differentiable and strictly increasing. Also, let Ψ

x be an increasing function
on [x0, y0], and let η,α, ξ ,γ , ζ ∈ C, p,μ ≥ 0, δ ≥ 0, and 0 < k ≤ δ + μ. Then we have the
following bound for x ∈ [x0, y0]:

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)

× Ψ
(
g(x) – g(x0)

)(
f (x) + f (x0)

)
+ Eγ ,δ,k,ζ

μ,α,ξ
(
η
(
g(y0) – g(x)

)μ; p
)
Ψ

(
g(y0) – g(x)

)

× (
f (x) + f (y0)

)
. (1.15)

Further, the following bounds hold as a version of the Hadamard inequality.

Theorem 2 Along with assumptions of the Theorem 1, if f is symmetric about x0+y0
2 , then

we have the following inequalities:

f
(

x0 + y0

2

)((
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

1
)
(x0; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

1
)
(y0; p)

)
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≤ (
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x0; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(y0; p)

≤ 2Ψ
(
g(y0) – g(x0)

)
Eγ ,δ,k,ζ

μ,α,ξ
(
η
(
g(y0) – g(x0)

)μ; p
)(

f (x0) + f (y0)
)
. (1.16)

Moreover, the following result is produced by defining unified operators for the convo-
lution f ∗ g of functions f and g .

Theorem 3 Let f , g : [x0, y0] −→ R be a differentiable functions such that |f ′| is convex,
0 < x0 < y0, and g is a strictly increasing function. Also, let Ψ

x be an increasing function,
and let η,α, ξ ,γ , ζ ∈C, p,μ, δ ≥ 0, and 0 < k ≤ δ + μ. Then we have the following modulus
inequality for x ∈ (x0, y0):

∣
∣(

gFΨ ,γ ,δ,k,ζ
μ,α,ξ ,x+

0
f ∗ g

)
(x; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f ∗ g
)
(x; p)

∣
∣

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)(∣∣f ′(x)
∣
∣ +

∣
∣f ′(x0)

∣
∣)

+ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(y0) – g(x)

)μ; p
)
Ψ

(
g(y0) – g(x)

)(∣∣f ′(x)
∣∣ +

∣∣f ′(y0)
∣∣), (1.17)

where

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f ∗ g
)
(x; p) =

∫ x

x0

Gt
x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
f ′(t) d

(
g(t)

)
, (1.18)

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f ∗ g
)
(x; p) =

∫ y0

x
Gx

t
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
f ′(t) d

(
g(t)

)
. (1.19)

In Sect. 2, we use ϕ-convex functions to obtain bounds of integral operators given in
Definition 6. Moreover, we achieve Hadamard-type bounds using the additional condition
of symmetry. Also, we get some particular bounds by the ϕ-convexity of |f ′| and defining
a convenient integral operator of convolution of two functions. In Sect. 3, we give some
applications of the presented results.

2 Main results
Throughout this section, we assume that

I(x0, y0; g) :=
1

y0 – x0

∫ y0

x0

g(t) dt.

Theorem 4 Let f : [x0, y0] −→ R be a positive ϕ-convex function, and let g : [x0, y0] −→
R be a differentiable strictly increasing function. Also, let Ψ

x be an increasing function on
[x0, y0], and let η,α, ξ ,γ , ζ ∈ C, p,μ,ν, δ ≥ 0, 0 < k ≤ δ + μ, and 0 < k ≤ δ + ν . Then for
x ∈ [x0, y0], we have

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)
f (x)

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(
f (x0), f (x)

)(
I(x0, x, g) – g(x0)

)
, (2.1)

(
gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f
)
(x; p) ≤ Eγ ,δ,k,ζ

ν,α,ξ
(
η
(
g(y0) – g(x)

)ν ; p
)
Ψ

(
g(y0) – g(x)

)
f (y0)

+ Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
ϕ
(
f (x), f (y0)

)(
I(x, y0; g) – g(x)

)
, (2.2)
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(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; p) +

