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Abstract
In this paper, we consider a class of nonautonomous discrete p-Laplacian complex
Ginzburg–Landau equations with time-varying delays. We prove the existence and
uniqueness of pullback attractor for these equations. The existing results of studying
attractors for time-varying delay equations require that the derivative of the delay
term should be less than 1 (called slow-varying delay). By using differential inequality
technique, our results remove the constraints on the delay derivative. So, we can deal
with the equations with fast-varying delays (without any constraints on the delay
derivative).
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1 Introduction
Due to numerous applications in physics, biology, and engineering such as pattern for-
mation, propagation of nerve pulses, electric circuits, and so on, see, e.g., [2, 6, 7, 10, 12],
lattice differential equations have become a large and growing interdisciplinary area of
research. For an understanding of the dynamical behavior of dissipative infinite lattice
systems, attractors are especially important because they retain most of the dynamical in-
formation. The existence of global attractors for lattice systems was initialed by Bates et
al. [1], followed by extensions in [3, 8, 13, 16, 19, 24] and the references therein. Of those,
the asymptotic behavior of an infinite-dimensional p-Laplacian lattice system was inves-
tigated in [8]. The dynamical behaviors for discrete complex Ginzburg–Landau equations
were studied in [11, 27].

Since time-delays are frequently encountered in many practical systems, which may in-
duce instability, oscillation, and poor performance of systems, delay lattice systems then
arise naturally while these delays are taken into account. Recently, attractors of delay lattice
systems have been considered in [4, 5, 9, 23, 26].

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02760-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02760-4&domain=pdf
mailto:lidingshi2006@163.com


Pu et al. Advances in Difference Equations        (2020) 2020:359 Page 2 of 14

The existence and uniqueness of solutions were proved for the complex Ginzburg–
Landau equation with p-Laplacian in [17, 18]. The dynamical behavior of p-Laplacian
complex Ginzburg–Landau equations was considered in [25]. The existence and unique-
ness of attractor for nonautonomous discrete p-Laplacian complex Ginzburg–Landau
equations with fast-varying delays based on nonautonomous p-Laplacian complex
Ginzburg–Landau equations with fast-varying delays are investigated in this paper. We
prove the existence and uniqueness of pullback attractor for these equations. The existing
results of studying attractors for time-varying delay equations require that the derivative
of the delay term should be less than 1, see [14, 15, 21–23]. By using the differential in-
equality technique, our results remove the constrains on the delay derivative. So, we can
deal with the equations with fast-varying delays.

Motivated by the discussions above, in this paper we study the dynamical behavior
of nonautonomous discrete p-Laplacian complex Ginzburg–Landau equation with time-
varying delays:

dun

dt
= (λ + iα)

(|un+1 – un|p–2(un+1 – un) – |un – un–1|p–2(un – un–1)
)

– (κ + iβ)|un|qun

+ fn
(
un

(
t – ρ0(t)

))
– (γ + iδ)un + gn(t), n ∈ Z, τ ∈R, t > τ , (1.1)

with the initial condition

un(τ + s) = ϕn(s), s ∈ [–ρ, 0], (1.2)

where un is the unknown complex-valued function, λ, α, κ , β , γ , δ, ρ , p, q are real con-
stants, where λ,κ ,γ ,ρ, q > 0 and p ≥ q + 2, fn is a nonlinear function satisfying certain con-
ditions, ρ0 ∈ C(R, [0,ρ]) is an adequate given delay function, g(t) = (gn(t))n∈Z ∈ L2

loc(R, l2)
(l2 defined later) is a given time-dependent sequence, and ϕn ∈ C([–ρ, 0],C).

The plan of this paper is as follows. In the next section, we establish the existence of a
continuous nonautonomous dynamical system in C([–ρ, 0], l2) for nonautonomous equa-
tion (1.1) and (1.2). Section 3 contains all necessary uniform estimates of the solutions. We
then prove the existence and uniqueness of a pullback attractor for the nonautonomous
equations in Sect. 4.

2 Nonautonomous dynamical systems associated with nonautonomous lattice
systems

In this section we show that there is a continuous nonautonomous dynamical system gen-
erated by the nonautonomous discrete p-Laplacian complex Ginzburg–Landau equations
with time-varying delays.

