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Abstract
This paper proposes a new effective pseudo-spectral approximation to solve the
Sylvester and Lyapunov matrix differential equations. The properties of the
Chebyshev basis operational matrix of derivative are applied to convert the main
equation to the matrix equations. Afterwards, an iterative algorithm is examined for
solving the obtained equations. Also, the error analysis of the propounded method is
presented, which reveals the spectral rate of convergence. To illustrate the
effectiveness of the proposed framework, several numerical examples are given.
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1 Introduction
For study on the dynamical systems, filtering, model reduction, image restoration, etc.,
many phenomena can be modeled more efficiently by the matrix differential equations
[1–5]. We consider the subsequent Sylvester matrix differential equations

{
P′(t) = A(t)P(t) + P(t)B(t) + Q(t), t0 ≤ t ≤ tf ,
P(t0) = P0,

(1)

where P ∈ R
p×q is an unknown matrix, the matrices P0 ∈R

p×q, A(t) : [t0, tf ] →R
p×p, B(t) :

[t0, tf ] → R
q×q, and Q(t) : [t0, tf ] → R

p×q are given. We assume A(t), B(t), Q(t) ∈ Cs[t0, tf ],
s ≥ 1. In the particular case, where B(t) is the transpose of A(t), system (1) is called the Lya-
punov differential equation. Such equations occur frequently in various fields of science
and are widely used in control problems and theory of stability in time varying systems
[1, 4]. The analytical and numerical approaches have been studied by several authors to
solve the Sylvester equations [6–17].

In recent years spectral collocation methods have received attention of many researchers
[18–20]. The ease of implying and the exponential rate of convergence are two main ad-
vantages of these methods [21, 22]. The main contribution of the current paper is to imple-
ment the Chebyshev collocation method to evaluate (1). With the aid of collocation points,
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we obtain a coupled linear matrix equations where their solution gives the unknown coef-
ficients. In the literature, finding a solution to different kinds of linear and coupled matrix
equations is a subject of interest and has been studied extensively. Several approaches
have been established for solving the mentioned equations; for example, the idea of con-
jugate gradient method, gradient-based iterative algorithm, Paige algorithm, and Krylov
subspace methods; for more details, see [13, 23–27] and the references therein. We pro-
pose an iterative algorithm based on Paige’s algorithm [28] to solve the obtained coupled
matrix equations.

In Sect. 2, we first review some definitions and notations. Then, we review some of the
necessary properties of the Chebyshev polynomials for our latest developments. In Sect. 3,
we employ the Chebyshev basis to reduce problem (1) to the solution of coupled matrix
equations. Then, a new iterative algorithm is presented to solve the obtained coupled ma-
trix equations. Moreover, we give an error estimation of the proposed method. Section 4
is dedicated to numerical simulations. Finally, a conclusion is provided.

2 Preliminaries
We review Paige’s algorithm and some basic definitions and properties of matrix algebra
and the Chebyshev polynomials.

The main idea behind of Paige’s algorithm [27–29] is using bidiagonalization algorithm
as a basis for solution of

Ax = b, A ∈R
n×m, B ∈R

n.

The solution generated by Algorithm 1 is the minimum Euclidean norm solution of the
computational importance of the algorithms in their application to very large problems
with sparse matrices. In this case the computation per step and storage is about as small
as could be hoped. Moreover, theoretically the number of steps will be no greater than the
minimum dimension of A.

Algorithm 1 Paige’s algorithm

τ0 = 1; ξ0 = –1; θ0 = 0;

z0; ω0 = 0; β1u1 = b; α1υ1 = AT u1.

(a) ξi = –ξi–1βi/αi; zi = zi–1 + ξiυi;

(b) θi = (τi–1 – βiθi–1)/αi; ωi = ωi–1 + θiυi;

(c) βi+1ui+1 = Aυi – αiui;

(d) τi = –τi–1αi/βi+1;

(e) αi+1υi+1 = AT ui+1 – βi+1υi;

(f ) γi = βi+1ξi/(βi+1θi – τi);

(g) xi = zi – γiωi.
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Definition 1 ([30]) Consider two matrix groups, X = (X1,X2, . . . ,Xk) and X̃ = (X̃1, X̃2,
. . . , X̃k), where Xj, X̃j ∈R

p×q for j = 1, 2, . . . , k. The inner product 〈·, ·〉 is

〈X , X̃ 〉 :=
k∑

j=1

tr
(
X T

j X̃j
)
. (2)

Remark 1 The norm of X is ‖X ‖2 :=
∑k

j=1 tr(X T
j Xj).