(
gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f
)
(x; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)
f (x)

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(
f (x0), f (x)

)(
I(x0, x; g) – g(x0)

)

+ Eγ ,δ,k,ζ
ν,α,ξ

(
η
(
g(y0) – g(x)

)ν ; p
)
Ψ

(
g(y0) – g(x)

)
f (y0)

+ Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
ϕ
(
f (x), f (y0)

)(
I(x, y0; g) – g(x)

)
. (2.3)

Proof We have the following inequality for the kernel defined in (1.14) and an increasing
function g :

Gt
x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(t) ≤ Gx0

x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(t), t ∈ [x0, x], x ∈ (x0, y0). (2.4)

Using the ϕ-convexity of f , we have

f (t) ≤ f (x) +
x – t

x – x0
ϕ
(
f (x0), f (x)

)
. (2.5)

Inequalities (2.4) and (2.5) constitute the following integral inequality:

∫ x

x0

Gt
x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(t)f (t) dt

≤ f (x)Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)∫ x

x0

g ′(t) dt

+
ϕ(f (x0), f (x))

x – x0
Gx0

x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)∫ x

x0

(x – t)g ′(t) dt. (2.6)

Using (1.12) of Definition 6 on the left-hand side of inequality (2.6) and integrating the
right-hand side, we get

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ (g(x) – g(x0)f (x)

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(
f (x0), f (x)

)(
I(x0, x; g) – g(x0)

)
. (2.7)

Now using the same technique for t ∈ (x, y0] and x ∈ (x0, y0), we can write

Gx
t
(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
g ′(t) ≤ Gx

y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
g ′(t). (2.8)

Using the ϕ-convexity of f , we have

f (t) ≤ f (y0) +
y0 – t
y0 – x

ϕ
(
f (x), f (y0)

)
. (2.9)

Inequalities (2.8) and (2.9) constitute the following inequality:

∫ y0

x
Gx

t
(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
g ′(t)f (t) dt
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≤ Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)(

f (y0)
∫ y0

x
g ′(t) dt +

ϕ(f (x), f (y0))
y0 – x

∫ y0

x
(y0 – t)g ′(t) dt

)
.

Using (1.13) of Definition 6 on the left-hand side and integrating by parts the right-hand
side, we get

(
gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f
)
(x; p) ≤ Eγ ,δ,k,ζ

ν,α,ξ
(
η
(
g(y0) – g(x)

)ν ; p
)
Ψ

(
g(y0) – g(x)

)
f (y0)

+ Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
ϕ
(
f (x), f (y0)

)(
I(x, y0; g) – g(x)

)
. (2.10)

We obtain inequality (2.3) by summing (2.7) and (2.10). �

Corollary 1 By setting μ = ν in (2.3) we get

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)
f (x)

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(
f (x0), f (x)

)(
I(x0, x; g) – g(x0)

)

+ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(y0) – g(x)

)μ; p
)
Ψ

(
g(y0) – g(x)

)
f (y0)

+ Gx
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(
f (x), f (y0)

)(
I(x, y0; g) – g(x)

)
. (2.11)

Remark 1 If we take ϕ(x, y) = x – y in (2.11), we get inequality (1.15) of Theorem 1.

We will need the following lemma in proving the upcoming result.

Lemma 1 Let f : [x0, y0] → R be a ϕ-convex function. If f (x) = f (x0 + y0 – x), x ∈ [x0, y0],
then we have the following inequality:

f
(

x0 + y0

2

)
≤ f (x) +

1
2
ϕ
(
f (x), f (x)

)
. (2.12)

Proof Since f is ϕ-convex, we get

f
(

x0 + y0

2

)
≤ f

(
x – x0

y0 – x0
x0 +

y0 – x
y0 – x0

y0

)

+
1
2
ϕ

(
f
(

x – x0

y0 – x0
y0 +

y0 – x
y0 – x0

x0

)
, f

(
x – x0

y0 – x0
x0 +

y0 – x
y0 – x0

y0

))

≤ f (x0 + y0 – x) +
1
2
ϕ
(
f (x), f (x0 + y0 – x)

)
.