Denote

l2 =
{

u = {un}n∈Z
∣∣∣un ∈C,

∑

n∈Z
|un|2 < ∞

}
,

and let l2 be a Hilbert space with the inner produce and norm given by

(u, v) =
∑

n∈Z
unvn, ‖u‖2 = (u, u), u, v ∈ l2.
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We define the linear operators A, B, B∗ : l2 → l2 as follows:

(Au)n = |un – un–1|p–2(un – un–1) – |un+1 – un|p–2(un+1 – un),

(Bu)n = un+1 – un,
(
B∗u

)
n = un–1 – un, n ∈ Z, u ∈ l2.

Then
(
B∗u, v

)
= (u, Bv), (Au, v) =

(
B∗(|Bu|p–2 ⊗ (Bu)

)
, v

)
=

(|Bu|p–2 ⊗ (Bu), Bv
)
,

(Au, u) =
(|Bu|p–2 ⊗ (Bu), Bu

)
= ‖Bu‖p

p ≤ ‖Bu‖p ≤ 2p‖u‖p, u, v ∈ l2,

where u ⊗ v = (uivi)i∈Z and ‖u‖p = (
∑

n∈Z |un|p)
1
p .

Denote by ut , t ∈R, the function defined on [–ρ, 0] according to the relation

ut(s) =
(
un,t(s)

)
n∈Z =

(
un(t + s)

)
n∈Z = u(t + s), s ∈ [–ρ, 0],

and let Cρ = C([–ρ, 0], l2) with the maximum norm ‖ψ‖ρ = sup–ρ≤s≤0 ‖ψ(s)‖, ψ ∈ Cρ .
Then problem (1.1)–(1.2) can be written as an equation in l2: for τ ∈R and t > τ ,

du(t)
dt

= –(λ + iα)Au – (κ + iβ)|u|qu

+ f
(
u
(
t – ρ0(t)

))
– (γ + iδ)u + g(t) (2.1)

and

u(τ + s) = ϕ(s), s ∈ [–ρ, 0], (2.2)

where u = (un)n∈Z, |u|qu = (|un|qun)n∈Z, f (u(t – ρ0(t))) = (fn(un(t – ρ0(t))))n∈Z, g(t) =
(gn(t))n∈Z, and ϕ = (ϕn)n∈Z.

We make the following assumptions on fn. For each n ∈ Z, fn is a nonlinear function
satisfying the following assumption:

(H) fn(0) = 0 and fn(s) is Lipschitz continuous with respect to s, that is, there is a positive
constant L such that, for all s1, s2 ∈C,

∣
∣fn(s1) – fn(s2)

∣
∣ ≤ L|s1 – s2|.

In fact, by (H) we find that

∥
∥f (u) – f (v)

∥
∥ ≤ L‖u – v‖, u, v ∈ l2.

Lemma 2.1 For any p > 0 and a, b ∈C, we have that there exists c = c(p) > 0 such that

∣∣|a|pa – |b|pb
∣∣ ≤ c

(|a|p + |b|p)|a – b|.

Proof Without loss of generality, we assume that |a| ≥ |b|. By mean value theorem, we
have

∣
∣|a|p – |b|p∣∣ = p

(
θ |a| + (1 – θ )|b|)p–1∣∣|a| – |b|∣∣

≤ p
(
θ |a| + (1 – θ )|b|)p–1|a – b|, 0 < θ < 1. (2.3)
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Then

∣∣|a|p – |b|p∣∣ ≤
{

p|b|p–1|a – b|, 0 < p ≤ 1,
p|a|p–1|a – b|, p > 1.

(2.4)

By (2.3), (2.4), and Young’s inequality, we get

∣∣|a|pa – |b|pb
∣∣ ≤ ∣∣|a|p(a – b)

∣∣ +
∣∣(|a|p – |b|p)b

∣∣

≤ |a|p|a – b| + |b|∣∣|a|p – |b|p∣∣

≤ |a|p|a – b| + p|b|(|a|p–1 + |b|p–1)|a – b|
≤ c

(|a|p + |b|p)|a – b|.

This completes the proof. �

Lemma 2.2 The operator A : l2 → l2 is locally Lipschitz continuous.

