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Abstract

In this paper, stochastic Hopf-Hopf bifurcation of the discrete coupling logistic
system with symbiotic interaction is investigated. Firstly, orthogonal polynomial
approximation of discrete random function in the Hilbert spaces is applied to reduce
the discrete coupling logistic system with random parameter to the deterministic
equivalent system. Then, it is concluded that Hopf-Hopf bifurcation exists in the
equivalent deterministic system according to the principle of algebraic criteria.
Numerical simulations show that the bifurcation critical value varies with the intensity
of random parameter, and Hopf-Hopf bifurcation and period-doubling bifurcation
behavior exist. In particular, Hopf-Hopf bifurcation can be drift with the change of
random intensity, and frequency locking phenomenon occurs in the stochastic
system.

Keywords: Discrete coupling stochastic logistic system; Orthogonal polynomial
approximation; Hopf-Hopf bifurcation; Random intensity

1 Introduction

In 1798, Malthus proposed the population growth model which stated that the world pop-
ulation grew geometrically as the food and space resources became more abundant. The
mathematical ecologist May suggested in one of his influential articles published in 1976
by Nature [1] that the non-heterogamous insect population model in ecology can be ex-
plained in terms of the nonlinear difference equation

K1 = U (1 — %) 1)

We call Eq. (1) logistic map or logistic system. As we all know, Eq. (1) and the form of
generalization were studied in detail in reference [2]. After that many researchers have
studied the logistic system in mathematical ecology, social science, economic net, and so
on [3-7]. At the same time people studied the logistic system further in more aspects. So,
some references [8—10] have paid more attention to the dynamical behavior in the logis-
tic system, such as bifurcation, chaos, and stability. Recently, the dynamical behavior in
many complicated logistic systems, such as coupling logistic system, has been explored.
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Masoaller, Cavalcante, and Leite studied the delayed coupling of logistic maps [11]. The
reference [12] analyzed synchronous chaos in the coupled system of two logistic maps.
The symmetry breaking bifurcations in a circular chain of N coupled logistic maps have
been presented in reference [13]. Zhang and Wang studied the spatiotemporal chaos in
mixed linear-nonlinear coupled logistic map [14]. Leonel Rocha and Abdel-Kaddous Taha
studied the Allee effect on the dynamical behavior of a new class of generalized logistic
maps [15]. Duygu Arugaslan and Leyla Guzel considered the logistic equation with piece-
wise constant argument of generalized type and analyzed the stability of the trivial fixed
point and the positive fixed point after reducing the equation into a nonautonomous dif-
ference equation [16]. The dynamical properties of a stochastic susceptible-infected epi-
demic model with logistic growth were investigated in reference [17]. Qifa Lin performed
stability analysis of a single species logistic model with Allee effect and feedback control
[18]. On the other hand, these results are limited to a deterministic logistic system. As is
known to all, in the real world, uncertainty of the system is inevitable, which can affect the
dynamical behavior of the nonlinear system. Therefore the influence of random factors
on the logistic system are worthy of exploring. The effects of randomness on chaos and
order of coupled logistic maps have been stated by Marcelo [19]. The stochastic resonance
problem for a class of time-delay logistics systems has been discussed [20]. Xing and Peng
studied the boundedness, persistence, and extinction of a stochastic nonautonomous lo-
gistic system with time delays [21]. The reference [22] studied the dynamical behaviors of
stochastic delay logistic system with impulsive toxicant in polluted environment. The sta-
bility of a stochastic logistic model with distributed delay has been explored in reference
[23]. Xu Yong and Ma Shaojuan studied Hopf bifurcation control in a nonlinear stochastic
dynamical system with nonlinear random feedback method [24]. Xu Yong et al. performed
stability analysis in a stochastic Brusselator system with random parameter [25]. The ref-
erence [26] discussed a sliding mode control (SMC) for a wing model excited by harmonic
forces and colored Gaussian noise together. JinZhong MA et al. introduced a periodically
driven bistable eutrophication model with Gaussian white noise as a prototype class of real
systems; they found that stochastic perturbations and periodic excitations were also able
to slow down an imminent critical transition [27]. Qi Liu et al. analyzed the influences of
random fluctuations on a two-degree-of-freedom (TDOF) airfoil model with viscoelastic
terms [28]. Zhang Xiaoyu et al. considered the tipping behaviors of the thermoacoustic
system with the time-varying parameters and the combined excitations of additive and
multiplicative colored noises [29]. Although the research results on stochastic logistics
system have been obtained, there are few studies on the influence of uncertainty on bifur-
cation. In addition, as far as we know, the influence of internal random parameters on the
dynamic behavior of logistics system has not been found in the existing literature.