Using f (x0 + y0 – x) = f (x) in this inequality, we get inequality (2.12). �

Remark 2 For ϕ(x, y) = x – y, Lemma 1 reduces to [16, Lemma 1].

Theorem 5 Along with the assumptions of Theorem 4, if f (x0 + y0 – x) = f (x) and ϕ(x, y) =
x + y, then

1
2

f
(

x0 + y0

2

)((
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

1
)
(x0; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

1
)
(y0; p)

)
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≤ (
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x0; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(y0; p)

≤ 2Ψ
(
g(y0) – g(x0)

)
Eγ ,δ,k,ζ

μ,α,ξ
(
η
(
g(y0) – g(x0)

)μ; p
)
f (y0)

+ 2
(
f (x0) + f (y0)

)
Gx0

y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)(

I(x0, y0; g) – g(x0)
)
. (2.13)

Proof We have the following inequality for the kernel defined in (1.14) and an increasing
function g :

Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x) ≤ Gx0

y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x), x ∈ (x0, y0). (2.14)

Using the ϕ-convexity of f over [x0, y0], we have

f (x) ≤ f (y0) +
y0 – x
y0 – x0

ϕ
(
f (x0), f (y0)

)
. (2.15)

Inequalities (2.14) and (2.15) constitute the following integral inequality:

∫ y0

x0

Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
f (x)g ′(x) dx

≤ f (y0)Gx0
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)∫ y0

x0

g ′(x) dx

+
ϕ(f (x0), f (y0))

y0 – x0
Gx0

y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)∫ y0

x0

(y0 – x)g ′(x) dx.

Using (1.13) of Definition 6 on left-hand side, integrating the right-hand side, and using
ϕ(x, y) = x + y, this inequality gives

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x0; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(y0) – g(x0)

)μ; p
)
Ψ

(
g(y0) – g(x0)

)
f (y0)

+ Gx0
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)(

f (x0) + f (y0)
)(

I(x0, y0; g) – g(x0)
)
. (2.16)

Also, we have the following inequality:

Gx
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x) ≤ Gx0

y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x), x ∈ (x0, y0). (2.17)

Inequalities (2.15) and (2.17) constitute the following integral inequality:

∫ y0

x0

Gx
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x)f (x) dx

≤ Gx0
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)

×
(

f (y0)
∫ y0

x0

g ′(x) dx +
ϕ(f (x0), f (y0))

y0 – x0

∫ y0

x0

g ′(x)(y0 – x) dx
)

.

Using (1.12) of Definition 6 on the left-hand side, integrating the right-hand side, and using
ϕ(x, y) = x + y, this inequality gives

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(y0; p)
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≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(y0) – g(x0)

)μ; p
)
Ψ

(
g(y0) – g(x0)

)
f (y0)

+ Gx0
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)(

f (x0) + f (y0)
)(

I(x0, y0; g) – g(x0)
)
. (2.18)

Now from (2.12) of Lemma 1 we can write
∫ y0

x0

f
(

x0 + y0

2

)
Gx0

x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x) dx

≤
∫ y0

x0

Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x)f (x) dx

+
1
2

∫ y0

x0

Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ g;Ψ
)
g ′(x)ϕ

(
f (x), f (x)

)
dx.

Using (1.13) of Definition 6 and ϕ(x, y) = x + y, we get

f
(

x0 + y0

2

)(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

1
)
(x0; p) ≤ 2

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x0; p). (2.19)

Again using (2.12) of Lemma 1, we can write

∫ y0

x0

f
(

x0 + y0

2

)
Gx

y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x) dx

≤
∫ y0

x0

Gx
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x)f (x) dx

+
1
2

∫ y0

x0

Gx
y0

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(x)ϕ

(
f (x), f (x)

)
dx. (2.20)

Using (1.12) of Definition 6 and ϕ(x, y) = x + y, we get

f
(

x0 + y0

2

)(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

1
)
(y0; p) ≤ 2

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(y0; p). (2.21)

We obtain inequality (2.13) by using (2.16), (2.18), (2.19), and (2.21). �

Remark 3 By setting ϕ(x, y) = x – y in Theorem 5 we get (1.16) of Theorem 2.