Proof Based on Lemma 2.1 we have, for any u, v ∈ l2,

‖Au – Av‖2 =
∑

n∈Z

(
(Au)n – (Av)n

)2

≤ 2
∑

n∈Z

(∣∣(Bu)n
∣∣p–2(Bu)n –

∣∣(Bv)n
∣∣p–2(Bv)n

)2

+ 2
∑

n∈Z

(∣∣(Bu)n+1
∣∣p–2(Bu)n+1 –

∣∣(Bv)n+1
∣∣p–2(Bv)n+1

)2

≤ 2c2
∑

n∈Z

(∣∣(Bu)n
∣∣ +

∣∣(Bv)n
∣∣)2p–4∣∣(Bu)n – (Bv)n

∣∣2

+ 2c2
∑

n∈Z

(∣∣(Bu)n+1
∣
∣ +

∣
∣(Bv)n+1

∣
∣)2p–4∣∣(Bu)n+1 – (Bv)n+1

∣
∣2

≤ 22pc2
∑

n∈Z

(|un| + |vn|
)2p–4|un – vn|2

≤ 22pc2(‖u‖ + ‖v‖)2p–4‖u – v‖2.

This completes the proof. �

It follows from Lemma 2.2 that the right-hand side function in (2.1) is locally Lipschitz
continuous from l2 to l2. Therefore, by the standard theory of functional differential equa-
tions, one can show that, for every ϕ ∈ Cρ , there exists T > 0 such that system (2.1)–(2.2)
has a unique solution ut(·, τ ,ϕ) ∈ C([τ , T), Cρ). As showed below, under some conditions
this local solution is actually defined for all t > τ . Furthermore, one may show that ut(·, τ ,ϕ)
is continuous in ϕ with respect to the norm of Cρ .

In the sequence, we assume that

η =
2L2

γ 2 < 1. (2.5)



Pu et al. Advances in Difference Equations        (2020) 2020:359 Page 5 of 14

Lemma 2.3 Assume that (H) and (2.5) hold. Then, for every τ ∈ R, T > 0 and ϕ ∈ Cρ , there
exists a positive constant c = c(τ , T ,ϕ) such that the solution u of (2.1)–(2.2) satisfies

∥
∥ut(·, τ ,ϕ)

∥
∥

ρ
≤ c for t ∈ [τ , τ + T). (2.6)

Proof Taking the inner product of (2.1) with u in l2 and keeping the real part, we find that
for t > τ ,

1
2

d‖u‖2

dt
= –λ

(|Bu|p–2 ⊗ (Bu), Bu
)

– κ‖u‖q+2
q+2 + Re

(
f
(
u
(
t – ρ0(t)

))
, u

)

– γ ‖u‖2 + Re
(
g(t), u

)

≤ –γ ‖u‖2 + Re
(
f
(
u
(
t – ρ0(t)

))
, u

)
+ Re

(
g(t), u

)
. (2.7)

For the last two terms on the right-hand side of (2.7), by (H) we have

Re
(
f
(
u
(
t – ρ0(t)

))
, u

)
+ Re

(
g(t), u

) ≤ L2

γ

∥
∥u

(
t – ρ0(t)

)∥∥ +
γ

2
‖u‖2 +

1
γ

∥
∥g(t)

∥
∥2. (2.8)

Consequently, it follows from (2.7)–(2.8) that

d‖u(t)‖2

dt
≤ –

γ

2
∥∥u(t)

∥∥2 +
L2

γ

∥∥u
(
t – ρ0(t)

)∥∥ – κ‖u‖q+2 +
1
γ

∥∥g(t)
∥∥2, t > τ , (2.9)

which implies that

d‖u(t)‖2

dt
≤ –

γ

2
∥
∥u(t)

∥
∥2 +

L2

γ

∥
∥u

(
t – ρ0(t)

)∥∥ +
1
γ

∥
∥g(t)

∥
∥2, t > τ . (2.10)

It follows from (2.10) and Gronwall’s inequality that, for t ≥ τ ,

∥∥u(t)
∥∥ ≤ ∥∥u(τ )

∥∥e– γ
2 (t–τ ) +

L2

γ

∫ t

τ

e– γ
2 (t–s)∥∥u

(
s – ρ0(s)

)∥∥ds

+
1
γ

∫ t

τ

e– γ
2 (t–s)∥∥g(s)

∥∥ds. (2.11)

From condition (2.5), by using continuity, we obtain that there exist positive constants λ

and N such that ‖ϕ‖ρ ≤ N and

‖ϕ‖ρ

N
+ eλρ L2

( γ

2 – λ)γ
< 1 (2.12)

hold.
We will prove that, for t ≥ τ ,

∥∥u(t)
∥∥ ≤ Ne–λ(t–τ ) + (1 – η)–1I(t), (2.13)

where I(t) = maxτ≤ξ≤t
1
γ

∫ ξ

τ
e– γ

2 (ξ–s)‖g(s)‖ds. To this end, we first prove, for any d > 1,

∥∥u(t)
∥∥ < dNe–λ(t–τ ) + (1 – η)–1I(t), t ≥ τ . (2.14)
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If inequality (2.14) is not true, from the fact that ‖ϕ‖ρ ≤ N and ‖u(t)‖ are continuous, then
there must be t∗ > τ such that