Motivated by the above discussions, this paper takes the coupled logistic system, which
has a role of cohesion between one-dimensional and high-dimensional logistic model, as
an example. By using the statistical characteristic of random variable, we build a stochastic
coupled logistic system with random parameter. The influence of a random parameter
in the two-species coupled logistic system with symbiotic interaction on the Hopf—Hopf
bifurcation is studied by orthogonal polynomial approximation [30-36].

This paper is organized as follows. In Sect. 2, we transform the stochastic two-species
coupling logistic system with symbiotic interaction with random parameter into its equiv-
alent deterministic one by orthogonal polynomial approximation. We analyze the Hopf-
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Hopf bifurcation of the stochastic coupling logistic system in Sect. 3. The numerical sim-
ulations of Hopf—Hopf bifurcation about the two-species coupling logistic system with
symbiotic interaction are shown in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Stochastic coupling logistic system with random parameter and its
orthogonal polynomial approximation
Consider a discrete coupling logistic model for the symbiotic interaction of the dynamic

system [37]

Xn+l = M(yn)xn(l —Xn);
Yn+1 = ,Uv(xn)yn(l —J’n),

2)

where x,, y, are symbiotic species, the symbiotic interaction leads to both species that
the growth rate u(z) is varying with time. As it is seen in the equations, we call Eq. (2)
symmetrical interaction. And it is shown that the particular dynamics of each species is a
logistic map whose parameter , is not fixed, x,,1 = ux,(1 —x,), but it is forced to remain
in the interval [38—41]. The existence of a nontrivial fixed point at each step n ensures the
nontrivial evolution of the system [42]

w(z) =3z +1), i e(0,1.0843), 3)

where u is a positive constant, and we call that the mutual benefit. At the same time, # is
a random parameter which can be described as

i =u+dk, (4)

where u is the deterministic system parameter of #, § is regarded as the intensity of ran-
dom disturbance, k is a random variable which obeys density function p; with standard
deviation A. By Eq. (2) and Eq. (3), we obtain

Xntl = ﬁ(gyn + l)xn(l _xn); (5)
Vn+1 = ﬁ(gxn + l)yn(l _yn)-

Obviously, there are many fixed points in this discrete coupling logistic system as we
choose reasonable system variables. Origin Py(0, 0) is a fixed point, other fixed points are:
Py(%1,0), Py(0, %21), P3(5(1+, /4 - 2), 31+, /4 - 2)), Pa(5(1 - /4 - 2),3(1 - /4~ 2)).In
order to compute simply, we select origin Py(0,0) to analyze the Hopf—Hopf bifurcation.
So it follows from the orthogonal polynomial approximation that the response of Eq. (5)
can be expressed by the following Fourier series under the condition of convergence in

mean square:

x(n, k) = Y- xi(m)PH(K),

(6)
y(n, k) = Y2 yi(m)PH(k),

where x;(n) = Zﬁo prx(m, K)PHK), yi(n) = S o piy(m, k)P (k), PX(k) is the ith standard or-
thogonal polynomial, M represents the largest order of the polynomial we have taken.
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Substituting Eq. (6) and Eq. (4) into Eq. (5), we obtain

