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Abstract
We study the optimal harvesting policy for fishery in the marine protected and
unreserved areas. In the literature, it is generally assumed that the fish population
follows a concrete growth law. In contrast, we consider an abstract model with
migration from the reserved area to the unreserved one. Then we examine and
analyze the existence and stability of a nontrivial equilibrium point of the model. We
also discuss the bionomic equilibrium. After that, we use the Pontryagin maximum
principle to obtain the optimal harvest policy, where, instead of the well-known
Hamiltonian function, we use the current Hamiltonian function to ease the
calculation. Finally, we give some numerical examples to further illustrate our
statements, where we also find that in practice the impreciseness of the parameters
can influence the existence of the system positive equilibrium.
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1 Introduction
A marine protected area (MPA) is essentially a space in the ocean where human activities
are more strictly regulated than the surrounding waters, similarly to parks we have on
land. These places are given special protections for natural or historic marine resources
by local, state, territorial, native, regional, or national authorities.

The creation of the world biggest marine reserve in Antarctica, covering an area more
than six times the UK, has been hailed as a “milestone for conservation.” Agreement was
reached by the Commission for the Conservation of Antarctic Marine Living Resources
(CCAMLR), made up of 24 countries including the UK and European Union, to protect
1.55 million square kilometers of the Ross Sea. However, zero harvesting of all species
within a reserve is rare. Some 72 percent of the marine protected area will be a “no-take”
zone, where all fishing is forbidden, whereas other areas will allow some harvesting of
fish and krill for scientific research. Lindeboom [1] pointed out that marine reserves can
provide an undisturbed system for scientific study. In fact, reserves or “no-take” areas [2]
often form a part of larger MPAs that have less protection and may include areas that allow

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02755-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02755-1&domain=pdf
http://orcid.org/0000-0003-4073-1580
mailto:lirhuang@whu.edu.cn


Huang et al. Advances in Difference Equations        (2020) 2020:285 Page 2 of 17

for some consumptive use [3]. In our model, we assume that there exists some harvest in
the MPA.

Generally speaking, different species may follow different growth curves. Statistical
analysis suggested that the Gompertz curve is the best equation to explain growth, in
length, of mackerels during their first growth season [4, 5]. A logistic curve is the best
growth law to describe growth of micropterus salmoides [6]. Since establishing an MPA
could change the species growth pattern [7, 8], it is necessary to construct a model using
an abstract growth function and analyze its dynamical properties. In Sect. 4, we give some
examples with different kinds of growth functions, such as the Gompertz [4], logistic [9],
and Smith growth laws [10]. The first two were studied by many researchers, whereas the
last one was barely mentioned in the previous literature.

As we know, biological parameters are often obtained imprecisely. The impreciseness
can result from various factors. They include internal factors of an ecosystem such as the
change of climate, the destruction of habitats, and external factors such as data collec-
tion and measurement errors in experiments. There are different techniques to handle
this problem, including the stochastic method [11], fuzzy method [12–14], and fuzzy-
stochastic method [15]. In the stochastic method the uncertain parameters are replaced
by stochastic variables with known probability distributions. In the fuzzy method the
uncertain parameters are replaced by fuzzy sets with known membership functions. In
the fuzzy-stochastic method a subset of uncertain parameters is replaced as in the fuzzy
method, whereas the rest are taken as stochastic variables. Nevertheless, constructing a
suitable membership function (or a suitable probability distribution) for the imprecise bi-
ological parameters is a difficult problem. Very recently, there are some excellent works
about biological models with interval-value biological parameters [16–21]. Pal [19] and
Wang [16] studied a prey–predator system with interval biological parameters, Sharma
and Samanta [18] constructed a two-competing-species harvesting model with imprecise
biological parameters, and later, You and Zhao [17] investigated the Gompertz popula-
tion model with interval-value biological parameters. Indeed, the interval-valued func-
tions give a way to contain all values in a given interval, which can be used to characterize
the interval-value biological parameters. In this work, we replace the intrinsic growth rate
of the population by an interval-valued function.

To determine the optimal policy of harvesting, we use the Pontryagin maximum princi-
ple [22]. In this process the Hamiltonian function is usually used by researchers. However,
to make the calculation simpler, in this paper, we use, instead, the current Hamiltonian
function [23].

It is usually assumed that there exists migration between both areas [24, 25], from the
marine reserve toward the zone of open access and vice versa, but in this study, we only
consider the migration from the reserved area to the unreserved area, as in the previous
literature [26].