∥∥u
(
t∗)∥∥ ≥ dNe–λ(t∗–τ ) + (1 – η)–1I(t) (2.15)

and

∥∥u(t)
∥∥ < dNe–λ(t–τ ) + (1 – η)–1I(t), τ – ρ ≤ t < t∗. (2.16)

Hence, it follows from (2.11), (2.12), (2.15), and (2.16) that

∥∥u
(
t∗)∥∥ ≤ ∥∥u(τ )

∥∥e– γ
2 (t∗–τ ) +

L2

γ

∫ t∗

τ

e– γ
2 (t∗–s)∥∥u

(
s – ρ0(s)

)∥∥ds

+
1
γ

∫ t∗

τ

e– γ
2 (t∗–s)∥∥g(s)

∥∥ds

<
∥∥u(τ )

∥∥e–λ(t∗–τ ) +
L2

γ

∫ t∗

τ

e– γ
2 (t∗–s)(dNeλρe–λ(s–τ ) + (1 – η)–1I

(
t∗))ds

+
1
γ

∫ t∗

τ

e– γ
2 (t∗–s)∥∥g(s)

∥
∥ds

≤ ∥∥u(τ )
∥∥e–λ(t∗–τ ) +

L2

γ

∫ t∗

τ

e– γ
2 (t∗–s)dNeλρe–λ(s–τ ) ds

+
L2

γ
(1 – η)–1I

(
t∗)

∫ t∗

τ

e– γ
2 (t∗–s) ds + I

(
t∗)

≤
(‖u(τ )‖

N
+

L2

γ
eλρ

∫ t∗

τ

e–( γ
2 –λ)(t∗–s) ds

)
dNe–λ(t∗–τ ) + η(1 – η)–1I

(
t∗) + I

(
t∗)

≤
(‖u(τ )‖

N
+ eλρ L2

γ ( γ

2 – λ)

)
dNe–λ(t∗–τ ) + (1 – η)–1I

(
t∗)

≤ dNe–λ(t∗–τ ) + (1 – η)–1I
(
t∗), (2.17)

which contradicts inequality (2.15). So inequality (2.14) holds for all t ≥ τ . Letting d → 1
in inequality (2.14), we have inequality (2.13). The proof is complete. �

Lemma 2.3 implies that the solution u is defined in any interval of [τ , τ +T] for any T > 0.
It means that this local solution is, in fact, a global one.

Given t ∈R, define a translation θt on R by

θt(τ ) = τ + t for all τ ∈R. (2.18)

Then {θt}t∈R is a group acting on R. We now define a mapping Φ : R+ ×R× Cρ → Cρ for
problem (2.1)–(2.2). Given t ∈R

+, τ ∈R, and uτ ∈ Cρ , let

Φ(t, τ , uτ ) = ut+τ (·, τ , uτ ), (2.19)
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where ut+τ (s, τ , uτ ) = u(t + τ + s, τ , uτ ), s ∈ [–ρ, 0]. By the uniqueness of solutions, we find
that for every t, s ∈R

+, τ ∈R, and uτ ∈ Cρ ,

Φ(t + s, τ , uτ ) = Φ
(
t, s + τ ,

(
Φ(s, τ , uτ )

))
.

Then we see that Φ is a continuous nonautonomous dynamical system on Cρ . In the fol-
lowing two sections, we investigate the existence of pullback attractor for Φ . To this end,
we need to define an appropriate collection of families of subsets of Cρ .

Let Bρ = {Bρ(τ ) : τ ∈ R} be a family of nonempty subsets of Cρ . Then Bρ is called tem-
pered (or subexponentially growing) if for every c > 0 the following holds:

lim
t→–∞ ect∥∥Bρ(τ + t)

∥∥
ρ

= 0,

where ‖Bρ‖ρ = supx∈Bρ
‖x‖ρ . In the sequel, we denote by Dρ the collection of all families

of tempered nonempty subsets of Cρ , i.e.,

Dρ =
{

Bρ =
{

Bρ(τ ) : τ ∈ R
}

: Bρ is tempered in Cρ

}
.