M xi(n + 1)Pr (k)
= 3M[Zl o0 Xi n)P*(k)][Zl o Yi(mP(K)] + MZl o xi(n)P(k)
+ 38k[zi:0 x:(n) P} (k) ][Zizoyi n)P(k)] + 8k Zi:o x:(n)P} (k)
= 3ul M xi WP, yi(m)PE ()] = ul XM x:(m) P (K))
= 38K[Y M xi(m) PP M, yi(m) P (k)] = SK[Y M () PH(K)12,
Yoo yiln + )PHEK)
= 3ul Y- i (m) P ()T yi ()P (k)] + e 3, i) P (K)
+ 38K[ M ()P M, 3i(m) P (k)] + 8k oM, yi(m) P (k)
= 3ul o v PHIP I i) P ()] = [ 32 yi(m) P} ()12
= 38K[-M yi(m) P ()12 () P (K)] = SK[3- 1, yi(m) P ()2,

7)

With the aid of a cycle recurrence formula of orthogonal polynomial [43]
kP} (k) = Py, (k) + BiP7 (k) + yiPry (K), (8)

the nonlinearity term in the right equation of Eq. (7) can be respectively written as follows:

M M 2M
[Zx,-m)z)?(k)} [Zyi(n)mk)} = SimP}(K), )

i=0 i=0 i=0

and

2 3M
[Zxxn)zﬁ* k)} [Zyxn)ﬂ(k)] > Wim)P} (k), (10)

i=0 i=0 i=0

and

|:le(71 )P} ( k):| ZX (m)P} (k) (11)

i=0

and

M 2rm
[Zy,-(n)Pﬁ(k)] [Z n)P}( k] Zz )P’ (K), (12)

and

M
[Z p*(k] ZY (n)P} (k). (13)
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The stochastic term in the right equation of Eq. (7) can be respectively written as follows:

M M
ak[Zxxn)P?(k)} [Zyi(n)mk)}

i=0 i=0
2M
=8 [P (1iSina () + BiSi(n) + iSica () — ciSi(m)P, ()], (14)
i=0
and
M
8k Y x(n)P} (k)
i=0
M
=8 ) [PR) (vixia () + Bixs(m) + aixiia (m)) — axi(m) P, ()], (15)
i=0
and

M 2
sk [in(n)P?(k):|

i=0
2M
=8 Y [PHR) (yiXina (n) + BiXi(n) + ciXia () — c:Xi(m) P}, (K)], (16)

i=0

and

M 2rm
Sk[in(n)P?(k)} [Zyxn)P?(k)}

i=0 i=0
3M
=8 Y [PHR) (i Wina (n) + BiWim) + 0, Wiy () — o Wim) P, (k) ], (17)
i=0
and
M
sk Z yi()P (k)
7 M
=8 Y _[PHR) (viyiar () + Biyi(n) + yia (m)) — ctiye(m)P ()], (18)
i=0
and

M 2
sk [Z y,(n)P} (k)]

i=0
2M

=8 [PHR)(viYir () + BiYi(n) + Yoy (n)) — o Yi(m)P, (K) ], (19)

i=0
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and

M 2rm
8k|:2yi(n)Pj\(k):| [in(n)Pl'.\(k):|
i=0

i-0
M

=4 Z[P?(k)()/izm(ﬂ) + BiZi(n) + 0, Zi1(n)) — ;. Zi(n) P}, (K)], (20)
i-0

where S;(n), Wi(n), X;(n), Z;(n), and Y;(n) stand for the linear combination of nonlinearity
terms calculated by computer algebraic, such as Maple. According to Egs. (9)—(20), we
obtain that Eq. (7) can be further reduced to