Theorem 6 Let f , g : [x0, y0] −→R be two differentiable functions such that |f ′| is ϕ-convex
and g is strictly increasing for 0 < x0 < y0. Also, let Ψ

x be an increasing function on [x0, y0],
and let α, ξ ,γ , ζ ∈C, p,μ,ν, δ ≥ 0, 0 < k ≤ δ + μ, and 0 < k ≤ δ + ν . Then for x ∈ (x0, y0), we
have

∣
∣(

gFΨ ,γ ,δ,k,ζ
μ,α,ξ ,x+

0
f ∗ g

)
(x; p) +

(
gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f ∗ g
)
(x; p)

∣
∣

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)∣∣f ′(x)
∣
∣

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x0)

∣∣,
∣∣f ′(x)

∣∣)(I(x0, x; g) – g(x0)
)

+ Eγ ,δ,k,ζ
ν,α,ξ

(
η
(
g(y0) – g(x)

)ν ; p
)
Ψ

(
g(y0) – g(x)

)∣∣f ′(y0)
∣∣

+ Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x)

∣
∣,

∣
∣f ′(y0)

∣
∣)(I(x, y0; g) – g(x)

)
, (2.22)

where (gFΨ ,γ ,δ,k,ζ
μ,α,ξ ,x+

0
f ∗ g)(x; p) and (gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f ∗ g)(x; p) are as in (1.18) and (1.19).
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Proof The ϕ-convexity of |f ′| over [x0, y0] implies

∣
∣f ′(t)

∣
∣ ≤ ∣

∣f ′(x)
∣
∣ +

x – t
x – x0

ϕ
(∣∣f ′(x0)

∣
∣,

∣
∣f ′(x)

∣
∣), t ∈ [x0, x]. (2.23)

By the property of absolute values we can write

–
(∣

∣f ′(x)
∣
∣ +

x – t
x – x0

ϕ
(∣∣f ′(x0)

∣
∣,

∣
∣f ′(x)

∣
∣)

)

≤ f ′(t) ≤
(∣

∣f ′(x)
∣
∣ +

x – t
x – x0

ϕ
(∣∣f ′(x0)

∣
∣,

∣
∣f ′(x)

∣
∣)

)
. (2.24)

Inequality (2.4) and the second inequality of (2.24) constitute the following inequality:

∫ x

x0

Gt
x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
g ′(t)f ′(t) dt

≤ ∣
∣f ′(x)

∣
∣Gx0

x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)∫ x

x0

g ′(t) dt

+
ϕ(|f ′(x0)|, |f ′(x)|)

x – x0
Gx0

x
(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)∫ x

x0

(x – t)g ′(t) dt,

from which we get

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f ∗ g
)
(x; p)

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)∣∣f ′(x)
∣∣

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x0)

∣∣,
∣∣f ′(x)

∣∣)(I(x0, x; g) – g(x0)
)
. (2.25)

Further, inequality (2.4) and the first inequality of (2.24) produce the following inequality:

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f ∗ g
)
(x; p)

≥ –Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)∣∣f ′(x)
∣
∣

– Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x0)

∣
∣,

∣
∣f ′(x)

∣
∣)(I(x0, x; g) – g(x0)

)
. (2.26)

Now using the ϕ-convexity of |f ′| over [x0, y0], we have

∣∣f ′(t)
∣∣ ≤ ∣∣f ′(y0)

∣∣ +
y0 – t
y0 – x

ϕ
(∣∣f ′(x)

∣∣,
∣∣f ′(y0)

∣∣), t ∈ (x, y0]. (2.27)

Also, we have

Gx
t
(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
g ′(t) ≤ Gx

y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
g ′(t). (2.28)

Proceeding as before, we obtain

(
gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f ∗ g
)
(x; p)