The following condition will be needed when deriving uniform estimates of solutions:

∫ τ

–∞
eλs∥∥g(s)

∥∥2 ds < ∞, ∀τ ∈R. (2.20)

3 Uniform estimates of solutions
In this section, we derive uniform estimates of solutions of problem (2.1)–(2.2) which are
needed for proving the existence and uniqueness of a pullback attractor for problem (2.1)–
(2.2). The estimates of solutions of problem (2.1)–(2.2) in Cρ are provided below. The
symbol c is a positive constant which may change its value from line to line.

Lemma 3.1 Assume that (H), (2.5), and (2.20) hold. Then, for every τ ∈ R and Dρ =
{Dρ(τ ) : τ ∈ R} ∈ Dρ , there exists T = T(τ , Dρ) > ρ such that, for all t ≥ T , 0 ≤ ξ ≤ ρ ,
and ϕ ∈ Dρ(τ – t), the solution u of (2.1)–(2.2) satisfies

∥∥uτ (·, τ – t,ϕ)
∥∥2

ρ
+ κe–λ(τ+ξ )

∫ τ+ξ

τ–t
eλs∥∥u(s, τ – t,ϕ)

∥∥q+2
q+2 ds

≤ 2
1
γ

eλρ

∫ 0

–∞
eλs∥∥g(s + τ )

∥∥ds. (3.1)

Proof From condition (2.5), by using continuity, we obtain that there exists a positive con-
stant λ such that

λ –
γ

2
+

L2

γ
eλρ < 0 (3.2)

holds.
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Replacing t and τ in (2.9) by � and τ – t, respectively, we have, for � > τ – t,

d‖u(� , τ – t,ϕ)‖2

dt
≤ –

γ

2
∥∥u(� , τ – t,ϕ)

∥∥2 +
L2

γ

∥∥u
(
� – ρ0(� ), τ – t,ϕ

)∥∥

– κ
∥∥u(� , τ – t,ϕ)

∥∥q+2
q+2 +

1
γ

∥∥g(� )
∥∥2. (3.3)

For simplicity, we denote u(� ) = u(� , τ – t,ϕ). Then, let us define functions V (� ) =
eλ� ‖u(� )‖, � ≥ τ – t – ρ , and

U(� ) �=

⎧
⎪⎨

⎪⎩

eλ(τ–t)‖ϕ‖ρ , � ∈ [τ – t – ρ, τ – t),
eλ(τ–t)‖ϕ‖ρ – κ

∫ �

τ–t eλs‖u(s)‖q+2
q+2 ds

+ 1
γ

∫ �

τ–t eλs‖g(s)‖ds, � ≥ τ – t.

Now, we claim that

V (� ) ≤ U(� ), � ≥ τ – t. (3.4)

If inequality (3.4) is not true from the fact that V (t) and U(t) are continuous, then there
must be � ∗ > τ – t such that

V (� ) < U(� ), � ∈ [
τ – t – ρ,� ∗), (3.5)

V
(
� ∗) = U

(
� ∗), (3.6)

where

� ∗ �= inf
{
� > τ – t|V (� ) > U(� )

}
,

and there is a sufficiently small positive constant �� such that

V (� ) > U(� ), � ∈ (
� ∗,� ∗ + ��

)
. (3.7)

Calculating the upper right-hand Dini derivative of V (t) at � ∗ and considering (3.6) and
(3.7), we obtain

D+V
(
� ∗) = lim sup

h→0+

V (� ∗ + h) – V (� ∗)
h

≥ lim sup
h→0+

U(� ∗ + h) – U(� ∗)
h

= –κeλ�∗∥∥u
(
� ∗)∥∥q+2 +

1
γ

eλ�∗∥∥g
(
� ∗)∥∥. (3.8)

On the other hand, it follows from (3.3) that

D+V
(
� ∗) = λeλ�∗∥∥u

(
� ∗)∥∥ + eλ�∗

D+∥∥u
(
� ∗)∥∥

≤
(

λ –
γ

2

)
eλ�∗∥∥u

(
� ∗)∥∥ +

L2

γ
eλ�∗∥∥u

(
� ∗ – ρ0

(
� ∗))∥∥

– κeλ�∗∥∥u
(
� ∗)∥∥q+2 +

1
γ

eλ�∗∥∥g
(
� ∗)∥∥. (3.9)
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Notice that U(� ) is monotone nondecreasing on [τ – t – ρ, +∞). This, together with (3.5)
and (3.6), yields

V
(
� ∗ – ρ0

(
� ∗)) < U

(
� ∗ – ρ0

(
� ∗)) < U

(
� ∗) = V

(
� ∗), (3.10)

which implies

∥
∥u

(
� ∗ – ρ0

(
� ∗))∥∥ ≤ eλρ

∥
∥u

(
� ∗)∥∥. (3.11)

