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Abstract
In this paper, we consider a class of Clifford-valued neutral-type neural networks with
leakage delays on time scales. We do not decompose the networks under
consideration into real-valued systems, but we directly study the Clifford-valued
networks. We first establish the existence of weighted pseudo almost periodic
solutions of this class of neural networks by the theory of calculus on time scales and
the Banach fixed point theorem. Then, we study the global exponential stability of
weighted pseudo almost periodic solutions of this class of neural networks by using
inequality techniques and the proof by contradiction. Finally, we give an example to
illustrate the feasibility of the obtained results.
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1 Introduction
After nearly half a century of development, neural network theory has been widely and
successfully applied in many research fields, such as associative memory, pattern recog-
nition, automatic control, signal processing, auxiliary decision-making, artificial intelli-
gence, and so on [1–6]. With the development of artificial intelligence technology, the
integration of neural network and fuzzy logic, expert system, genetic algorithm, wavelet,
chaos, rough set, fractal, evidence theory, grey system, and other technologies has become
an important development trend of intelligent technology, which has a good development
prospect. Although neural networks have been widely used in many fields, their devel-
opment is not very mature, and there are still some problems to be further studied. For
example, the basic theoretical framework of neural computing and the research of phys-
iological level still need to be in-depth, the research of new models and structures, the
better combination of neural network technology and other technologies, etc.

As far as the new neural network models are concerned, Clifford-valued neural net-
works, which are neural networks whose state variables and connection weights are all
Clifford numbers, were first proposed in the reference [7]. They include real-valued neu-
ral networks, complex-valued neural networks, and quaternion-valued neural networks
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as their special cases, and they have more advantages than real-valued networks (see [8]).
Recently, more and more attention has been paid to the study of Clifford-valued neural
networks [9–13]. However, because Clifford-valued neural networks are a kind of multi-
dimensional neural networks, and the multiplication of Clifford numbers does not satisfy
the commutativity law, it is more difficult to study the dynamics of Clifford-valued neural
networks than that of real-valued and complex-valued neural networks. Nevertheless, it
is well known that the dynamics of neural networks is of great significance to the design
and implementation of neural networks. Recently, in [12–14], by decomposing Clifford-
valued systems into real-valued systems, the stability of the equilibrium, anti-periodicity,
and SP-almost periodicity of three types of Clifford-valued neural networks have been
studied, respectively. At present, it is rare to study the dynamics of Clifford-valued neural
networks by direct method, that is, not decomposing the Clifford-valued neural networks
into real-value systems [15, 16]. In particular, until now, no paper has been published on
the dynamics of Clifford-valued neural networks on time scales by direct method.

On the one hand, time delays are inevitable in real systems, and the existence of time
delays may change the dynamic behavior of systems. The three types of time delays usually
considered in neural network systems are transmission delay, leakage delay, and neutral-
type delay. Therefore, neural network models with these types of delays are widely studied
[17–21].

On the other hand, as we all know, the continuous-time systems and the discrete-time
systems have the same importance in theory and practice, and the discrete-time systems
are more convenient for computer processing than the continuous-time ones. So it is nec-
essary to study the continuous-time systems and the discrete-time systems at the same
time. The time scale calculus theory can unify the research of continuous analysis and
discrete analysis, so the study of neural networks on time scales has important theoretical
and practical significance.

In addition, in the design, implementation, and application of neural networks, the exis-
tence and stability of periodic solutions, almost periodic solutions, pseudo almost periodic
solutions, and almost automorphic solutions of non-autonomous neural networks are of
equal importance to the existence and stability of equilibrium solutions of autonomous
neural networks. The weighted pseudo almost periodicity is the generalization of almost
periodicity and pseudo almost periodicity, so it is of great theoretical significance and
practical value to study the existence and stability of weighted pseudo almost periodic
solutions of neural networks [22–24].

Based on the above discussion, one can see that studying Clifford-valued neural net-
works on time scales cannot only unify the research of real-valued neural networks,
complex-valued neural networks, and quaternion-valued neural networks, but also unify
the research of continuous-time neural networks and discrete-time neural networks. At
the same time, the weighted pseudo almost periodic oscillation is one of the important
dynamic behaviors of neural networks. Therefore, the main purpose of this paper is to
study the existence and global exponential stability of weighted pseudo almost periodic
solutions for a class of Clifford-valued neutral-type neural networks with leakage delays
on time scales by direct method. The results of this paper are new. The method can be
used to study the existence and stability of almost periodic function solutions of other
types of neural networks on time scales.
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This paper is organized as follows: In Sect. 2, we introduce some definitions, prelimi-
nary lemmas and give a model description. In Sect. 3, we study the existence and global
exponential stability of weighted pseudo almost periodic solutions for a class of Clifford-
valued neural networks on time scales. In Sect. 4, we investigate the global exponential
stability of weighted pseudo almost periodic solutions of this class of neural networks. In
Sect. 5, we give an example to demonstrate the feasibility of our results. This paper ends
with a brief conclusion in Sect. 6.