≤ Eγ ,δ,k,ζ
ν,α,ξ

(
η
(
g(y0) – g(x)

)ν ; p
)
Ψ

(
g(y0) – g(x)

)∣∣f ′(y0)
∣∣
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+ Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x)

∣∣,
∣∣f ′(y0)

∣∣)(I(x, y0; g) – g(x)
)

(2.29)

and

(
gFΨ ,γ ,δ,k,ζ

ν,α,ξ ,y–
0

f ∗ g
)
(x; p)

≥ –Eγ ,δ,k,ζ
ν,α,ξ

(
η
(
g(y0) – g(x)

)ν ; p
)
Ψ

(
g(y0) – g(x)

)∣∣f ′(y0)
∣∣

– Gx
y0

(
Eγ ,δ,k,ζ

ν,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x)

∣∣,
∣∣f ′(y0)

∣∣)(I(x, y0; g) – g(x)
)
. (2.30)

We obtain inequality (2.22) by using (2.25), (2.26), (2.29), and (2.30). �

Corollary 2 By setting μ = ν in (2.22) we get the following inequality:

∣
∣(

gFΨ ,γ ,δ,k,ζ
μ,α,ξ ,x+

0
f ∗ g

)
(x; p) +

(
gFΨ ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f ∗ g
)
(x; p)

∣
∣

≤ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(x) – g(x0)

)μ; p
)
Ψ

(
g(x) – g(x0)

)∣∣f ′(x)
∣
∣

+ Gx0
x

(
Eγ ,δ,k,ζ

μ,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x0)

∣∣,
∣∣f ′(x)

∣∣)(I(x0, x; g) – g(x)
)

+ Eγ ,δ,k,ζ
μ,α,ξ

(
η
(
g(y0) – g(x)

)μ; p
)
Ψ

(
g(y0) – g(x)

)∣∣f ′(y0)
∣∣

+ Gx
y0

(
Eγ ,δ,k,c

μ,α,ξ , g;Ψ
)
ϕ
(∣∣f ′(x)

∣∣,
∣∣f ′(y0)

∣∣)(I(x, y0; g) – g(x)
)
. (2.31)

Remark 4 For ϕ(x, y) = x – y in (2.31), we get inequality (1.17) of Theorem 3.

3 Results for fractional and conformable integral operators
In this section, we give bounds of some fractional and conformable fractional integral
operators deduced from the results of Sect. 2.

Proposition 1 Under the assumptions of Theorem 4, we have

Γ (α)
((α

g Ix+
0
f
)
(x) +

(α

g Iy–
0
f
)
(x)

)

≤ (
g(x) – g(x0)

)αf (x) +
(
g(y0) – g(x)

)αf (y0)

+
(
g(x) – g(x0)

)α–1
ϕ
(
f (x0), f (x)

)(
I(x0, x; g) – g(x0)

)

+
(
g(y0) – g(x)

)α–1
ϕ
(
f (x), f (y0)

)(
I(x, y0; g) – g(x)

)
, (3.1)

where (αg Ix+
0
f )(x) and (αg Iy–

0
f )(x) are defined in [15].

Proof For Ψ (t) = tα ,α > 0, and p = η = 0 with μ = ν in the proof of Theorem 4, bound (3.1)
is satisfied. �

For ϕ(x, y) = x – y in (3.1), we get [16, Proposition 1].

Proposition 2 Under the assumptions of Theorem 4, we have

(x+
0
IΨ f )(x) + (y–

0
IΨ f )(x) (3.2)

≤ Ψ (x – x0)f (x) +
Ψ (x – x0)

2
ϕ
(
f (x0), f (x)

)
+ Ψ (y0 – x)f (y0)
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+
Ψ (y0 – x)

2
ϕ
(
f (x), f (y0)

)
,

where (x+
0
IΨ f )(x) and (y–

0
IΨ f )(x) are defined in [23].

Proof Using g = I , η = p = 0, and μ = ν in the proof of Theorem 4, bound (3.2) is satis-
fied. �

For ϕ(x, y) = x – y in (3.2), we get [16, Proposition 2].