It follows from (3.2), (3.9), and (3.11) that

D+V
(
� ∗) <

(
λ –

γ

2
+

L2

γ
eλρ

)
eλ�∗∥∥u

(
� ∗)∥∥ – κeλ�∗∥∥u

(
� ∗)∥∥q+2

q+2 +
1
γ

eλ�∗∥∥g
(
� ∗)∥∥

< –κeλ�∗∥∥u
(
� ∗)∥∥q+2 +

1
γ

eλ�∗∥∥g
(
� ∗)∥∥,

which contradicts (3.8). Until now, (3.4) has been proven to be true. Thus, we get, for t > ρ

and –ρ ≤ ξ ≤ 0,

∥
∥u(τ + ξ , τ – t,ϕ)

∥
∥ + κe–λ(τ+ξ )

∫ τ+ξ

τ–t
eλs∥∥u(s)

∥
∥q+2

q+2 ds

≤ ‖ϕ‖ρe–λ(t+ξ ) + e–λ(τ+ξ ) 1
γ

∫ τ+ξ

τ–t
eλs∥∥g(s)

∥
∥ds

≤ ‖ϕ‖ρeλρe–λt + eλρe–λτ 1
γ

∫ τ

τ–t
eλs∥∥g(s)

∥∥ds.

Since ϕ ∈ D(τ – t) and D ∈ D, we find that for every τ ∈ R and D ∈ D there exists T =
T(τ , D) > ρ such that, for all t ≥ T and –ρ ≤ ξ ≤ 0,

∥∥u(τ + ξ , τ – t,ϕ)
∥∥ + κe–λ(τ+ξ )

∫ τ+ξ

τ–t
eλs∥∥u(s)

∥∥q+2
q+2 ds ≤ 2

1
γ

eλρ

∫ 0

–∞
eλs∥∥g(s + τ )

∥∥ds.

This completes the proof. �

Lemma 3.2 Assume that (H), (2.5), and (2.20) hold. Then, for every τ ∈ R, Dρ = {Dρ(τ ) :
τ ∈ R,ω ∈ Ω} ∈ Dρ , there exist T = T(τ , Dρ) > ρ and N = N(τ ) > 0 such that, for all t ≥ T
and φ ∈ Dρ(τ – t), the solution u of (2.1)–(2.2) satisfies

sup
–ρ≤s≤0

∑

|n|≥N

∣
∣un(τ + s, τ – t,ϕ)

∣
∣2 ≤ ε. (3.12)

Proof Let ϑ be a smooth function defined on R
+ such that 0 ≤ ϑ(s) ≤ 1 for all s ∈ R

+,
ϑ(s) = 0 for 0 ≤ s ≤ 1 and ϑ(s) = 1 for s ≥ 2. Note that ϑ ′ is bounded on R

+, i.e., there
exists a constant c0 such that |ϑ ′(s)| ≤ c0 for s ∈R

+.
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Taking the inner product of (2.1) with x = (ϑ( |n|
k )un)n∈Z in l2 and keeping the real part,

where k is a fixed positive integer specified later, we get

1
2

d
dt

∑

n∈Z
ϑ

( |n|
k

)
|un|2 + Re(λ + iα)(Au, x)

≤ –γ
∑

n∈Z
ϑ

( |n|
k

)
|un|2 + Re

(
f
(
u
(
t – ρ0(t)

))
, x

)
+ Re

(
g(t), x

)
. (3.13)

We now estimate the terms in (3.13) as follows. First, we have

Re(λ + iα)(Au, x)

= Re(λ + iα)
(|Bu|p–2 ⊗ Bu, Bx

)

= Re(λ + iα)
∑

n∈Z
|un+1 – un|p–2(un+1 – un)

(
ϑ

( |n + 1|
k

)
un+1 – ϑ

( |n|
k

)
un

)

= Re(λ + iα)
∑

n∈Z

(
ϑ

( |n + 1|
k

)
– ϑ

( |n|
k

))
|un+1 – un|p–2(un+1 – un)un+1

+ λ
∑

n∈Z
ϑ

( |n|
k

)
|un+1 – un|p

≥ Re(λ + iα)
∑

n∈Z

(
ϑ

( |n + 1|
k

)
– ϑ

( |n|
k

))
|un+1 – un|p–2(un+1 – un)un+1.