2 Preliminaries and model description
The real Clifford algebra over Rm is defined as

A =
{∑

A⊆Ω

xAeA, xA ∈R

}
,

where Ω = {∅, 1, 2, . . . , A, . . . , 12 · · ·m}, eA = eι1 eι2 · · · eιν with A = ι1ι2 · · · ιν , 1 ≤ ι1 < ι2 < · · · <
ιν ≤ m. Moreover, e∅ = e0 = 1 and eι, ι = 1, 2, . . . , m, are called Clifford generators and satisfy
the following relations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e2
0 = 1, e0ei = eie0 = ei, i = 1, 2, . . . , m,

e2
i = 1, i = 1, 2, . . . , s,

e2
i = –1, i = s + 1, s + 2, . . . , m,

eiej + ejei = 0, i �= j.

For x =
∑

A xA ∈ A, we define ‖x‖A = maxA∈Ω{|xA|}, and for x = (x1, x2, . . . , xn)T ∈ An, we
define ‖x‖An = max1≤p≤n{‖xp‖A}, then (A,‖ · ‖A) and (An,‖ · ‖An ) are Banach spaces. For
more information about Clifford algebra, we refer the reader to [25].

A time scale T is an arbitrary nonempty closed subset of the real set R. We use ρ(t) and
ν(t) to denote the backward jump operator and the graininess function of T, respectively.

Definition 2.1 ([26]) Assume that f : T→ R is a function, and let t ∈ Tk . Then we define
f ∇ (t) to be the number (provided it exists) with the property that given any ε > 0, there is
a neighborhood U of t (i.e., U = (t – δ, t + δ) ∩T for some δ > 0) such that

∣∣f (ρ(t)
)

– f (s) – f ∇ (t)
(
ρ(t) – s

)∣∣ ≤ ε
∣∣ρ(t) – s

∣∣

for all s ∈ U . We call f ∇ (t) the nabla derivative of f at t.

The derivative of function z =
∑

A zAeA : T→A is given by z∇ (t) =
∑

A(zA)∇ (t)eA, where
zA : T →R.

Let Rν = {f : T→ R : 1 –ν(t)r(t) �= 0,∀t ∈ Tk} and R+
ν = {r ∈Rν : 1 –ν(t)r(t) > 0,∀t ∈ T}.

Then, for p ∈Rν , we define the nabla exponential function by

êp(t, s) = exp

(∫ t

s
ξ̂ν(τ )

(
p(τ )

)∇τ

)
for t, s ∈ T,
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where

ξ̂h(z) =

⎧⎨
⎩

– Log(1–hz)
h if h �= 0,

z if h = 0.

For p, q ∈ Rν , we define a circle plus addition by (p ⊕ν q)(t) = p(t) + q(t) – ν(t)p(t)q(t) for
all t ∈ Tk . For p ∈Rν , we define a circle minus p by 
νp = – p

1–νp . For the basic theory and
notation of the time scale theory, we refer the reader to [26, 27].

Definition 2.2 ([28]) A time scale T is called an almost periodic time scale if

Π := {τ ∈R : t ± τ ∈ T,∀t ∈ T} �= {0}.

Remark 2.1 Obviously, if T is called an almost periodic time scale, then infT = –∞ and
supT = +∞.

Lemma 2.1 Let t ∈ T, where T is an almost periodic time scale. If t is left-dense, then for
every h ∈ Π , t + h is also left-dense. Similarly, if t is left-scattered, then for every h ∈ Π ,
t + h is also left-scattered.

Proof If t is left-dense, then there exists {sn} ⊂ T such that

lim
n→∞ sn = t and sn < t.

Since T is an almost periodic time scale, we have

sn + h ∈ T and sn + h < t + h

for each h ∈ Π . Thus, we obtain that

lim
n→∞ sn + h = t + h,

so ρ(t + h) = t + h. Consequently, t + h is left-dense.
Now, we shall show that if t is left-scattered, then t + h is also left-dense. Otherwise,

there exists h ∈ Π such that t + h is left-dense. Then there exists {sn + h} ⊂ T such that

lim
n→∞ sn + h = t + h and sn + h < t + h.

Hence,

lim
n→∞ sn = t and sn < t.