This paper is organized as follows. In Sect. 2, we present some introductory material
of our model. In Sect. 3, we discuss the existence of a nontrivial equilibrium point and
its stability. Furthermore, at the end of this section, we prove the existence of bionomic
equilibrium of the model and study the optimal harvesting policy. In Sect. 4, we give some
numerical examples verifying our theoretical results. Finally, in Sect. 5. we give some brief
conclusions.
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2 Materials and methods
With objects mentioned before, we establish MPA and divide the region into two patches.
We consider the two areas with the same kind species but different rates of growth and
carrying capacities.

Let x(t) and y(t) represent the population density of the fish resource inside the reserved
area and the unreserved area, respectively. Based on the model studied in [26], we make
some assumptions:

• Although different species may follow different growth curves, we will not consider
them as concrete functions, but rather as abstract functions rxG(x) and syF(y) with
some properties:

(1) G′(x) < 0, F ′(y) < 0.
(2) There exist positive numbers K , L such that G(K) = 0, F(L) = 0; K and L are the

carrying capacity of the reserved area and the unreserved area, respectively.
(3) G(x) > 0 for x < K and G(x) < 0 for x > K , F(y) > 0 for y < L and F(y) < 0 for y > L.

• The intrinsic rates of the population in the reserved and unreserved areas are r and s,
where r ∈ [rl, ru] and s ∈ [sl, su]. Let r̃(l1) = r1–l1

l rl1
u and s̃(l2) = s1–l2

l sl2
u be the related

interval-valued functions, and let l1 ∈ [0, 1] and l2 ∈ [0, 1]. The definition and
arithmetic operations on interval-valued functions are given in Appendix 1.

• We assume that the migration rate per unit time is a strictly increasing function m(x)
such that m′(x) > 0 and m(0) = 0 [27]. Here the model only accounts for migration
from the protected area to the open zone. In the numerical section, we will take
m(x) = mx2

x2+a2 [26], where m is the migration rate in (0, 1), a is the half saturation rate of
migration, and when x = a, a proportion m

2 of the reserved population emigrates to
the unreserved area. Due to its complexity, m(x) = mx2

x2+a2 is rarely used in other models.
• As mentioned in [3], none harvesting of all species within the reserved area is rare,

and it is reasonable to suppose that the capture in the reserved area also exists.
Then our model can be described by the following 2-D nonlinear differential equations
with interval coefficients:

⎧
⎨

⎩

dx
dt = r0x(t)G(x(t)) – x(t)m(x(t)) – q1E1x(t),
dy
dt = s0y(t)F(y(t)) + x(t)m(x(t)) – q2E2y(t),

(1)

where r0 ∈ [rl, ru] and s0 ∈ [sl, su]. We take catch functions hj (j = 1, 2) as the products of
constant technological parameter qj, the efforts levels Ej, and the stock levels in each area;
thus h1 = q1E1x(t) and h2 = q2E2y(t) are harvestings in each area.

As proved in [19], the parametric form of system (1) can be written as the following
system:

⎧
⎨

⎩

dx(t,l1)
dt = r1–l1

l rl1
u x(t)G(x(t)) – x(t)m(x(t)) – q1E1x(t),

dy(t,l2)
dt = s1–l2

l sl2
u y(t)F(y(t)) + x(t)m(x(t)) – q2E2y(t).

(2)

3 Results
3.1 Equilibria
In this part, we prove the existence and uniqueness for the nontrivial steady state.

Theorem 1 System (2) has a unique positive equilibrium point P(x∗, y∗) if r1–l1
l rl1

u ×
limx→0 G(x) – q1E1 > 0.
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Proof Let

g(x) = r1–l1
l rl1

u G(x) – m(x) – q1E1.

Then

g ′(x) = r1–l1
l rl1

u G′(x) – m′(x) < 0,

limx→0 g(x) = r1–l1
l rl1

u , limx→0 G(x) – q1E1 > 0, and limx→∞ g(x) < 0.
So there exists a unique x∗ in (0, +∞) such that g(x∗) = 0.
Let

f (y) = s1–l2
l sl2

u F(y) +
x∗m(x∗)

y
– q2E2.

Then

f ′(y) = s1–l2
l sl2

u F ′(y) –
x∗m(x∗)

y2 < 0,

limy→0 f (y) > 0, and limy→∞ f (y) < 0.
So there exists a unique y∗ in (0, +∞) such that f (y∗) = 0, and this completes the proof. �

Theorem 1 shows that if q1E1 is not very large, then model (2) has a positive steady state,
which is significant for maintaining a sustainable ecosystem.