By the property of the function ϑ and Young’s inequality, we have

∣
∣∣
∣Re(λ + iα)

∑

n∈Z

(
ϑ

( |n + 1|
k

)
– ϑ

( |n|
k

))
|un+1 – un|p–2(un+1 – un)un+1

∣
∣∣
∣

≤ √
λ2 + α2

∑

n∈Z

|ϑ ′(ξn)|
k

|un+1 – un|p–1|un+1|

≤
√

λ2 + α2c0

k
∑

n∈Z
|un+1 – un|p–1|un+1| ≤ c

k
‖u‖p

p,

which implies that

– Re(λ + iα)(Au, x) ≤ c
k
‖u‖p

p. (3.14)

For the last two terms on the right-hand side of (3.13), we get from (H)

Re
(
f
(
u
(
t – ρ0(t)

))
, x

)
+ Re

(
g(t), x

)

≤ L2

γ

∑

n∈Z
ϑ

( |n|
k

)∣∣un
(
t – ρ0(t)

)∣∣2

+
γ

2
∑

n∈Z
ϑ

( |n|
k

)
|un|2 +

1
γ

∑

n∈Z
ϑ

( |n|
k

)∣∣gn(t)
∣∣2. (3.15)
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Then, by (3.13)–(3.15) we have

d
dt

∑

n∈Z
ϑ

( |n|
k

)∣∣un(t)
∣∣2 ≤ –

γ

2
∑

n∈Z
ϑ

( |n|
k

)∣∣un(t)
∣∣2 +

L2

γ

∑

n∈Z
ϑ

( |n|
k

)∣∣un
(
t – ρ0(t)

)∣∣2

+
c
k
∥∥u(t)

∥∥p
p +

1
γ

∑

|n|≥k

∣∣gn(t)
∣∣2. (3.16)

By a similar argument as in Lemma 3.1, we get from (3.16) for any t > ρ and –ρ ≤ ξ ≤ 0

∑

n∈Z
ϑ

( |n|
k

)∣
∣un(τ + ξ , τ – t,ϕ)

∣
∣2

≤ ‖ϕ‖2
ρe–λ(t+ξ ) +

c
k

e–λ(τ+ξ )
∫ τ+ξ

τ–t
eλs∥∥u(s, τ – t,ϕ)

∥∥p
p dr

+
1
γ

e–λ(τ+ξ )
∫ τ+ξ

τ–t
e–λs

∑

|n|≥k

∣
∣gn(s)

∣
∣2 dr. (3.17)

It follows from Lemma 3.1 and the relation lp ⊆ lq+2, p ≥ q + 2, that for any τ ∈ R, ϕ ∈ Dρ

and ε > 0, there exist T = T(τ , Dρ) > ρ and K1 = K1(τ , Dρ , ε) such that, for k > K1, t > T and
–ρ ≤ ξ ≤ 0,

c
k

e–λ(τ+ξ )
∫ τ+ξ

τ–t
eλs∥∥u(s, τ – t,ϕ)

∥
∥p

p dr ≤ ε, (3.18)

which together with (3.17) implies

∑

n∈Z
ϑ

( |n|
k

)∣∣un(τ + ξ , τ – t,ϕ)
∣∣2

≤ ‖ϕ‖2
ρe–λ(t+ξ ) +

ε

3
+

1
γ

e–λ(τ+ξ )
∫ τ+ξ

τ–t
e–λs

∑

|n|≥k

∣
∣gn(s)

∣
∣2 dr. (3.19)

We have from ϕ ∈ Dρ(τ – t) that there exists T1 = T1(τ , Dρ , ε) > 0 such that, for all t ≥ T1

and –ρ ≤ ξ ≤ 0,

‖ϕ‖2
ρe–λ(t+ξ ) ≤ ‖ϕ‖2

ρeλρe–λt ≤ ε

3
. (3.20)

We have from (2.20) that there is N1 = N1(τ , ε) > 0 such that, for all k ≥ N1,

1
γ

eλρe–λτ

∫ 0

–∞
e–λr

∑

|n|≥k

∣∣gn(s + τ )
∣∣2 dr ≤ ε

3
. (3.21)

Note that

sup
–ρ≤ξ≤0

∑

|n|≥2k

∣∣un(τ + ξ , τ – t,ϕ)
∣∣2 ≤ sup

–ρ≤ξ≤0

∑

n∈Z
ϑ

( |n|
k

)∣∣un(τ + ξ , τ – t,ϕ)
∣∣2,

which along with (3.19)–(3.21) concludes the proof. �
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4 Existence of pullback attractors
In this section, we establish the existence of Dρ-pullback attractor for the nonautonomous
dynamical system Φ associated with problem (2.1)–(2.2).