Definition 2 ([30]) Let L2
ω[t0, tf ] and ω(x) be the weight function, the inner product and

norm in L2
ω are defined as follows:

〈f , g〉L2
ω

=
∫ tf

t0

f (x)g(x)ω(x) dx, ∀f , g ∈ L2
ω[t0, tf ],

‖f ‖2
L2
ω

= 〈f , f 〉L2
ω

=
∫ tf

t0

f 2(x)ω(x) dx, ∀f ∈ L2
ω[t0, tf ].

Definition 3 ([30]) A function f : [t0, tf ] → R, belongs to the Sobolev space Hk,2
ω if its jth

weak derivative lies in L2
ω[t0, tf ] for 0 ≤ j ≤ k with the norm

∥∥f (x)
∥∥

Hk,2
ω (t0,tf ) =

( k∑
j=0

∥∥f (j)(x)
∥∥2

L2
ω

) 1
2

.

The Chebyshev polynomials are defined on the interval [–1, 1] and determined by re-
currence formulae

T0(t) = 1, T1(t) = t,

Ti+1(t) = 2tTi(t) – Ti–1(t), i = 1, 2, 3, . . . .

These polynomials are orthogonal with ω(t) = 1√
1–t2 . With change of variable

t =
2(x – t0) – h

h
, t0 ≤ x ≤ tf ,

where h = tf –t0, the shifted Chebyshev polynomials in x on the interval [t0, tf ] are obtained
as follows:

φ0(x) = 1,

φ1(x) =
2(x – t0) – h

h
,

and for i = 1, 2, 3, . . . ,

φi+1(x) =
2(2(x – t0) – h)

h
φi(x) – φi–1(x).
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The orthogonality condition for the shifted Chebyshev basis functions is

∫ tf

t0

ω(x)φi(x)φj(x) dx =
h
2

⎧⎪⎨
⎪⎩

π , for i = j = 0,
π
2 , for i = j �= 0,
0, for i �= j,

where ω(x) = 1√
1–( 2(x–t0)–h

h )
2

.

It is well known that Y = span{φ0,φ1, . . . ,φm} is a complete subspace of H = L2
ω[t0, tf ]. So,

f ∈ H has unique best approximation such as ym, that is,

f (x) ≈ ym(x) =
m∑

j=0

cjφj(x) = CTΦ(x),

where CT = (c0, c1, . . . , cm) such that cjs are uniquely calculated by cj =
〈f ,φj〉L2

ω

‖φj‖2
L2
ω

and

ΦT (x) =
(
φ0(x),φ1(x), . . . ,φm(x)

)
. (3)

For more details, see [31].

Proposition 1 ([22]) Assume that f ∈ Hk,2
ω (t0, tf ) and Pmf =

∑m
i=0 ciφi is the truncated

orthogonal Chebyshev series of f and Imf is the interpolation of f in the Chebyshev–Gauss
points. Then

‖f – Pmf ‖L2
ω(t0,tf ) ≤ Chmin(k,m)m–k|f |Hk,2

ω (t0,tf ), (4)

‖f – Imf ‖L2
ω(t0,tf ) ≤ C̃hmin(k,m)m–k|f |Hk,2

ω (t0,tf ), (5)

where

|f |Hk,2
ω (t0,tf ) =

( k∑
j=min(k,m+1)

∥∥f (j)∥∥2
L2
ω(t0,tf )

)1/2

,

h = tf – t0 and C, C̃ are constants independent of m and f .