M xi(m + 1)Pr (k)
=3u Y M S(m)PH(k) + u M xi(m)Pr(k) + 38 20 [PH(K) (A (i + 1)Si1 ()
+ (i + 2)Si(n) + i1 (m) — Si(m)P, (k)]
+4 Zi:() [PH(K) (M + 1)x,~+1(n) +(i+ A)xi(n)
+ %01 (1)) = xi(m)PL,y (k)] = 3 Y2050 Wim) P (k)]
—u Y™ Xi(n)PH(k) - 38 23’” P k)()»(l+ 1)
X Wia1(n) + (i + M) Wi(n) + Wiy (n)) = Wi(n) P}, (k)]
— 8 PR (A + 1) X1 (m) + (i + 1)
X X;(n) + Xi_1(n)) — X;(n)Pl,, ()],
Yo yiln + 1P (k)
=3y Z Si(m)PH(k) +u Y i oy,(n)Pk(k) +38 Z [P)L(k)()\.(l +1)S;11(n)
+ (i +A)Si(n) + Si_1(n)) = S; (n)PHl(k)]
+6 Zi:o [PHK) (i + 1)yis1(m) + (i + A)yi(n)
+9i-1(m) = yi(m)Ph 1 (K)] = 3u Y2 Zi(n)PH(K)]
—uY MY (n)Pi(k) - 38 20 [PH(K)(A(i + 1)
X Zi1(n) + (i + M) Zi(n) + Ziy (n)) = Z(n)P},, (K)]
-4 Z [P*(k) MG+ DY (n) + G+ )
x Yi(n) + Yi_1(n)) = Yi(n) P}, (K)],

(21)

where x_1 (1), xpr+1, Y-1(1), Yare15 S—1(1), Spre1 (), X1 (1), Xap1 (1), Y_1(n), Yara (), W_i(n),
Ware1(n), Z_1(n), and Zy,1(n) are zero by the principle of approximation. We choose the
random variable in compliance with Poisson distribution with standard deviation A. Ac-
cording to the weight function, the weight orthogonal polynomial in Eq. (8) is chosen as
Charlier polynomial. The coefficients «;, 8;, y; are 1, i + A, AL, respectively. Multiply both
sides of Eq. (21) by P} (k) i=0,1,...,M, in sequence and take expectation with respect
to k, where P} (k) = Ql ) after standardization of polynomial. According to the statistical
characteristics and orthogonal polynomial approximation of discrete random function in
the Hilbert spaces and the orthogonality of Charlier orthogonal polynomials, we can fi-
nally get the equivalent deterministic logistic equation. As M — oo, the discrete coupling
stochastic logistic system is strictly equivalent to system (21) in the sense of mean square
convergence. In order to facilitate the numerical analysis of this paper, we select M = 1,
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A = 0.5 and approximately obtain the equivalent deterministic system

xo(m + 1)
= 3uSy(n) + uxo(n) + %8[51(1/1) +Sp(n)] + %S[xl(n) + xo(n)]
= 3uWo(n) — uXo(n) — 38[W1(n) + Wo(n)] — 38[X1(n) + Xo(n)],
yo(m + 1)
= 3uSo(n) + uyo(n) + 28[S1(n) + So(n)] + 38[y1(n) + yo(n)]
= 3uZo(n) — uYo(n) — 38[Zy(n) + Zo(n)] - 38[Y1(n) + Yo(n)], 22)
x1(n+1)
= 3uS1(n) + ux1(n) + 38[3S1(n) — So(1)] + 8[ 31 (1) — x0(1)]
= 3uWi(n) — uX(n) — 38[3 Wi (n) — Wo(n)] - 8[3X1(n) - Xo(n)],
y1(n+1)
= 3uS)(n) + uy1(n) + 38[2S1(n) — So(n)] + 8[2y1(n) — yo(n)]
= 3uZy(n) — uY1(n) - 38[3Zy(n) — Zo(n)] - 8[3Y1(n) — Yo(n)).

Then the approximate random response of the original stochastic logistic system can be

expressed as

x(n, k) = Z}:o x:(n)P} (k) = Zgzoxi(”) Qi(al;)’

1 1 Qik) (23)
y(”:k) = Z,’:()yi(n)P?(k) = Z,‘:oyi(”l) lb‘,v ,

and as k = 0, the sample response of mean parameter system (SMR) and the ensemble

mean response of it (EMR) are calculated as follows:

Elx(n, k)] = Yo 2 ELP} (k)] = 0 (m)E[P} (k)] + %1 (m)E[P} ()],
Ely(n, k)] = o yi(WEIP (k)] = yo(mE[Py (k)] + y1 (M ELP} (K)].