3.2 Analysis of steady state
Theorem 2 The steady state P(x∗, y∗) is a node, and it is globally asymptotically stable.

Proof The variational matrix for P(x∗, y∗) is

V
(
x∗, y∗) =

(
r1–l1

l rl1
u x∗G′(x∗) – x∗m′(x∗) 0

m(x∗) + x∗m′(x∗) s1–l2
l sl2

u y∗F ′(y∗) – x∗m(x∗)
y∗

)

,

and the characteristic equation is

∣
∣
∣
∣
∣

r1–l1
l rl1

u x∗G′(x∗) – x∗m′(x∗) – μ 0
m

(
x∗) + x∗m′(x∗) s1–l2

l sl2
u y∗F ′(y∗) – x∗m(x∗)

y∗ – μ

∣
∣
∣
∣
∣

= 0.

Since by assumption G′(x) < 0 and F ′(x) < 0, we conclude that

μ1 = r1–l1
l rl1

u x∗G′(x∗) – x∗m′(x∗) < 0

and

μ2 = s1–l2
l sl2

u y∗F ′(y∗) –
x∗m(x∗)

y∗ < 0.
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According to [28], P(x∗, y∗) is a node, and it is locally asymptotically stable. Let

A(x, y) = r1–l1
l rl1

u xG(x) – xm(x) – q1E1x,

B(x, y) = s1–l2
l sl2

u yF(y) + xm(x) – q2E2y.

We choose the Dulac function Z(x, y) = 1
xy . Then

Z(x, y)A(x, y) =
r1–l1

l rl1
u G(x)
y

–
m(x)

y
–

q1E1

y
,

Z(x, y)B(x, y) =
s1–l2

l sl2
u F(y)
x

+
m(x)

y
–

q2E2

x
,

∂(Z(x, y)A(x, y))
∂x

=
r1–l1

l rl1
u G′(x)
y

–
m′(x)

y
,

∂(Z(x, y)B(x, y))
∂y

=
s1–l2

l sl2
u F ′(y)
x

–
m(x)

y2 .

Then ∂(Z(x,y)A(x,y))
∂x + ∂(Z(x,y)B(x,y))

∂y = r1–l1
l rl1

u G′(x)
y – m′(x)

y + s1–l2
l sl2

u F ′(y)
x – m(x)

y2 < 0 and thus never
changes sign and does not reach zero in the first octant. According to Bendixson–Dulac
theorem [29], model (2) has no closed orbits contained entirely in the first octant. Since
P(x∗, y∗) is locally asymptotically stable, we can state that as t → ∞, every solution of
model (2) tends to P(x∗, y∗). Thus we complete the proof. �

3.3 Bionomic equilibrium
In this part, we will show the existence of bionomic equilibrium of system (2).

Let c1, c2 be the harvesting cost per unit efforts, and let p1, p2 be the constant prices per
unit biomass of the reserved and unreserved areas. The net revenue is given by

π = p1q1xE1 – c1E1 + p2q2yE2 – c2E2.

Here we consider E2 = θE1, E1 = E, where θ is a constant. Then the model is

⎧
⎨

⎩

dx(t,l1)
dt = r1–l1

l rl1
u x(t)G(x(t)) – x(t)m(x(t)) – q1Ex(t),

dy(t,l2)
dt = s1–l2

l sl2
u y(t)F(y(t)) + x(t)m(x(t)) – θq2Ey(t).

(3)

Theorem 3 If c1+θc2
p1q1

> K and c1+θc2
θp2q2

> L, then model (3) has a unique bionomic equilibrium.

Proof The economic profit is

π (x, y, E) = p1q1xE – c1E + θp2q2yE – θc2E. (4)

Bionomic equilibrium means both biologic and economic equilibria. Therefore we have
π (x, y, E) = 0, dx(t)

dt = 0, dy(t)
dt = 0, that is,

p1q1xE – c1E + θp2q2yE – θc2E = 0,
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r1–l1
l rl1

u xG(x) – xm(x) – q1Ex = 0, (5)

s1–l2
l sl2

u yF(y) + xm(x) – θq2Ey = 0. (6)

Using equations (5) and (6), we get

E =
r1–l1

l rl1
u G(x) – m(x)

q1
=

s1–l2
l sl2

u F(y) + xm(x)
y

θq2
, (7)

which is equivalent to the system

⎧
⎨

⎩

p1q1xE – c1E + θp2q2yE – θc2E = 0,

θq2(r1–l1
l rl1

u G(x) – m(x)) – q1(s1–l2
l sl2

u F(y) + xm(x)
y ) = 0.