The derivative of Φ(x), defined in (3), can be given by

dΦ(x)
dx

≈ DΦ(x),

where the (m + 1) × (m + 1) matrix D is called the operational matrix of derivative for the
Chebyshev polynomials in [t0, tf ]. Straightforward computations show that each entry of
D = [dij](m+1)×(m+1) for i, j = 1, . . . , m + 1 is defined as follows [32]:

dij =
1
h

⎧⎪⎨
⎪⎩

4(i – 1), if i + j is odd and 1 < j < i,
2(i – 1), if j = 1 and i is even,
0, otherwise.
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3 Main results
Let us approximate each entry of P(t) = [pij(t)]p×q in (1) by the Chebyshev polynomials.
Consequently, we have

pij(t) ≈AijΦ(t), i = 1, . . . , p, j = 1, . . . , q, (6)

where Aij ∈ R
1×(m+1) are the unknown row vectors and m is the order of the Chebyshev

polynomial. We can write

P(t) ≈A
(
Iq ⊗ Φ(t)

)
, (7)

where notation ⊗ denotes the Kronecker product of two matrixes, A ∈R
p×q(m+1) and

A = (Aij), i = 1, . . . , p, j = 1, . . . , q.

Thus

P′(t) ≈A
(
Iq ⊗ DΦ(t)

)
. (8)

By substituting equations (7) and (8) in (1), we derive

A
(
Iq ⊗ DΦ(t)

)
= A(t)A

(
Iq ⊗ Φ(t)

)
+ A

(
Iq ⊗ Φ(t)

)
B(t) + Q(t) + Rm(t). (9)

We discretize the above equation at m points ξi (1 ≤ i ≤ m) such that Rm(ξi) = 0p×q. The
selected collocation points are the roots of φm(t) (the Chebyshev–Gauss nodes in [t0, tf ]).
These m roots that we use as the collocation nodes are defined by

ξi =
tf – t0

2

(
cos

(2i – 1)π
2m

+ 1
)

+ t0, i = 1, . . . , m,

which are all in [t0, tf ]. By replacing ξi nodes in (9), we obtain the coupled equations

ACi = DiAEi + AFi + Gi, i = 1, 2, . . . , m,

where Ci = Iq ⊗ DΦ(ξi), Di = A(ξi), Ei = Iq ⊗ Φ(ξi), Fi = (Iq ⊗ Φ(ξi))B(ξi), and Gi = Q(ξi).
Moreover, from the initial condition we set A(Iq ⊗ Φ(t0)) = P(t0) and define ξ0 = t0, C0 =
0q(m+1)×q, D0 = Ip, E0 = Iq ⊗Φ(t0), F0 = 0q(m+1)×q, and G0 = –P(t0). Therefore, we may solve
the coupled equations

XHi – DiXEi = Gi, i = 0, 1, . . . , m, (10)

where Hi = Ci – Fi, Gi, Di and X := A. Using the following relation [2]

�(AXB) =
(
BT ⊗ A

) �(X)

and the operator “vec” which transforms a matrix A of size m × s to a vector a = vec(A)
of size ms × 1 by stacking the columns of A, equations (10) are equivalent to the linear
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system Ax = b with the following parameters:

{
Ai = HT

i ⊗ Ip – ET
i ⊗Di ∈ R

pq×pq(m+1),
x = vec(X) ∈ R

pq(m+1)×1, bi = vec(Gi) ∈R
pq×1,

for i = 0, 1, . . . , m,

where Ai and bi denote the rows of A and b, respectively, and Ip is the identity matrix of
order p. We can solve the above linear system by classical schemes such as Krylov subspace
methods, but the size of the coefficient matrix may be too large. So, it is more advisable
to apply an iterative scheme to solve the coupled linear matrix equations rather than the
linear system.

3.1 Solving the coupled matrix equations
We propose a new iterative algorithm to solve (10), which is essentially based on Paige’s al-
gorithm. Recently, Paige’s algorithm has been extended to find the bisymmetric minimum
norm solution of the coupled linear matrix equations [27]

A1XB1 = C1,

A2XB2 = C2.

Using the “vec(·)” operator, the authors elaborated on how Paige’s algorithm can be de-
rived. The reported results reveal the superior convergence properties of their algorithm
in comparison to the algorithms derived via the extension of the conjugate gradient
method [29], which was presented in the literature for solving different types of coupled
linear matrix equations. This motivates us to generalize Paige’s algorithm to resolve (10).