In this paper, we take the initial conditions of deterministic equivalent system (22) and the

same initial conditions of the deterministic system
%9 = x0(0) = 0.1, ¥0 =0(0) =0.2, x1 =x1(0) = 0.1, y1 =91(0) = 0.
So we take
x(0) = (0.1,0.1)7, ¥(0) = (0.2,0)7.
3 Hopf bifurcation analysis
We firstly introduce the Hopf—Hopf bifurcation conditions [44] about the deterministic

discrete system as follows.

Lemma 1 For the map x — F(x, 1), x € R", u € R, if the eigenvalues of a Jacobian matrix

at the bifurcation parameter point | = |1, we have the following properties:
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(1) There are two pairs of complex conjugate eigenvalues on the unit circle, which is
marked by |h12(tne)| = 1 with Ay = Ay and |h3a(e)| = 1 with Az = Ay, and others are
inside the unit circle (i.e., |\j(po)|l < 1,j =5,6,..., n);

(2) Transversality condition %}f”” #0(G=1,3k=1,2,...,m),

(3) Nonresonance condition X' () # 1 and A5 (o) #1, m=3,4,....

Then a nonresonant Hopf—Hopf bifurcation of the map x — F(x, 1), x € R", u € R™,
occurs at i = .

Let us assume that the solutions to the deterministic equivalent discrete coupling lo-
gistic system undergo a Hopf—Hopf bifurcation on some submanifold in parameter space
corresponding to a critical value i = ft,.

The Jacobian matrix of system (22) at fixed point Py(0,0) is

U+ %5 0 %8 0
1 1
A= 0 u+ 55 03 58 ) (24)
-5 0 u+ 58 0
0 ) 0 u+3s

Then the characteristic polynomial of Jacobian matrix A is
f2) =2+ a12® + axZ® + asz + ay, (25)

where a; (i = 1,2,3,4) are coefficients of the characteristic equation, which are shown as

follows:

ay = 4u — 446,
13, )
day = 78 +6u” +12ué,
as = —13us? — 58° — 4u® — 12425,

13 25
as = —u?8? +5u8® + =5 + u* + 4u®6.
2 16

By the mathematical software, all eigenvalues of Eq. (25) are z15 = (1 + §) + %Si, Z34 =
(u+8) £ 18i (2 = -1).

Obviously Eq. (25) has a pair of conjugate complex roots, Hopf bifurcation will occur in
system (22).

Now, discussing when the eigenvalues module |z;| = |z2| = |z3| = |z4| = 1, we can get the

relations between the bifurcation parameter and the random strength:

1 1
u1=—8+,/1—182, u2=—8—,/1—182. (26)

Due to the random strength § > 0 and u > 0 when § = 0, there is only one equation u, =
up=-86+,/1- i&z satisfying —2 < § < 2, eigenvalues of Eq. (25) can satisfy eigenvalues

module is equal to 1. Then the expression u = u, is substituted into characteristic Eq. (25),
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and we obtain all eigenvalues as follows:

J1 Loy ls; J1 Loy Ly (27)
Zip=4/1-— —6i, Z3a=4/1-— —6i.
b2 4" T2 4 4" T2

Obviously, the Hopf—-Hopf bifurcation condition (1) about system (22) is satisfied. We have
dlzi(uc)| (6 +u)

1
= /1- 282, (28)
du 4
‘/%82+28u+u2

because § > 0, when only § # 2, we have dlzb—;’“)‘ # 0, meanwhile 27" (1) # 1. The Hopf—Hopf

bifurcation conditions (2) and (3) about system (22) are satisfied. The following theorem

u=uc

gives criterion that guarantees that the conditions for Hopf—-Hopf bifurcation are satisfied.

Theorem 1 If u. is a bifurcation parameter of two-species discrete coupling stochastic lo-
gistic system with symbiotic interaction, z1, = \/1 - 1% + 13i, % =/1-16% and
Z'(e) # 1, then the conditions for the existence of a Hopf—Hopf bifurcation are satisfied.