Since T is an almost periodic time scale, we have {sn} ⊂ T. That is, ρ(t) = t, which contra-
dicts the fact that t is left-scattered. Hence, t + h is also left-scattered for every h ∈ Π . The
proof is complete. �
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Lemma 2.2 Let T be an almost periodic time scale and h ∈ Π , then for each t ∈ T,

ρ(t) + h = ρ(t + h) and ρ(t) – h = ρ(t – h). (1)

Proof If t is left-dense, then, by Lemma 2.1, it is obvious that (1) holds.
If t is left-scattered, then, by Lemma 2.1, for each h ∈ Π , t + h is also left-scattered.

Hence, for each h ∈ Π , ρ(t + h) < t + h. That is,

ρ(t + h) – h < t for each h ∈ Π . (2)

SinceT is an almost periodic time scale and h ∈ Π , we have that ρ(t +h)–h ∈ T. According
to (2) and the definition of the backward jump operator, for each h ∈ Π , we have ρ(t) ≥
ρ(t + h) – h. Hence,

ρ(t + h) ≤ ρ(t) + h for each h ∈ Π . (3)

On the other hand, since t is left-scattered, ρ(t) < t. Hence,

ρ(t) + h < t + h. (4)

Since h ∈ Π , ρ(t) + h ∈ T. By (4) and the definition of the backward jump operator, we
obtain that

ρ(t) + h ≤ ρ(t + h) for each h ∈ Π . (5)

By (3) and (5), we obtain that the first equality of (1) holds. Similarly, one can prove that
the second equality of (1) also holds. The proof is complete. �

In the following, we always assume that T is an almost periodic time scale.

Lemma 2.3 If –a ∈ R+
ν and t, s ∈ T, τ ∈ Π , then ê–a(t + τ ,ρ(s + τ )) – ê–a(t,ρ(s)) =∫ t

ρ(s) ê–a(t,ρ(θ ))(a(θ ) – a(θ + τ ))ê–a(θ + τ ,ρ(s + τ ))∇θ .

Proof From (ê–a(t, s))∇ = –a(t)ê–a(t, s) it follows that

(
ê–a

(
t + τ ,σ (s + τ )

))∇ + a(t)ê–a
(
t + τ ,ρ(s + τ )

)
=

(
a(t) – a(t + τ )

)
ê–a

(
t + τ ,ρ(s + τ )

)
. (6)

Multiplying both sides of (6) by ê–a(ρ(s),ρ(t)) and integrating over [ρ(s), t]T, we obtain

∫ t

ρ(s)
e–a

(
ρ(s),ρ(θ )

)(
a(θ ) – a(θ + τ )

)
ê–a

(
θ + τ ,ρ(s + τ )

)∇θ

=
∫ t

ρ(s)

(
ê–a

(
θ + τ ,ρ(s + τ )

))∇ ê–a
(
ρ(s),ρ(θ )

)∇θ

+
∫ t

ρ(s)
a(θ )ê–a

(
θ + τ ,ρ(s + τ )

)
ê–a

(
ρ(s),ρ(θ )

)∇θ .
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Noting that [êp(c, ·)]∇ = –p[ep(c, ·)]ρ and by Lemma 2.2, ρ(t + τ ) = ρ(t) + τ , we have

∫ t

ρ(s)
e–a

(
ρ(s),ρ(θ )

)(
a(θ ) – a(θ + τ )

)
ê–a

(
θ + τ ,ρ(s + τ )

)∇θ

=
∫ t

ρ(s)

((
ê–a

(
θ + τ ,ρ(s + τ )

))∇ ê–a
(
ρ(s),ρ(θ )

)

+ ê–a
(
θ + τ ,ρ(s + τ )

)(
ê–a

(
ρ(s), θ

))∇)∇θ

=
∫ t

ρ(s)

(
ê–a

(
θ + τ ,ρ(s + τ )

)
ê–a

(
ρ(s), θ

))∇∇θ

= ê–a
(
t + τ ,ρ(s + τ )

)
ê–a

(
ρ(s), t

)
– ê–a

(
ρ(s) + τ ,ρ(s + τ )

)
ê–a

(
ρ(s),ρ(s)

)
= ê–a

(
t + τ ,ρ(s + τ )

)
ê–a

(
ρ(s), t

)
– 1. (7)

Multiplying both sides of (7) by ê–a(t,ρ(s)), we obtain

ê–a
(
t + τ ,ρ(s + τ )

)
– ê–a

(
t,ρ(s)

)

=
∫ t

ρ(s)
ê–a

(
t,ρ(s)

)
ê–a

(
ρ(s),ρ(θ )

)(
a(θ ) – a(θ + τ )

)
ê–a

(
θ + τ ,ρ(s + τ )

)∇θ

=
∫ t

ρ(s)
ê–a

(
t,ρ(θ )

)(
a(θ ) – a(θ + τ )

)
ê–a

(
θ + τ ,ρ(s + τ )

)∇θ .