For simplicity, let us consider the linear operator M defined as

M : Rp×q(m+1) →R
p×q × · · · ×R

p×q︸ ︷︷ ︸
(m+1)-fold

,

X �→M(X) =
(
M0(X), M1(X), . . . , Mm(X)

)
,

where Mi(X) = XHi –DiXEi, i = 0, 1, . . . , m. Using the above operator for equation (10), we
have

M(X) = G,

where G = (G0,G1, . . . ,Gm) and Gi ∈ R
p×q, i = 0, 1, . . . , m. Suppose that the linear operator

D is defined as

D : Rp×q × · · · ×R
p×q︸ ︷︷ ︸

(m+1)-fold

→R
p×q(m+1),

Y = (Y0, Y1, . . . , Ym) �→D(Y ),

where D(Y ) =
∑m

i=0(YiHT
i – DT

i YiET
i ).

In Algorithm 2, ε is the given small tolerance to compute the unique minimum Frobe-
nius norm, and for computational purposes, we choose ε = 10–14.
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Algorithm 2 The process of solving matrix equations (10)
1. τ0 = 1; ξ0 = –1; θ0 = 0; Z0 = 0p×(m+1)q; W0 = Z0;

β1 = ‖G‖; U (1) = G/β1;

V̄1 = D
(
U (1)); α1 = ‖V̄1‖; V1 = V̄1/α1;

2. For i = 1, 2, . . . , compute:
• ξi = –ξi–1βi/αi; Zi = Zi–1 + ξiVi;
• θi = (τi–1 – βiθi–1)/αi; Wi = Wi–1 + θiVi;
• Ū (i+1) = M(Vi) – αiU (i);
• βi+1 = ‖Ū (i+1)‖; U (i+1) = Ū (i+1)/βi+1;
• τi = –τi–1αi/βi+1;
• V̄i+1 = D(U (i+1)) – βi+1Vi;
• αi+1 = ‖V̄i+1‖; Vi+1 = V̄i+1/αi+1;
• γi = βi+1ξi/(βi+1θi – τi);
• Xi = Zi – γiWi;

3. If ‖G – M(Xi)‖ ≤ ε then Stop; Otherwise go to 2.

3.2 Implementing the method
We employ the step-by-step method for solving (1). To do so, we choose s �= 0, starting
with x0 := t0, Z0 := P(x0) and considering the points xi = x0 + is, i = 1, 2, 3, . . . . On each
subinterval [xi, xi+1) for i = 0, 1, . . . , [ tf –t0

s ] – 1, by solving the following equations

{
Z′(t) = A(t)Z(t) + Z(t)B(t) + Q(t), xi ≤ t < xi+1,
Z(xi) = Zi,

with the framework described in Sect. 3.1, we consecutively approximate P(t) by Z(t).
Then, to compute the approximate solution Z(t) of P(t) on the next subinterval, we set
Zi+1 = Z(xi+1).

3.3 Error estimation
We illustrate an error analysis based on the notion employed to the Volterra type integral
equations [33, 34].

Definition 4 Let F(x) = [fij(x)] be a matrix of order p × q defined on [t0, tf ] such that
fij(x) ∈ L2

ω[t0, tf ]. Then we define

‖F‖∞ = max
i,j

∥∥fij(x)
∥∥

L2
ω

, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

Theorem 1 Consider the Sylvester matrix differential problem (1), where pij ∈ Hk
ω(xl, xl+1),

hl = xl+1 – xl , A(t) = [aij(t)]p×p, B(t) = [bij(t)]q×q, and Q(t) = [qij(t)]p×q are given so that
aij(t), bij(t) and qij(t) are sufficiently smooth. Also, assume that Pm = A(Iq ⊗Φ) denotes the
approximation of P. Furthermore, suppose that M1 = maxi,j maxxl≤t≤xl+1 |aij(t)| and M2 =
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maxi,j maxxl≤t≤xl+1 |bij(t)|. Then the following statement holds:

‖P – Pm‖∞ ≤ C̃hmin(k,m)
l

(
hlm–1–k max

i,j

(
M1

p∑
υ=1

|pυj|Hk
ω(xl ,xl+1) + M2

q∑
υ=1

|piυ |Hk
ω(xl ,xl+1)

)

+ m–k max
i,j

|pij|Hk
ω(xl ,xl+1)

)
,

where C̃ is a finite constant.