(8)

From (8) we get

y =
c1 + θc2 – p1q1x

θp2q2
. (9)

Since y > 0, we have x < c1+θc2
p1q1

.
Let

D(x) = θq2
(
r1–l1

l rl1
u G(x) – m(x)

)
– q1

(

s1–l2
l sl2

u F(y) +
xm(x)

y

)

,

D′(x) = θq2(r1–l1
l rl1

u G′(x) – m′(x)) – q1[s1–l2
l sl2

u F ′(y) dy
dx + xm(x)( –1

y2 ) dy
dx + 1

y (m(x) + xm′(x))].
Ssubstituting dy

dx = –p1q1
θp2q2

into the last equation, we have

D′(x) < 0.

If x → 0, then y → c1+θc2
θp2q2

, and

lim
x→0

D(x) = θq2 lim
x→0

r1–l1
l rl1

u G(x) – q1 lim
y→ c1+θc2

θp2q2

s1–l2
l sl2

u F(y),

and if x → c1+θc2
p1q1

, then y → 0, and

lim
x→ c1+θc2

p1q1

D(x) = θq2 lim
x→ c1+θc2

p1q1

r1–l1
l rl1

u G(x) – m
(

c1 + θc2

p1q1

)
c1 + θc2

p1q1

– q1s1–l2
l sl2

u

(
lim
y→0

F(y) + ∞
)

.

Therefore we conclude that if c1+θc2
p1q1

> K , c1+θc2
θp2q2

> L, and

lim
x→ c1+θc2

p1q1

r1–l1
l rl1

u G(x) < 0, lim
y→ c1+θc2

θp2q2

s1–l2
l sl2

u F(y) < 0,
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then

lim
x→0

D(x) > 0, lim
x→ c1+θc2

p1q1

D(x) < 0.

So there exist a unique x∞ satisfying D(x∞) = 0, and according to (7) and (9), we can get
y∞, E∞. �

3.4 Optimal harvesting policy
The aim of this part is to obtain an optimal harvesting policy, which maximizes the present
value function. The problem can be described as

max
∫ ∞

0
e–δtπ (x, y, E) dt (10)

subject to (3), where π (x, y, E) is given in (4), δ is the rate of annual discount, and the
control variable satisfies

0 ≤ E(t) ≤ Emax.

Since (10) is dependent on time t merely through the discount term, this is an infinite-
horizon autonomous problem. In [17, 19] authors generally construct a Hamiltonian func-
tion. Here we consider the current value Hamiltonian function s given by

H(x, y, E,λ1,λ2)

= (p1q1x – c1 + θp2q2y – θc2)E + λ1
(
r1–l1

l rl1
u xG(x) – xm(x) – q1Ex

)

+ λ2
(
s1–l2

l sl2
u yF(y) + xm(x) – θq2Ey

)
,

where λ1(t) and λ2(t) are the current value multipliers associated with x(t) and y(t), re-
spectively. Then we have

∂H
∂E

= p1q1x – c1 + θp2q2y – θc2 – λ1q1x – θλ2q2y := σ (t, l1, l2),

∂H
∂x

= p1q1E + λ1
(
r1–l1

l rl1
u G(x) + r1–l1

l rl1
u xG′(x) – m(x) – xm′(x) – q1E

)

+ λ2
(
m(x) + xm′(x)

)
,

∂H
∂y

= θp2q2E + λ2
(
s1–l2

l sl2
u F(y) + s1–l2

l sl2
u yF ′(y) – θq2E

)
.

Note that the current value Hamiltonian function is linear with respect to the control E,
and we will consider the optimal harvesting as a combination of singular and bang-bang
controls:

E(t, l1, l2) =

⎧
⎪⎪⎨

⎪⎪⎩

0, σ (t, l1, l2) < 0,

Eδ , σ (t, l1, l2) = 0,

Emax, σ (t, l1, l2) > 0.
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When σ (t, l1, l2) is not equal to zero, the control changes from one to another depending
on the sign of σ (t, l1, l2). The solution is called a bang-bang control, and σ (t, l1, l2) is called
the switching function. However, when σ (t, l1, l2) equals zero, the optimal control cannot
be obtained through the above procedure, and Eδ is called a singular solution. In addition,
according to the Pontryagin maximum principle [22], the adjoint system can be stated as
follows:

⎧
⎨

⎩

dλ1
dt = δλ1 – ∂H

∂x ,
dλ2
dt = δλ2 – ∂H

∂y .
(11)

After a simple calculation, (11) becomes

dλ1

dt
= δλ1 –

[
p1q1E + λ1

(
r1–l1

l rl1
u G(x) + r1–l1

l rl1
u xG′(x) –

(
m(x) + xm′(x)

)
– q1E

)]

– λ2
(
m(x) + xm′(x)

)
, (12a)

dλ2

dt
= δλ2 –

[
θp2q2E + λ2

(
s1–l2

l sl2
u F(y) + s1–l2

l sl2
u yF ′(y) – θq2E

)]
. (12b)

From (12b) and the interior equilibrium P(x∗, y∗) we have

λ2(t) =
θp2q2E
δ + A

+ C1e(δ+A)t .

For any C1, λ2(t) is a shadow price, which is bounded, so we can choose C1 = 0. Then

λ2(t) =
θp2q2E
δ + A

. (13)

Using (12a)–(12b) and (13), we obtain

λ1(t) =
p1q1E + θp2q2E

δ+A Q
δ + B

+ C2e(δ+B)t .

Similarly, choosing C2 = 0, we have

λ1(t) =
p1q1E + θp2q2E

δ+A Q
δ + B

,

where

A = –s1–l2
l sl2

u F
(
y∗) – s1–l2

l sl2
u y∗F ′(y∗) + θq2E,

B = –r1–l1
l rl1

u G
(
x∗) – r1–l1

l rl1
u x∗G′(x∗) +

(
m

(
x∗) + x∗m′(x∗)) + q1E,

Q = m
(
x∗) + x∗m′(x∗).

From the interior equilibrium we get A > 0 and B > 0. Then

p1q1x∗ – c1 + θp2q2y∗ – θc2 – q1x∗ p1q1E + θp2q2E
δ+A Q

δ + B
– θq2y∗ θp2q2E

δ + A
= 0, (14)
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r1–l1
l rl1

u x∗G
(
x∗) – x∗m

(
x∗) – q1Ex∗ = 0,

s1–l2
l sl2

u y∗F
(
y∗) + x∗m

(
x∗) – θq2Ey∗ = 0.

These equations can be solved numerically to obtain xδ , yδ , Eδ .
When δ → ∞, equation (14) transforms to

p1q1x∗ – c1 + θp2q2y∗ – θc2 = 0,

which indicates that π (x∞, y∞, E) = 0. In other words, when the discount rate tends to
infinity, and when the net economic revenue tends to zero, then the fishery may close. This
conclusion can be explained from the perspective of economics: a high interest rate may
lead to a high inflation rate, and if the inflation rate increases rapidly, then the real value
of the fishery resource may decrease. Hence the economic market plays an important role
in the exploiting of fishery resources, and the owner of the fishery resources stock prefers
to exploit it at a no-profit-no-lose basis [30].

From (14) we have

π = q1x∗ p1q1E(δ + A) + θp2q2EQ
(δ + B)(δ + A)

+ θq2y∗ θp2q2E
δ + A

,

and thus π is a decreasing function of δ (≥ 0). Therefore we can assert that when δ = 0,
the net profit reaches its maximum.

4 Numerical examples
In this section, we give some examples to illustrate our statements and exhibit theoretical
results. We choose the migration rate function m(x) = mx2

x2+a2 . We point out that the sim-
ulation here is considered as a qualitative, rather than a quantitative analysis. To ensure
the rationality of parameters, we determine the value of parameters in our work based on
[17, 26]. We use Maple to help us finish all the calculations. In Appendix 2, we give a Maple
code for Example 2.

Example 1 Consider two patches, both following the logistic growth law, G(x) = 1 – x
K

and F(y) = 1 – y
L . Let K = 5, L = 8, rl = 2.5, ru = 4.4, sl = 4, su = 4.25, m = 0.2, a = 0.8,

E1 = E2 = 15, q1 = 0.2, q2 = 0.03, l1 ∈ [0, 1], l2 = 0; the value of l1 can affect the ecosystem.
When 0 ≤ l1 ≤ 0.3225138920, model (2) has no negative equilibrium point, and then the
system tends to a “bad” steady state (see Figs. 1, 2), and the fish in the reserved area would
die out. From Fig. 2 we can see that when l1 = 0.3225138920, x = 0 and y = 7.100000000;
and when 0.3225138920 < l1 ≤ 1, the population of these two tend to a “good” steady state,
and the system has a unique positive equilibrium point (see Figs. 3, 4).