The proof is complete. �

In the sequel, we denote by BC(T,An) the set of all bounded continuous functions
from T to An and by C1

∇ (T,An) the set of all functions from T to An with continuous
∇-derivatives. Obviously, BC(T,An) with the norm ‖x‖∞ = supt∈T ‖x(t)‖An is a Banach
space.

Similar to Definition 3.9 in [28], we give the following definition.

Definition 2.3 A function f ∈ BC(T,An) is called almost periodic onT if the ε-translation
set of

E{ε, f } =
{
τ ∈ Π :

∥∥f (t + τ ) – f (t)
∥∥
An < ε,∀t ∈ T

}

is a relatively dense set in R for all ε > 0; that is, for any given ε > 0, there exists a constant
l(ε) > 0 such that each interval of length l(ε) contains at least one τ (ε) ∈ E{ε, f } such that

∥∥f (t + τ ) – f (t)
∥∥
An < ε, ∀t ∈ T.

We denote by AP(T,An) the set of all almost periodic functions defined on T.
Similar to the proofs of the corresponding results in [28], one can easily prove the fol-

lowing.

Lemma 2.4 If f , g ∈ AP(T,A), then f + g, fg ∈ AP(T,A).
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Lemma 2.5 If f ∈ C(A,A) satisfies the Lipschitz condition, x ∈ AP(T,A), then f (x(·)) ∈
AP(T,A).

Lemma 2.6 If x ∈ AP(T,A) and τ ∈ AP(T,A), then x(· – τ (·)) ∈ AP(T,A).

Lemma 2.7 ([29]) Let fi ∈ AP(T,Xi), where Xi is a Banach space, i = 1, . . . , n. Then, for
every ε > 0, all the functions f1, f2, . . . , fn have a common set of ε-almost periods.

Let U be the set of all functions ς : T → (0, +∞) that are locally ∇-integrable over T such
that ς > 0 almost everywhere. From now on, for ς ∈U and r ∈ T with r > 0, we denote

u(r,ς ) :=
∫ r

–r
ς (t)∇t.

The space of weights U∞ is defined by

U∞ :=
{
ς ∈U : inf

t∈T
ς (t) = ς0 > 0, lim

r→+∞ u(r,ς ) = +∞
}

.

Noting that limr→+∞ u(r, 1) = +∞, U∞ �= ∅.
Fix ς ∈U∞, set

PAP0
(
T,An,ς

)
=

{
h ∈ BC

(
T,An) : lim

r→+∞
1

u(r,ς )

∫ r

–r

∥∥h(t)
∥∥
Anς (t)∇t = 0

}
.

Similar to Definition 3.1 in [30], we introduce the following definition.

Definition 2.4 Fix ς ∈ U∞. A function f ∈ BC(T,An) is called weighted pseudo almost
periodic if f = g + h, where g ∈ AP(T,An) and h ∈ PAP0(T,An,ς ).

We denote by PAP(T,An,ς ) the set of all weighted pseudo almost periodic functions
from T to An.

Denote

H∞ =
{
ς ∈U∞ : lim sup

t→∞
ς (t + θ (t))

ς (t)
< +∞ and

lim sup
r→+∞

u(r + θ ,ς )
u(r,ς )

< +∞,∀θ ∈ BC(T,Π )
}

,

where θ = supt∈T θ (t).

Lemma 2.8 Let ς ∈H∞. If x ∈ PAP(T,A,ς ), θ ∈ C1
∇ (T,Π )∩AP(T,Π ), and α := inft∈T(1 –

θ∇ (t)) > 0, then x(· – θ (·)) ∈ PAP(T,A,ς ).

Proof Since x ∈ PAP(T,A,ς ), by Definition 2.4, we have x = x1 + x0, where x1 ∈ AP(T,A)
and x0 ∈ PAP0(T,A,ς ). Then we have

x
(
t – θ (t)

)
= x1

(
t – θ (t)

)
+ x0

(
t – θ (t)

)
.
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By Lemma 2.6, we get x1 ∈ AP(T,A). Now, we will show that x0 ∈ PAP0(T,A,ς ). In fact,

0 ≤ lim
r→∞

1
u(r,ς )

∫ r

–r
ς (t)

∥∥x0
(
t – θ (t)

)∥∥
A∇t

= lim
r→∞

1
u(r,ς )

∫ r–θ (t)

–r–θ (t)
ς
(
s + θ (t)

) 1
1 – θ∇ (t)

∥∥x0(s)
∥∥
A∇s

≤ lim
r→∞

1
α

1
u(r,ς )