Proof Integrating (1) in [xl, x] results in

P(x) =
∫ x

xl

(
A(t)P(t) + P(t)B(t) + Q(t)

)
dt + P(xl). (11)

For ξ0 = xl and the Chebyshev–Gauss nodes ξn, 1 ≤ n ≤ m, on the interval [xl, xl+1], we
have

Pm(ξn) =
∫ ξn

xl

(
A(t)Pm(t) + Pm(t)B(t) + Q(t)

)
dt + P(xl), n = 0, 1, . . . , m. (12)

From (12), we obtain

Pm(ξn) =
∫ ξn

xl

(
A(t)E(t) + E(t)B(t)

)
dt

+
∫ ξn

xl

(
A(t)P(t) + P(t)B(t) + Q(t)

)
dt + P(xl), (13)

where E = [eij]p×q = Pm – P. For Ln as the Lagrange interpolating polynomial, we have

m∑
n=0

Ln(x)Pm(ξn) =
m∑

n=0

Ln(x)
(∫ ξn

xl

(
A(t)E(t) + E(t)B(t)

)
dt

)

+
m∑

n=0

Ln(x)
(∫ ξn

xl

(
A(t)P(t) + P(t)B(t) + Q(t)

)
dt + P(xl)

)
.

Subtracting this equation from (11) yields

m∑
n=0

Ln(x)Pm(ξn) – P(x) =
∫ x

xl

(
A(t)E(t) + E(t)B(t)

)
dt + R1(x) + R2(x), (14)

where

R1(x) =
m∑

n=0

Ln(x)
∫ ξn

xl

(
A(t)E(t) + E(t)B(t)

)
dt –

∫ x

xl

(
A(t)E(t) + E(t)B(t)

)
dt
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and

R2(x) =
m∑

n=0

Ln(x)
(∫ ξn

xl

(
A(t)P(t) + P(t)B(t) + Q(t)

)
dt + P(xl)

)

–
∫ x

xl

(
A(t)P(t) + P(t)B(t) + Q(t)

)
dt – P(xl).

Since Pm is a polynomial of order m, we may rewrite (14) in the form

E(x) =
∫ x

xl

(
A(t)E(t) + E(t)B(t)

)
dt + R1(x) + R2(x). (15)

By implying the Gronwall inequality on (15), we have

‖E‖∞ ≤ C‖R1 + R2‖∞. (16)

Since A(t), B(t), and Q(t) are sufficiently smooth, for R1(x) and R2(x) we obtain the follow-
ing results. From Definition 4,

∥∥R1(x)
∥∥∞ = max

i,j
‖Imf – f ‖L2

ω
,

in which f (x) =
∫ x

xl
(
∑p

υ=1 aiυ (t)eυj(t) +
∑q

υ=1 eiυ (t)bυj(t)) dt. Using (5) for k = 1 and (4), it
can be deduced that

∥∥R1(x)
∥∥∞ ≤ C1hlm–1 max

i,j

∥∥∥∥∥
p∑

υ=1

aiυeυj +
q∑

υ=1

eiυbυj

∥∥∥∥∥
L2
ω

≤ C1hmin(k,m)+1
l m–1–k

× max
i,j

(
M1

p∑
υ=1

|pυj|Hk
ω(xl ,xl+1) + M2

q∑
υ=1

|piυ |Hk
ω(xl ,xl+1)

)
. (17)

Also, for R2(x), we derive that

∥∥R2(x)
∥∥∞ = max

i,j
‖Impij – pij‖L2

ω

≤ C2hmin(k,m)
l m–k max

i,j
|pij|Hk

ω(xl ,xl+1). (18)

Now the assertion can be concluded from (16)–(18) immediately. �

4 Numerical simulations
In this section, we show the application of the Chebyshev collocation method to solve (1).
We would like to point out that at each subinterval [xi, xi+1], i = 0, 1, . . . , Algorithm 2 is
applied. We use the notations

Err = max
i,j

‖Pij – Zij‖∞ = max
i,j

max
xl≤x≤xl+1

∣∣Pij(t) – Zij(t)
∣∣, (19)

E(t) =
∥∥P(t) – Z(t)

∥∥
F , (20)
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Table 1 Err comparison of the spline method [8] and the proposed method for equations (21)–(22)

Interval
[0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]

Our method 1.63806× 10–12 1.48828× 10–12 1.35303× 10–12 1.22071× 10–12 1.11135× 10–12

Spline algorithm [8] 2.6999× 10–10 5.1438× 10–10 7.36× 10–10 9.38797× 10–10 1.1268× 10–9

Interval
[0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1]

Our method 1.01325× 10–12 9.25324× 10–13 8.47024× 10–13 7.77505× 10–13 7.15577× 10–13

Spline algorithm [8] 1.30572× 10–9 1.48252× 10–9 1.66579× 10–9 1.86603× 10–9 2.09601× 10–9

where Z(t) = [Zij(t)]p×q and P(t) = [Pij(t)]p×q denote the approximate and exact solutions,
respectively.