Example 2 In this example, we assume the two subpopulations follow the Smith growth
law [10]: G(x) = K–x

K+Dx and F(y) = L–y
L+Dy , where D is a constant. We choose D = 1, K = 5,

L = 8, m = 0.2, a = 0.8, rl = 3.6, ru = 5.2, sl = 5, su = 6.3, q1E1 = 3, q2E2 = 4. Then, for any
l1, l2 ∈ [0, 1], the trivial equilibrium point (0, 0) obviously exists. The nontrivial equilibrium
point P(x∗, y∗), the eigenvalues of variational matrices at the corresponding equilibrium
point, and the equilibrium point nature and its stability are given in Table 1, where for
brevity, we take l1 = l2.
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Figure 1 “Bad” steady state: l1 = 0, l2 = 0

Figure 2 “Bad” steady state: l1 = 0.3225138920, l2 = 0

Figure 3 “Good” steady state: l1 = 0.5, l2 = 0

Example 3 In this example, we present the optimal harvesting policy for two species with
different growth laws, the logistic and Gompertz laws. To illustrate the difference coming
from the two-species growth curve, we assume that they have the same parameters K = 5,
L = 8, rl = 5, ru = 5.35, sl = 4, su = 4.25, m = 0.2, a = 0.8, θ = 0.3, δ = 0.05, p1 = 4, p2 = 5,
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Figure 4 “Good” steady state: l1 = 1, l2 = 0

Table 1 Model with Smith growth law: G(x) = K–x
K+Dx , F(y) =

L–y
L+Dy

l1 = l2 Equilibrium points (x∗ , y∗) Eigenvaluesμ1, μ2 Nature Stability

0 (0.419172512, 0.908562552) –0.581443562, –0.935736565 node stable
0.2 (0.580237864, 1.106635957) –0.812364935, –1.154177340 node stable
0.4 (0.742088030, 1.303631499) –1.038076409, –1.374218715 node stable
0.6 (0.905409263, 1.497837057) –1.263864492, –1.593796608 node stable
0.8 (1.069795883, 1.688474898) –1.494873355, –1.812561546 node stable
1 (1.234382511, 1.875292253) –1.734772227, –2.031045452 node stable

Table 2 Model with logistic growth law: G(x) = 1 – x
K , F(y) = 1 – y

L

l1 = l2 Optimal equilibrium points (xδ , yδ ) Optimal harvesting effort Eδ Net profit π

0 x = 3.528211594, y = 7.665161972 6.407840748 6.871406832
0.3 x = 3.530580770, y = 7.663038860 6.546584616 7.030511066
0.5 x = 3.532135784, y = 7.661635410 6.640648185 7.138390920
0.8 x = 3.534432298, y = 7.659547873 6.784137550 7.302974951
1 x = 3.535939675, y = 7.658167768 6.881418346 7.414569343

Table 3 Model with Gompertz growth law: G(x) = log K
x , F(y) = log L

y

l1 = l2 Optimal equilibrium points (xδ , yδ ) Optimal harvesting effort Eδ Net profit π

0 x = 3.443537327, y = 7.560265684 8.374675319 8.281462788
0.3 x = 3.445559288, y = 7.558177313 8.550819930 8.466799805
0.5 x = 3.446887949, y = 7.556795592 8.670232950 8.592458344
0.8 x = 3.448852456, y = 7.554738527 8.852381065 8.784153493
1 x = 3.450143413, y = 7.553377337 8.975864014 8.914122016

q1 = 0.2, q2 = 0.1, c1 = 2, c2 = 3. Then the optimal equilibrium point (xδ , yδ), the optimal
harvesting effort Eδ , and the net profit π of these two species are given in Tables 2 and 3.
We can catch the fact that as l1, l2 increase, the population in the unreserved area yδ de-
creases, in the reserved area xδ increases, and the optimal harvesting effort Eδ and the net
profit π increase as well.

Example 4 In this example, we illustrate that when the system reaches its equilibrium
point, the population of the unreserved area is not always higher than the reserved area.
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Figure 5 Time evolution of x, y for l1 = l2 = 0

Figure 6 Time evolution of x, y for l1 = l2 = 0.2

Figure 7 Time evolution of x, y for l1 = l2 = 0.4

Let G(x) = 1– x
K , F(y) = 1– y

L , K = 5, L = 8, rl = 5, ru = 5.35, sl = 4, su = 4.25, m = 0.2, a = 0.8,
q1E1 = 3, q2E2 = 3.6. Figures 5–10 evidence the result with the initial data x(0) = 1, y(0) = 1.