Corollary 3 For Ψ (t) = Γ (α)t
α
k

kΓk (α) and p = η = 0, (1.12) and (1.13) reduce to fractional inte-
grals (1.7) and (1.8). Further, the following bound for α ≥ k is also satisfied:

(α

g Ik
x+

0
f
)
(x) +

(α

g Ik
y–

0
f
)
(x)

≤ 1
kΓk(α)

[(
g(x) – g(x0)

) α
k f (x) +

(
g(y0) – g(x)

) α
k f (y0)

+
(
g(x) – g(x0)

) α
k –1

ϕ
(
f (x0), f (x)

)(
I(x0, x; g) – g(x0)

)

+
(
g(y0) – g(x)

) α
k –1

ϕ
(
f (x), f (y0)

)(
I(x, y0; g) – g(x)

)]
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 12].

Corollary 4 Using Ψ (t) = tα for α ≥ 1 and g = I along with p = η = 0, (1.12) and (1.13) give
the fractional integral operators αIx+

0
f (x) and αIy–

0
f (x) defined in [15].

Moreover, the following bound is also satisfied:

Γ (α)
((

αIx+
0
f
)
(x) +

(
αIy–

0
f
)
(x)

)

≤ (x – x0)α

2
(
2f (x) + ϕ

(
f (x0), f (x)

))
+

(y0 – x)α

2
(
2f (y0) + ϕ

(
f (x), f (y0)

))
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 13].

Corollary 5 Using Ψ (t) = Γ (α)t
α
k

kΓk (α) and g = I along with p = η = 0, (1.12) and (1.13) reduce
to the following fractional integral operators given in [19]:

(gF
Γ (α)t

α
k

kΓk (α) ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f )(x; 0) := αIk
x+

0
f (x), (gF

Γ (α)t
α
k

kΓk (α) ,γ ,δ,k,ζ
μ,α,ξ ,y–

0
f )(x; 0) := αIk

y–
0
f (x).

Moreover, the following bound is also satisfied for α ≥ k:

(
αIk

x+
0
f
)
(x) +

(
αIk

y–
0
f
)
(x)

≤ 1
kΓk(α)

[
(x – x0)

α
k

2
(
2f (x) + ϕ

(
f (x0), f (x)

))
+

(y0 – x)
α
k

2
(
2f (y0) + ϕ

(
f (x), f (y0)

))
]

.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 14].
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Corollary 6 Using Ψ (t) = tα ,α > 0, and g(x) = xρ

ρ
, ρ > 0, in (1.12) and (1.13), respectively,

with p = η = 0, we obtain the following fractional integral operators given in [4]:

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; 0) =

(ρIα
x+

0
f
)
(x) =

ρ1–α

Γ (α)

∫ x

x0

(
xρ – tρ

)α–1tρ–1f (t) dt, (3.3)

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; 0) =

(ρIα
y–

0
f
)
(x) =

ρ1–α

Γ (α)

∫ y0

x

(
tρ – xρ

)α–1tρ–1f (t) dt. (3.4)

Moreover, the following bound is also satisfied:

(ρIα
x+

0
f
)
(x) +

(ρIα
y–

0
f
)
(x)

≤ 1
ραΓ (α)

[
(
xρ – xρ

0
)αf (x) +

(
yρ

0 – xρ
)αf (y0) +

(
xρ – xρ

0
)α–1

ϕ
(
f (x0), f (x)

)

×
(

xρ+1 – xρ+1
0

(x – x0)(ρ + 1)
– xρ

0

)
+

(
yρ

0 – xρ
)α–1

ϕ
(
f (x), f (y0)

)( yρ+1
0 – xρ+1

(y0 – x)(ρ + 1)
– xρ

)]
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 15].