∫ r+θ

–r–θ

ς (s + θ (s))
ς (s)

ς (s)
∥∥x0(u)

∥∥
A∇s

≤ 1
α

lim
s→∞ sup

ς (s + θ (s))
ς (s)

lim
r→∞ sup

u(r + θ ,ς )
u(r,ς )

× lim
r→∞

1
u(r + θ ,ς )

∫ r+θ

–r–θ

ς (s)
∥∥x0(s)

∥∥
A∇s = 0,

which implies that x0(· – θ (·)) ∈ PAP0(T,A,ς ). Therefore, x(· – θ (·)) ∈ PAP(T,A,ς ). The
proof is completed. �

Similar to the proofs of the corresponding results in [30], it is not difficult to prove the
following three lemmas.

Lemma 2.9 Let ς ∈H∞. If α ∈R, f , g ∈ PAP(T,A,ς ), then αf , f + g, fg ∈ PAP(T,A,ς ).

Lemma 2.10 Let ς ∈ H∞. If f ∈ C(A,A) satisfies the Lipschitz condition and ϕ ∈
PAP(T,A,ς ), then f (x(·)) ∈ PAP(T,A,ς ).

Lemma 2.11 If ς ∈H∞, then (PAP(T,A,ς ),‖ · ‖∞) is a Banach space.

In this paper, we consider the following Clifford-valued neutral-type neural networks
with leakage delays on time scale T:

x∇
i (t) = –ai(t)xi

(
t – δi(t)

)
+

n∑
j=1

bij(t)fj
(
xj

(
t – ηij(t)

))

+
n∑

j=1

cij(t)gj
(
x∇

j
(
t – τij(t)

))
+ ui(t), t ∈ T, (8)

where i ∈ {1, 2, . . . , n} =: I ; n corresponds to the number of units in the neural network;
xi(t) ∈A is the state vector of the ith unit at time t; ai(t) > 0 represents the rate with which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs; bij(t), cij(t) ∈ A are the delay connection weight and the
neutral delay connection weight from neuron j to neuron i at time t, respectively; δi(t) ≥
0 denotes the leakage delay at time t and satisfies t – δi(t) ∈ T for t ∈ T, ηij(t), τij(t) ≥ 0
correspond to the transmission delays at time t and satisfy t – ηij(t) and t – τij(t) ∈ T for
t ∈ T; ui(t) ∈A is the external input at time t; fj, gj : A→A are the activation functions of
signal transmission.

For convenience, we introduce the following notation:

a–
i = inf

t∈T
ai(t), a+

i = sup
t∈T

ai(t), b+
ij = sup

t∈T

∥∥bij(t)
∥∥
A,
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c+
ij = sup

t∈T

∥∥cij(t)
∥∥
A, u+

i = sup
t∈T

∥∥ui(t)
∥∥
A, δ+

i = sup
t∈T

δi(t),

η+
ij = sup

t∈T
ηij(t), τ+

ij = sup
t∈T

τij(t), ϑ = max
1≤i,j≤n

{
δ+

i ,η+
ij , τ

+
ij
}

.

The initial values of system (8) are as follows:

xi(s) = ϕi(s), x∇
i (s) = ϕ∇

i (s) ∈A, s ∈ [t0 – ϑ , t0]T, i ∈ I,

where ϕi : [t0 – ϑ , t0]T →A is a bounded and ∇-differentiable function.
Throughout this paper, we assume that the following conditions hold:
(A1) For i, j ∈ I , ai ∈ AP(R,R+) with –ai ∈ R+

ν , δi, τij,ηij ∈ C1(R,Π ) ∩ AP(R,R+) with
inft∈R{(1 – δ∇

i (t)), (1 – τ∇
ij (t)), (1 – η∇

ij (t))} > 0, bij, cij ∈ PAP(T,A,ς ) and ui ∈
PAP(T,A,ς ).

(A2) There exist positive constant numbers Lf
j , Lg

j such that, for any u, v ∈A and j ∈ I ,

∥∥fj(u) – fj(v)
∥∥
A ≤ Lf

j ‖u – v‖A,
∥∥gj(u) – gj(v)

∥∥
A ≤ Lg

j ‖u – v‖A.

(A3) There exists a positive constant Υ such that

max
i∈I

{
Pi

a–
i

, Pi

(
1 +

a+
i

a–
i

)}
≤ Υ and max

i∈I

{
Qi

a–
i

, Qi

(
1 +

a+
i

a–
i

)}
=: κ < 1,

where

Pi = a+
i δ+

i Υ +
n∑

j=1

b+
ij
(
Lf

j Υ +
∥∥f (0)

∥∥
A

)
+

n∑
j=1

c+
ij
(
Lg

j Υ +
∥∥g(0)

∥∥
A

)
+ u+

i ,

Qi = a+
i δ+

i +
n∑

j=1

b+
ijL

f
j +

n∑
j=1

c+
ijL

g
j , i ∈ I.