5 Discussion
In this work, we studied the optimal harvesting of fishery in the marine reserved area and
its adjacent area. We supposed that the population is divided into two subpopulations
and the growth curve of each population can be the same or different. Due to the fact that
biological parameters are often obtained imprecisely, we considered the intrinsic growth
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Figure 8 Time evolution of x, y for l1 = l2 = 0.6

Figure 9 Time evolution of x, y for l1 = l2 = 0.8

Figure 10 Time evolution of x, y for l1 = l2 = 1

rate of these two subpopulations in a certain range and replaced them with interval-valued
functions, which contain all values in a given interval. To make the model less complicated,
we assumed that the migration only exists from the marine protected area toward the
unreserved area.

We proved that when r1–l1
l rl1

u limx→0 G(x) – q1E1 > 0, model (2) has a unique positive
equilibrium point, which is a node and is globally asymptotically stable. In our model, the
value of l1 and l2 has no influence on the nature of equilibrium, but in other models, such
as the prey–predator model, the application of interval-valued functions may change the
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nature of equilibrium, and it is an interesting problem, which can be studied by the related
researchers. Moreover, we analyzed the existence of a bionomic equilibrium of model (3);
under the assumption c1+θc2

p1q1
> K , c1+θc2

θp2q2
> L, there exists a unique bionomic equilibrium.

To determine the optimal harvesting, we also supposed that the different levels of effort
are proportional, and in this case, it is significant to use the current Hamilton function.
According to the Pontryagin maximum principle, the optimal policy is a combination of
bang-bang and singular controls. We obtained the level of effort Eδ , under which the stock
of both subpopulations can maintain at a equilibrium level and the current value can reach
its maximum. Then we pointed out that if the discount rate increases to infinity, then the
net economic revenue tends to zero, tending toward a bionomic equilibrium, and if the
discount rate is zero, then it gains up to its maximum.

In our work, we considered an abstract growth function, which may be used in another
biological model to derive some more general conclusions. We will study it in the future
research.

Appendix 1
Definition (Interval-valued function [31]) Let m > 0, n > 0 and consider the interval
[m, n]. From the perspective of mathematics, any real number can be represented on a
line, and we can represent an interval by a function. If the interval is of the form [m, n],
then we take the interval-valued function as h(p) = m1–pnp for p ∈ [0, 1].

Based on this definition, the arithmetic operations for any two interval numbers A =
[ml, mu] and B = [nl, nu] are defined as follows:

• Addition: A + B = [ml, mu] + [nl, nu] = [ml + nl, mu + nu], provided that ml + nl > 0. The
interval-valued function for the interval A + B is given by h(p) = (ml + nl)1–p(mu + nu)p.

• Subtraction: A – B = [ml, mu] – [nl, nu] = [ml – nu, mu – nl], provided that ml – nu > 0.
The interval-valued function for the interval A – B is given by
h(p) = (ml – nu)1–p(mu – nl)p.

• Scalar multiplication:

κA = κ[ml, mu] =

⎧
⎨

⎩

[κml,κmu], κ ≥ 0,

[κmu,κml], κ < 0,
(15)

provided that κml > 0, κmu > 0. The interval-valued function of interval number κA is
given by h(p) = (κml)1–p(κmu)p if κ ≥ 0 and h(p) = –(|κ|mu)1–p(|κ|ml)p if κ < 0.

• Multiplication:

A × B = [ml, mu] × [nl, nu]

=
[
min{mlnl, mlnu, munl, munu}, max{mlnl, mlnu, munl, munu}

]
.
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Appendix 2
Maple code for Example 2.

a :=
{

3.6 ∗ 5 – x
5 + x

–
0.2 ∗ x2

x2 + 0.64
– 3 = 0, 5 ∗ 8 – y

8 + y
+

0.2 ∗ x3

(x2 + 0.64) ∗ y
– 4 = 0,

g = 3.6 ∗ x ∗ –2.5
(5 + x)2 –

2 ∗ 0.2 ∗ 0.64 ∗ x2

(x2 + 0.64)2 , h = 5 ∗ y ∗ –2.8
(8 + y)2 –

0.2 ∗ x3

(x2 + 0.64) ∗ y

}

;

f solve(a, x, y, g, h)