It is to say that equivalent deterministic system (22) undergoes a Hopf—Hopf bifurcation

at the equilibrium (0,0). The above analysis is summarized as follows.

Theorem 2 (Existence of Hopf bifurcation) The two-species discrete coupling stochastic
logistic system with symbiotic interaction undergoes the Hopf—Hopf bifurcation at the fixed
point (0,0) when the system parameter u goes by the critical value u, = -8 + ,/1 - iSZ.
Specially, when the strength of random disturbance § = 0, we have u, = 1, eigenvalues of
Eq. (25) are z13 = 1 and Hopf—Hopf bifurcation is u = 1.

4 The numerical simulation and numerical analysis

In this section, when the strength of random intensity § = 0.000, the discrete cou-
pling stochastic logistic system with symbiotic interaction is investigated. System (5)
can be turned into a deterministic original coupling logistic system. We can know this
bifurcation parameter u, = 1, system (5) undergoes a Hopf—Hopf bifurcation at the
fixed point (0,0). Figure 1 shows each of the bifurcation phenomena about the cou-
pling stochastic logistic system with symbiotic interaction, when the random intensity
8 =0.000,0.005,0.020,0.240. By the numerical analysis, the critical value for Hopf—Hopf
bifurcation of the coupling stochastic logistic system with symbiotic interaction is u, =
—§+,/1- i(SZ. At the same time, the Hopf-Hopf bifurcation under the influence of dif-
ferent random strength is in advance.

When u = 0.965 and random intensity § is equal to 0.000, 0.002, 0.006, 0.010, 0.050,
0.090, 0.150, 0.200, 0.240, respectively, the phase trajectories of DR and EMR all converge
to zero. It is shown in Fig. 2(a) and Fig. 2(b) that fixed points are stable with discrete
two-species coupled logistic system with symbiotic interaction, mean as § = 0.000 with
two-species discrete coupling stochastic logistic system with symbiotic interaction, and
Fig. 2(b) is a partial enlarged effect of Fig. 2(a). We know that the two-species discrete cou-
pling stochastic logistic system with symbiotic interaction does not undergo Hopf—Hopf
bifurcation, which is illustrated by Fig. 2(a). Increasing the random intensity to § = 0.002,
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0.5
04
03
02

0.1

Figure 1 The bifurcation diagrams of deterministic and coupling stochastic logistic system

the phase trajectories of system (22) that converge to limit circle are shown in Fig. 2(c), (d),
and Fig. 2(d) is a partial enlarged effect of Fig. 2(c). From Fig. 2(c), (e), (g), (i), (j), we find
that with the change of random intensity, the amplitude of limit circle is increased. From
Fig. 2(k) we can see that the limit circle happened to intersect when random intensity in-
creased to § = 0.150. At the same time, from Fig. 2(1), (m), (n), Fig. 2(f) is a partial enlarged
effect of Fig. 2(e), and Fig. 2(h) is a partial enlarged effect of Fig. 2(g), Fig. 2(0) is a partial en-
larged effect of Fig. 2(n). We can know that with the increase of random intensity the phase
trajectories show random motion, and frequency lock phenomena appear at last. We find
that with the change of bifurcation parameter the phase trajectories of the determinis-
tic system accord with the phase trajectories of two-species discrete coupling stochastic
logistic system with symbiotic interaction, the bifurcation happens in both systems. Ac-
cording to the above numerical analysis, we discover that the critical value for Hopf—Hopf
bifurcation in the two-species discrete coupling stochastic logistic system with symbiotic
interaction is varying from random intensity.