3 The existence of weighted pseudo almost periodic solutions
Let E = {ϕ ∈ C1

∇ (T,An) : ϕ,ϕ∇ ∈ PAP(T,An,ς )} with the norm

‖ϕ‖E = max
{‖ϕ‖∞,

∥∥ϕ∇∥∥∞
}

,

then E is a Banach space.

Theorem 3.1 Let ς ∈ H∞. Assume that (A1)–(A3) hold. Then system (8) has a unique
weighted pseudo almost periodic solution in E0 = {ϕ ∈ E : ‖ϕ‖E ≤ Υ }, where Υ is men-
tioned in (A3).

Proof Firstly, it is easy to see that if x = (x1, x2, . . . , xn)T ∈ BC(T,An) is a solution of the
following system

xi(t) =
∫ t

–∞
ê–ai

(
t,ρ(s)

)(
ai(s)

∫ s

s–δi(s)
x∇

i (u)∇u +
n∑

j=1

bij(s)fj
(
xj

(
s – ηij(s)

))
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+
n∑

j=1

cij(s)gj
(
x∇

j
(
s – τij(s)

))
+ ui(s)

)
∇s, i ∈ I,

then x is also a solution of system (8).
Secondly, we define a mapping Φ : E → BC(T,An) by

Φϕ = (Φ1ϕ,Φ2ϕ, . . . ,Φnϕ)T ,

where ϕ ∈ E, i ∈ I ,

(Φiϕ)(t) =
∫ t

–∞
ê–ai

(
t,ρ(s)

)(
ai(s)

∫ s

s–δi(s)
ϕ∇

i (u)∇u +
n∑

j=1

bij(s)fj
(
ϕj

(
s – ηij(s)

))

+
n∑

j=1

cij(s)gj
(
ϕ∇

j
(
s – τij(s)

))
+ ui(s)

)
∇s.

We will prove that Φ maps E into itself. To this end, let

Γi(s) = ai(s)
∫ s

s–δi(s)
ϕ∇

i (u)∇u +
n∑

j=1

bij(s)fj
(
ϕj

(
s – ηij(s)

))

+
n∑

j=1

cij(s)gj
(
ϕ∇

j
(
s – τij(s)

))
+ ui(s), i ∈ I.

By Lemmas 2.8 and 2.9, we find that Γi ∈ PAP(T,A,ς ), i ∈ I . Let Γi = Γ 1
i + Γ 0

i , where
Γ 1

i ∈ AP(T,A), Γ 0
i ∈ PAP0(T,A,ς ), then we have

(Φiϕ)(t) =
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γ 1

i (s)�s +
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γ 0

i (s)∇s

:= F1
i (t) + F0

i (t), i ∈ I.

We will prove that F1
i ∈ AP(T,A) and F0

i ∈ PAP0(T,A,ς ) for i ∈ I .
In fact, since ai ∈ AP(T,R),Γ 1

i ∈ AP(T,A), by Lemma 2.7, for every ε > 0, there exists
ξ ∈ Π such that

∣∣ai(t + ξ ) – ai(t)
∣∣ < ε,

∥∥Γ 1
i (t + ξ ) – Γ 1

i (t)
∥∥
A < ε, t ∈ T, i ∈ I.

Hence, from the definition of F1
i and Lemma 2.3, we have

∥∥F1
i (t + ξ ) – F1

i (t)
∥∥
A

=
∥∥∥∥
∫ t+ξ

–∞
ê–ai

(
t + ξ ,ρ(s)

)
Γ 1

i (s)∇s –
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γ 1

i (s)∇s
∥∥∥∥
A

=
∥∥∥∥
∫ t

–∞
ê–ai

(
t + ξ ,ρ(s + ξ )

)
Γ 1

i (s + ξ )∇s –
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γ 1

i (s)∇s
∥∥∥∥
A

≤
∥∥∥∥
∫ t

–∞
ê–ai

(
t + ξ ,ρ(s + ξ )

)
Γ 1

i (s + ξ )∇s –
∫ t

–∞
ê–ai

(
t + ξ ,ρ(s + ξ )

)
Γ 1

i (s)∇s
∥∥∥∥
A
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+
∥∥∥∥
∫ t

–∞
ê–ai

(
t + ξ ,ρ(s + ξ )

)
Γ 1

i (s)∇s –
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γ 1

i (s)∇s
∥∥∥∥
A

≤
∫ t

–∞

∣∣ê–ai

(
t + ξ ,ρ(s + ξ )