Corollary 7 Using Ψ (t) = tα ,α > 0, and g(x) = xs+1

s+1 , s > 0, in (1.12) and (1.13), respectively,
with p = η = 0, we obtain the following fractional integral operators:

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; 0)

=
(sIα

x+
0
f
)
(x) =

(s + 1)1–α

Γ (α)

∫ x

x0

(
xs+1 – ts+1)α–1tsf (t) dt, (3.5)

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; 0)

=
(sIα

y–
0
f
)
(x) =

(s + 1)1–α

Γ (α)

∫ y0

x

(
ts+1 – xs+1)α–1tsf (t) dt. (3.6)

Moreover, the following bound is also satisfied:

(sIα
x+

0
f
)
(x) +

(sIα
y–

0
f
)
(x)

≤ 1
(s + 1)αΓ (α)

[
(
xs+1 – xs+1

0
)αf (x) +

(
xs+1 – xs+1

0
)α–1

ϕ
(
f (x0), f (x)

)

×
(

xs+2 – xs+2
0

(x – x0)(s + 2)
– xs+1

0

)
+

(
ys+1

0 – xs+1)αf (y0) +
(
ys+1

0 – xs+1)α–1
ϕ
(
f (x), f (y0)

)

×
(

ys+2
0 – xs+2

(y0 – x)(s + 2)
– xs+1

)]
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 16].

Corollary 8 Using Ψ (t) = Γ (α)t
α
k

kΓk (α) and g(x) = xs+1

s+1 , s > 0, in (1.12) and (1.13), respectively,
with p = η = 0, we obtain the following fractional integral operators given in [22]:

(
gF

Γ (α)t
α
k

kΓk (α) ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; 0)
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=
(s

kIα
x+

0
f
)
(x) =

(s + 1)1– α
k

kΓk(α)

∫ x

x0

(
xs+1 – ts+1) α

k –1tsf (t) dt, (3.7)

(
gF

Γ (α)t
α
k

kΓk (α) ,γ ,δ,k,ζ
μ,α,ξ ,y–

0
f
)
(x; 0)

=
(s

kIα
y–

0
f
)
(x) =

(s + 1)1– α
k

kΓk(α)

∫ y0

x

(
ts+1 – xs+1) α

k –1tsf (t) dt. (3.8)

Moreover, the following bound is also satisfied:

(s
kIα

x+
0
f
)
(x) +

(s
kIα

y–
0
f
)
(x)

≤ 1
(s + 1)

α
k kΓk(α)

[
(
xs+1 – xs+1

0
) α

k f (x) +
(
xs+1 – xs+1

0
) α

k –1
ϕ
(
f (x0), f (x)

)

×
(

xs+2 – xs+2
0

(x – x0)(s + 2)
– xs+1

0

)
+

(
ys+1

0 – xs+1) α
k f (y0) +

(
ys+1

0 – xs+1) α
k –1

ϕ
(
f (x), f (y0)

)

×
(

ys+2
0 – xs+2

(y0 – x)(s + 2)
– xs+1

)]
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 17].

Corollary 9 Using Ψ (t) = tα ,α > 0, and g(x) = xβ+s

β+s , β , s > 0, in (1.12) and (1.13),) respec-
tively, with p = η = 0, we obtain the following fractional integral operators given in [12]:

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; 0)

=
(s
β

Iα
x+

0
f
)
(x) =

(β + s)1–α

Γ (α)

∫ x

x0

(
xβ+s – tβ+s)α–1tsf (t) dt, (3.9)

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; 0)

=
(s
β

Iα
y–

0
f
)
(x) =

(β + s)1–α

Γ (α)

∫ y0

x

(
tβ+s – xβ+s)α–1tsf (t) dt. (3.10)

Moreover, the following bound is also satisfied:

(s
β

Iα
x+

0
f
)
(x) +

(s
β

Iα
y–

0
f
)
(x)

≤ 1
(β + s)αΓ (α)

[(
xβ+s – xβ+s

0
)αf (x) +

(
xβ+s – xβ+s

0
)α–1

ϕ
(
f (x0), f (x)

)

×
(

xβ+s+1 – xβ+s+1
0

(x – x0)(β + s + 1)
– xβ+s

0

)
+

(
yβ+s

0 – xβ+s)α–1
ϕ
(
f (x), f (y0)

)

×
(

yβ+s+1
0 – xβ+s+1

(y0 – x)(β + s + 1)
– xβ+s

)
+

(
yβ+s

0 – xβ+s)αf (y0)
]

.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 18].