{g = –0.5814435615, h = –0.9357365646, x = 0.4191725122, y = 0.9085625521}

b :=
{

3.60.8 ∗ 5.20.2 ∗ 5 – x
5 + x

–
0.2 ∗ x2

x2 + 0.64
– 3 = 0, 50.8 ∗ 6.30.2 ∗ 8 – y

8 + y
+

0.2 ∗ x3

(x2 + 0.64) ∗ y

– 4 = 0, g = 3.60.8 ∗ 5.20.2 ∗ x ∗ –2.5
(5 + x)2 –

2 ∗ 0.2 ∗ 0.64 ∗ x2

(x2 + 0.64)2 ,

h = 50.8 ∗ 6.30.2 ∗ y ∗ –2.8
(8 + y)2 –

0.2 ∗ x3

(x2 + 0.64) ∗ y

}

;

f solve(b, x, y, g, h)

{g = –0.8123649346, h = –1.154177340, x = 0.5802378640, y = 1.106635957}

c :=
{

3.60.6 ∗ 5.20.4 ∗ 5 – x
5 + x

–
0.2 ∗ x2

x2 + 0.64
– 3 = 0, 50.6 ∗ 6.30.4 ∗ 8 – y

8 + y
+

0.2 ∗ x3

(x2 + 0.64) ∗ y

– 4 = 0, g = 3.60.6 ∗ 5.20.4 ∗ x ∗ –2.5
(5 + x)2 –

2 ∗ 0.2 ∗ 0.64 ∗ x2

(x2 + 0.64)2 ,

h = 50.6 ∗ 6.30.4 ∗ y ∗ –2.8
(8 + y)2 –

0.2 ∗ x3

(x2 + 0.64) ∗ y

}

;

f solve(c, x, y, g, h)

{g = –1.038076409, h = –1.374218715, x = 0.7420880301, y = 1.303631499}

d :=
{

3.60.4 ∗ 5.20.6 ∗ 5 – x
5 + x

–
0.2 ∗ x2

x2 + 0.64
– 3 = 0, 50.4 ∗ 6.30.6 ∗ 8 – y

8 + y
+

0.2 ∗ x3

(x2 + 0.64) ∗ y

– 4 = 0, g = 3.60.4 ∗ 5.20.6 ∗ x ∗ –2.5
(5 + x)2 –

2 ∗ 0.2 ∗ 0.64 ∗ x2

(x2 + 0.64)2 ,

h = 50.4 ∗ 6.30.6 ∗ y ∗ –2.8
(8 + y)2 –

0.2 ∗ x3

(x2 + 0.64) ∗ y

}

;

f solve(d, x, y, g, h)

{g = –1.263864492, h = –0.8840073295, x = 0.9054092628, y = 1.497837057}

e :=
{

3.60.2 ∗ 5.20.8 ∗ 5 – x
5 + x

–
0.2 ∗ x2

x2 + 0.64
– 3 = 0, 50.2 ∗ 6.30.8 ∗ 8 – y

8 + y
+

0.2 ∗ x3

(x2 + 0.64) ∗ y

– 4 = 0, g = 3.60.2 ∗ 5.20.8 ∗ x ∗ –2.5
(5 + x)2 –

2 ∗ 0.2 ∗ 0.64 ∗ x2

(x2 + 0.64)2 ,

h = 50.2 ∗ 6.30.8 ∗ y ∗ –2.8
(8 + y)2 –

0.2 ∗ x3

(x2 + 0.64) ∗ y

}

;

f solve(e, x, y, g, h)

{g = –1.494873355, h = –1.812561546, x = 1.069795883, y = 1.688474898}
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f :=
{

5.2 ∗ 5 – x
5 + x

–
0.2 ∗ x2

x2 + 0.64
– 3 = 0, 6.3 ∗ 8 – y

8 + y
+

0.2 ∗ x3

(x2 + 0.64) ∗ y
– 4 = 0,

g = 5.2 ∗ x ∗ –2.5
(5 + x)2 –

2 ∗ 0.2 ∗ 0.64 ∗ x2

(x2 + 0.64)2 , h = 6.3 ∗ y ∗ –2.8
(8 + y)2 –

0.2 ∗ x3

(x2 + 0.64) ∗ y

}

;

f solve(f , x, y, g, h)

{g = –1.734772227, h = –2.031045452, x = 1.234382511, y = 1.875292253}.
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