)∣∣∥∥Γ 1
i (s + ξ ) – Γ 1

i (s)
∥∥
A∇s

+
∫ t

–∞

∣∣ê–ai

(
t + ξ ,ρ(s + ξ )

)
– ê–ai

(
t,ρ(s)

)∣∣∥∥Γ 1
i (s)

∥∥
A∇s

≤ ε

a–
i

+ sup
t∈T

{
Γ 1

i (t)
}∫ t

–∞

∣∣ê–ai

(
t + ξ ,ρ(s + ξ )

)
– ê–ai

(
t,ρ(s)

)∣∣∇s

≤ ε

a–
i

+ sup
t∈T

{
Γ 1

i (t)
}∫ t

–∞

∣∣∣∣
∫ ρ(s)

t
ê–ai

(
t,ρ(θ )

)(
ai(θ + ξ ) – ai(θ )

)∇θ

∣∣∣∣∇s

≤ ε

(a–
i )2

(
a–

i + sup
t∈T

{
Γ 1

i (t)
})

, i ∈ I,

which implies that F1
i ∈ AP(T,A) for all i ∈ I .

Since Γ 0
i ∈ PAP0(T,A,ς ), i ∈ I and by Lebesgue’s dominated convergence theorem, we

have

lim
r→∞

1
u(r,ς )

∫ r

–r
ς (s)

∥∥F0
i (s)

∥∥
A�s

= lim
r→∞

1
u(r,ς )

∫ r

–r

∥∥∥∥
∫ s

–∞
ê–ai

(
s,ρ(θ )

)
Γ 0

i (θ )∇θ

∥∥∥∥
A

∇s

≤ lim
r→∞

1
u(r,ς )

∫ s

–∞
ê–ai

(
s,ρ(θ )

)(∫ r

–r

∥∥Γ 0
i (θ )

∥∥
A∇θ

)
∇s, i ∈ I, r ∈ Π ,

which implies that F0
i ∈ PAP0(T,A,ς ) for all i ∈ I . Therefore, Φiϕ ∈ PAP(T,A,ς ), i ∈ I .

Moreover, noting that for i ∈ I ,

(Φiϕ)∇ (t)

= Γi(t) – ai(t)
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γi(s)∇s

= –ai(t)(Φiϕ)(t) + Γi(t),

ai ∈ AP(T,R), and Φiϕ,Γi ∈ PAP(T,A,ς ), we can conclude that Φ∇
i ϕ ∈ PAP(T,A,ς ) for

i ∈ I .
Thirdly, we will prove that Φ is a self-mapping defined on E0. In fact, for each ϕ ∈ E0,

we have

sup
t∈T

∥∥(Φϕ)(t)
∥∥
An

= max
i∈I

{
sup
t∈T

∥∥∥∥∥
∫ t

–∞
ê–ai

(
t,ρ(s)

)(
ai(s)

∫ s

s–δi(s)
ϕ∇

i (u)∇u

+
n∑

j=1

bij(s)fj
(
ϕj

(
s – ηij(s)

))
+

n∑
j=1

cij(s)gj
(
ϕ∇

j
(
s – τij(s)

))
+ ui(s)

)
∇s

∥∥∥∥∥
A

}

≤ max
i∈I

{
sup
t∈T

[∫ t

–∞
ê–ai

(
t,ρ(s)

)(
a+

i δ+
i
∥∥ϕ∇

i (s)
∥∥
A +

n∑
j=1

b+
ij
(
Lf

j
∥∥ϕj

(
s – τij(s)

)∥∥
A
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+
∥∥f (0)

∥∥
A

)
+

n∑
j=1

c+
ij
(
Lg

j
∥∥ϕ∇

j
(
s – τij(s)

)∥∥
A +

∥∥g(0)
∥∥
A

)
+ u+

i

)
∇s

]}

≤ max
i∈I

{
1

a–
i

(
a+

i δ+
i Υ +

n∑
j=1

b+
ij
(
Lf

j Υ +
∥∥f (0)

∥∥
A

)
+

n∑
j=1

c+
ij
(
Lg

j Υ +
∥∥g(0)

∥∥
A

)
+ u+

i

)}

≤ max
i∈I

{
Pi

a–
i

}

and

sup
t∈T

∥∥(Φϕ)∇ (t)
∥∥
An

= max
i∈I

{
sup
t∈T

∥∥∥∥Γi(t) – ai(t)
∫ t

–∞
ê–ai

(
t,ρ(s)

)
Γi(s)∇s

∥∥∥∥
A

}

≤ max
i∈I

{
Pi +

a+
i

a–
i

(
a+

i δ+
i Υ +

n∑
j=1

b+
ij
(
Lf

j Υ +
∥∥f (0)

∥∥
A

)

+
n∑

j=1

c+
ij
(
Lg

j Υ +
∥∥g(0)

∥∥
A

)
+ u+

i

)}

≤ max
i∈I

{
Pi +

a+
i Pi

a–
i

}
.