Lemma 4.1 Assume that (H), (2.5), and (2.20) hold. Then, for every τ ∈ R and Dρ =
{Dρ(τ ) : τ ∈ R,ω ∈ Ω} ∈Dρ , there exists T = T(τ , Dρ) > ρ such that the solution u of (2.1)–
(2.2) satisfies that uτ (·, τ – t,ϕ) is equicontinuous in l2.

Proof Denote by Pku = (u1, u2, . . . uk , 0, 0, . . .) for u ∈ l2 and k ∈ N. By Lemma 3.2, for ε > 0,
there exist T = T(τ , ε) > ρ and large enough integer N = N(τ , ε) such that, for all t ≥ T ,

max
–ρ≤s≤0

∥
∥(I – PN )u(τ + s, τ – t,ϕ)

∥
∥ <

ε

3
. (4.1)

Let u1 = PN u. By Lemma 3.1, it follows from (2.1) and the equivalence of norm in a finite
dimensional space that there exists T = T(τ ) > ρ such that, for all t ≥ T ,

∫ τ

τ–ρ

∥
∥∥∥

d
dr

u1(r, τ – t,ϕ)
∥
∥∥∥

2

dr ≤ c, (4.2)

where c = c(τ ) is a positive number. Without loss of generality, we assume that s1, s2 ∈
[–ρ, 0] with 0 < s1 – s2 < 1. Then, for any fixed τ ∈R,

∥
∥u1(τ + s1, τ – t,ϕ) – u1(τ + s2, τ – t,ϕ)

∥
∥

≤
∫ τ+s1

τ+s2

∥
∥∥
∥

du1(r, τ – t,ϕ)
dr

∥
∥∥
∥dr

≤
(∫ τ

τ–ρ

∥
∥∥
∥

du1(r, τ – t,ϕ)
dr

∥
∥∥
∥

2

dr
) 1

2 |s2 – s1| 1
2 ≤ c|s2 – s1| 1

2 , (4.3)

which implies that there exists a constant � = �(ε) > 0 such that if |s1 – s2| < �, then

∥∥u1(τ + s2, τ – t,ϕ) – u1(τ + s1, τ – t,ϕ)
∥∥ <

ε

3
,

which along with (4.1) implies that, for all t ≥ T and |s1 – s2| < �,

∥
∥u(τ + s2, τ – t,ϕ) – u(τ + s1, τ – t,ϕ)

∥
∥

≤ ∥
∥PN u(τ + s2, τ – t,ϕ) – PN u

(
u(τ + s1, τ – t,ϕ)

)∥∥

+
∥
∥(I – PN )u(τ + s2, τ – t,ϕ)

∥
∥

+
∥
∥(I – PN )u(τ + s1, τ – t,ϕ)

∥
∥

≤ ε.

This completes the proof. �

As for the compactness in l2 in [19], one can easily verify the following compactness
criteria in Cρ by means of uniform tail estimates.
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Lemma 4.2 Let {un}∞n=1 = {(un
i )i∈Z}∞n=1 ⊆ Cρ . Then {un}∞n=1 is relative compact in Cρ if and

only if the following conditions are satisfied:
(i) {un}∞n=1 is bounded in Cρ ;

(ii) {un}∞n=1 is equicontinuous;
(iii) lim supk→∞ lim supn→∞ sup–ρ≤s≤0

∑
|i|≥k |un

i |2 = 0.

Theorem 4.1 Assume that (H), (2.5), and (2.20) hold. Then the nonautonomous dynami-
cal system Φ has a unique Dρ-pullback attractor Aρ = {Aρ(τ ) : τ ∈R} ∈Dρ in Cρ .

Proof For τ ∈R, denote by

K(τ ) =
{

u ∈ Cρ : ‖u‖2
ρ ≤ 2

1
γ

eλρ

∫ 0

–∞
eλs∥∥g(s + τ )

∥∥ds
}

.

First, we know from Lemma 3.1 that Φ has a Dρ-pullback absorbing set K(τ ). Second,
since Lemmas 3.1, 3.2, and 4.1 coincide with all the conditions of Lemma 4.2, Φ is Dρ-
pullback asymptotically compact in Cρ . Hence, the existence of a unique Dρ-pullback at-
tractor for the nonautonomous dynamical system Φ follows from Proposition 2.7. in [20]
immediately. �
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