Corollary 10 Using Ψ (t) = tα ,α > 0, and g(x) = (x–x0)ρ
ρ

in (1.12) and g(x) = –(y0–x)ρ
ρ

in
(1.13), where ρ > 0 with p = η = 0, we obtain the following fractional integral operators
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given in [10]:

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; 0)

=
(ρIα

x+
0
f
)
(x) =

ρ1–α

Γ (α)

∫ x

x0

(
(x – x0)ρ – (t – x0)ρ

)α–1(t – x0)ρ–1f (t) dt, (3.11)

(
gFtα ,γ ,δ,k,ζ

μ,α,ξ ,y–
0

f
)
(x; 0)

=
(ρIα

y–
0
f
)
(x) =

ρ1–α

Γ (α)

∫ y0

x

(
(y0 – x)ρ – (y0 – t)ρ

)α–1(y0 – t)ρ–1f (t) dt. (3.12)

Moreover, the following bound is also satisfied:

(ρIα
x+

0
f
)
(x) +

(ρIα
y–

0
f
)
(x)

≤ 1
ραΓ (α)

[
(x – x0)ραf (x) + ϕ

(
f (x0), f (x)

) (x – x0)ρα

ρ + 1

+ (y0 – x)ραf (y0) + ϕ
(
f (x), f (y0)

)ρ(y0 – x)ρα

ρ + 1

]
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 19].

Corollary 11 For Ψ (t) = Γ (α)t
α
k

kΓk (α) , α > k, and g(x) = (x–x0)ρ
ρ

in (1.12) and g(x) = –(y0–x)ρ
ρ

in
(1.13), where ρ > 0 with p = η = 0, we obtain the following fractional integral operators
given in [8]:

(
gF

Γ (α)t
α
k

kΓk (α) ,γ ,δ,k,ζ

μ,α,ξ ,x+
0

f
)
(x; 0)

=
(ρ

k Iα
x+

0
f
)
(x) =

ρ1– α
k

kΓk(α)

∫ x

x0

(
(x – x0)ρ – (t – x0)ρ

) α
k –1(t – x0)ρ–1f (t) dt, (3.13)

(
gF

Γ (α)t
α
k

kΓk (α) ,γ ,δ,k,ζ
μ,α,ξ ,y–

0
f
)
(x; 0)

=
(ρ

k Iα
y–

0
f
)
(x) =

ρ1– α
k

kΓk(α)

∫ y0

x

(
(y0 – x)ρ – (y0 – t)ρ

) α
k –1(y0 – t)ρ–1f (t) dt. (3.14)

Moreover, the following bound is also satisfied:

(ρ

k Iα
x+

0
f
)
(x) +

(ρ

k Iα
y–

0
f
)
(x)

≤ 1
ρ

α
k kΓk(α)

[
(x – x0)

ρα
k f (x) + ϕ

(
f (x0), f (x)

) (x – x0)
ρα
k

ρ + 1

+ (y0 – x)
ρα
k f (y0) + ϕ

(
f (x), f (y0)

)ρ(y0 – x)
ρα
k

ρ + 1

]
.

For ϕ(x, y) = x – y in this inequality, we get [16, Corollary 20].
By applying Theorems 5 and 6 we can obtain results for fractional and conformable

fractional integral operators associated with the unified integral operators, which we leave
for the reader.
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4 Concluding remarks
In this paper, we study the unified integral operators (1.12) and (1.13) for the notion of
ϕ-convex functions. For ϕ-convex functions, we investigated bounds of these operators
in different forms, which lead to bounds of several known fractional and conformable
fractional integral operators. We identified some results for fractional integral operators
in Sect. 3. Also, we identified connections with the known results.
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