Example 1 Consider the Sylvester equation [8]

{
P′(t) = A(t)P(t) + P(t)B(t) + Q(t),
P(0) =

( 1 0
0 1

)
, t ∈ [0, 1],

(21)

where

A(t) =

(
0 te–t

t 0

)
, B(t) =

(
0 t
0 0

)
,

Q(t) =

(
–e–t(1 + t2) –2te–t

1 – te–t –t2

) (22)

with the exact solution

P(t) =

(
e–t 0
t 1

)
.

The obtained results of the spline method [8] and our method with m = 5, h = 0.1 are
given in Table 1. The results show that our method has fewer errors in comparison with
[8].

Example 2 Consider the periodic Lyapunov equation

{
P′(t) = A(t)P(t) + P(t)AT (t) + Q(t),
P(0) =

( 2 0
0 1

)
, t ∈ [0, 30],

(23)

where

A(t) =

(
0 1

–10 cos t – 1 –24 – 10 sin t

)
,

Q(t) =

(
– sin t 11 cos t + 10 cos2 t – sin t

11 cos t + 10 cos2 t – sin t 48 + cos t + 68 cos t + 20 sin2 t

)
.

(24)
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Table 2 Err of the proposed method for equations (23)–(24) with h = 1

Interval Our method
m = 4 m = 5

[0, 5] 3.01372× 10–4 6.54493× 10–6

[5, 10] 1.29054× 10–4 6.23638× 10–6

[10, 15] 5.16822× 10–4 3.17433× 10–6

[15, 20] 3.76287× 10–4 2.97795× 10–6

[20, 25] 4.39640× 10–4 3.52549× 10–6

[25, 30] 4.87715× 10–4 5.88901× 10–6

Table 3 Err of the proposed method for equations (23)–(24) with h = 0.1

Interval Our method
m = 4 m = 5

[0, 5] 3.73335× 10–10 1.65403× 10–12

[5, 10] 2.22099× 10–9 2.10642× 10–12

[10, 15] 3.11465× 10–9 2.77084× 10–12

[15, 20] 3.77280× 10–9 4.39272× 10–12

[20, 25] 5.53761× 10–9 5.19905× 10–12

[25, 30] 5.82448× 10–9 6.01671× 10–12

Table 4 CPU runtimes of Examples 1 and 2

Interval h m Runtime

Example 1 [0, 1] 0.1 5 6.350704534496123

Example 2 [0, 30] 1 4 0.7504827271177106
[0, 30] 1 5 0.9672017
[0, 30] 0.1 4 13.10867849194134
[0, 30] 0.1 5 14.811903603279116

The period of the problem is 2π . The exact solution of this Lyapunov differential equation
is

P(t) =

(
1 + cos t 0

0 1 + sin t

)
.

The corresponding numerical results of Example 2 with h = 1 and h = 0.1 are reported in
Tables 2 and 3, respectively.

The CPU runtimes of Examples 1 and 2 are reported in Table 4. For these computations,
we applied the AbsoluteTiming[·] function in Wolfram Mathematica 12 on system with
Pentium Dual Core T4500 2.3 GHz CPU and 4 GB RAM.

5 Conclusions
The Sylvester and Lyapunov equations have numerous notable applications in analysis and
design of control systems. The properties of the Chebyshev basis have been employed to
solve the Sylvester equations by a new framework. The Sylvester differential equations are
useful in solving periodic eigenvalue assignment problems. Our approach converts the
main problem to the coupled linear matrix equations. An iterative algorithm was proposed
for solving the obtained coupled linear matrix equations. Also, an error estimation of the
method was obtained. Numerical experiments have been explained to show the applicably
of our scheme.
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