Based on the theoretical analysis and numerical simulations, we find that the Hopf—
Hopf bifurcation occurs in two-species discrete coupling stochastic logistic system with
symbiotic interaction with the variation of bifurcation parameter. Compared with the de-
terministic system, the random intensity has an obvious influence on the bifurcation crit-
ical value of its coupled random logic system, and the bifurcation critical value decreases
with the increase of random intensity, indicating that the Hopf—Hopf bifurcation point



Yang and Ma Advances in Difference Equations

(2020) 2020:322

1 i ; 0.84f ‘ 1]
0.9 ] 0.82f 1
08 0.8}
s 078}
07
- = 076}
= = .
£ 06 < o7af =5
w w
05 072t
04 * ory
0.68f
03
0.66f
02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 0.35 0.4 0.45 05
E[x(n,k)] Ex(n,k)]
(a) (b)
0.9 |
0.8 0.81
=3
07t = )
Z  0.75
€06 = Q )
= w
w
05 o7l
04t o
0.3F 0.65r
02 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
01 02 03 04 05 06 07 08 03 0.35 0.4 0.45 05
E[x(n,k)] E[x(n,k)]
(© (d)
1 T T 0.9F T T 3
b 5=0.006 | | 3=0.006
08}
Q 08}
07} .
= =
3 £ 075}
w w
05p o7}
041 O ] 0.65)
0.3}
06}
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 03 035 04 045 05 055
E[x(n,k)] E[x(n,k)]
(e) )
Figure 2 Phase portraits (a), (b), (c), (d), (e), (f), (9), (h), (i), (§), (k), (), (m), (n), (0) with different strength of
random

appears in advance and frequency locking phenomenon occurs. In other words, within
a certain range of random intensity, two-species coupled logistic system with symbiotic

interaction will never die out.

5 Conclusions
The orthogonal polynomial approximation theory of discrete random function is applied
to research the Hopf—Hopf bifurcation of the two-species discrete coupling stochastic lo-

gistic system with symbiotic interaction. Analysis shows that the orthogonal polynomial

Page 11 of 15
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Figure 2 Continued

approximation is effective to reduce the two-species coupling logistic system with symbi-
otic interaction with random parameter to its equivalent deterministic system. Through
the mathematical analysis and the algebraic criterion bifurcation theory, we obtain that
the critical value of Hopf—Hopf bifurcation in the two-species discrete coupling stochas-
tic logistic system with symbiotic interaction is influenced by the random intensity, and
the behavior of the system varies with the random intensity. The amplitude of Hopf—Hopf
bifurcation increases with the increase of random strength, and frequency locking occurs.

The numerical simulation verifies the correctness of the theoretical results. Meanwhile,
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the discussion of numerical analysis shows that Hopf—Hopf bifurcation point appears in

advance with the change of random intensity.

Appendix
Si(n), X;(n), Yi(n), Z;(n), and W;(n) in Eq. (22) can be derived through the computer alge-
braic system, such as Maple, as follows:

So() = xo(n)yoln) + %xl(n)yl(m,

S1(n) = xo(n)y1(n) + x1(n)yo(n) + x1(n)y1(n),

Sy (n) = x1(n)y1(n),

Xo(n) = x%(n) + %x%(n),

Xi1(n) = x3(n) + 2x0(n)x1 (n),

Xa(n) = x3(n),
Yo(n) = y2(n) + %y%(n),

Y1(n) = y1(n) + 2y0(m)y1 (),
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Y2(n) = yi(n),
Zo(n) = xo(n)y3(n) + %xo(n)y%(n) +yo(m)y1(m)x1(n) + %xl(n)yf(n),

Z1(n) = x1(n)yg (1) + 2y0(n)y1 (m)xo(n) + xo(n)y3 (1) + 20 (n)y1 (m)x1 (1) + gxl(n)y?(n),

Z5(n) = xo(n)y; (1) + 290(n)y1 (m)x1 (1) + 31 (n)y3 (n),

Z3(n) = x1(n)y; (n),

Wo(n) = yo(n)xg(n) + %yo(n)x%(n) + o (m)x1 (n)y (1) + %yl(n)x?(n),

Wi (1) = y1(m)acg(m) + 2x0(m)x1 (m)yo(n) + yo(m)x (1) + 2x0(m)x1 (m)y1 (n) + gyl(n)xf(n),

Wa(n) = yo(n)at(n) + 2x0(m)x1 (n)y1 (n) + 3y1(n)x}(n),

W3(n) = y1(n)xi(n).
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