Hence, in view of (A3), we have ‖Φϕ‖E ≤ Υ , that is, Φ(E0) ⊂ E0.
Finally, we shall prove that Φ is a contraction mapping. In fact, for any ϕ = (ϕ1,ϕ2, . . . ,

ϕn)T , ψ = (ψ1,ψ2, . . . ,ψn)T ∈ E0, we have

sup
t∈T

∥∥(Φϕ)(t) – (Φψ)(t)
∥∥
An

= max
i∈I

{
sup
t∈T

∥∥∥∥∥
∫ t

–∞
ê–ai

(
t,ρ(s)

)(
ai(s)

∫ s

s–δi(s)

(
ϕ∇

i (u) – ψ∇
i (u)

)∇u

+
n∑

j=1

bij(s)
(
fj
(
ϕj

(
s – τij(s)

))
– fj

(
ψj

(
s – ηij(s)

)))

+
n∑

j=1

cij(s)
(
gj
(
ϕ∇

j
(
s – τij(s)

))
– gj

(
ψ∇

j
(
s – τij(s)

))))∇s

∥∥∥∥∥
A

}

≤ max
i∈I

{
1

a–
i

(
a+

i δ+
i +

n∑
j=1

b+
ijL

f
j +

n∑
j=1

c+
ijL

g
j

)}
‖ϕ – ψ‖E

= max
i∈I

{
Qi

a–
i

}
‖ϕ – ψ‖E

and

sup
t∈T

∥∥(Φϕ)∇ (t) – (Φψ)∇ (t)
∥∥
An

= max
i∈I

{
sup
t∈T

∥∥∥∥∥ai(t)
∫ t

t–δi(t)

(
ϕ∇

i (u) – ψ∇
i (u)

)∇u +
n∑

j=1

bij(t)
(
fj
(
ϕj

(
t – τij(t)

))
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– fj
(
ψj

(
t – ηij(t)

)))
+

n∑
j=1

cij(t)
(
gj
(
ϕ∇

j
(
t – τij(t)

))
– gj

(
ψ∇

j
(
t – τij(t)

)))

– ai(t)
∫ t

–∞
ê–ai

(
t,ρ(s)

)(
ai(s)

∫ s

s–δi(s)

(
ϕ∇

i (u) – ψ∇
i (u)

)∇u

+
n∑

j=1

bij(s)
(
fj
(
ϕj

(
s – τij(s)

))
– fj

(
ψj

(
s – ηij(s)

)))

+
n∑

j=1

cij(s)
(
gj
(
ϕ∇

j
(
s – τij(s)

))
– gj

(
ψ∇

j
(
s – τij(s)

))))∇s

∥∥∥∥∥
A

}

= max
i∈I

{
Qi +

a+
i Qi

a–
i

}
‖ϕ – ψ‖E.

By (A3), we have

‖Φϕ – Φψ‖E ≤ κ‖ϕ – ψ‖E.

Hence, Φ is a contraction mapping. Therefore, system (8) has a unique weighted pseudo
almost periodic in the set E0 = {ϕ ∈ E0 : ‖ϕ‖E ≤ Υ }. This completes the proof of Theo-
rem 3.1. �

4 The stability of weighted pseudo almost periodic solutions
In this section, we study the global exponential stability of the unique weighted pseudo al-
most periodic solution of system (8) by using the proof by contradiction and the technique
of inequalities.

Definition 4.1 A solution x with the initial value ϕ of system (8) is called globally expo-
nentially stable if there exist positive constants λ with 
νλ ∈ R+

ν and C̃ > 1 such that for
each solution y with the initial value ψ satisfies

∥∥x(t) – y(t)
∥∥

1 ≤ C̃ê
νλ(t, t0)‖ζ‖0, ∀t ∈ (t0, +∞)T,

where

∥∥x(t) – y(t)
∥∥

1 = max
{∥∥x(t) – y(t)

∥∥
An ,

∥∥x∇ (t) – y∇ (t)
∥∥
An

}
,

‖ζ‖0 = max
{

sup
s∈[t0–ϑ ,t0]T

∥∥ϕ(s) – ψ(s)
∥∥
An , sup

s∈[t0–ϑ ,t0]T

∥∥ϕ∇ (s) – ψ∇ (s)
∥∥
An

}
.

Theorem 4.1 Let conditions (A1)–(A3) hold, then system (8) has a unique weighted pseudo
almost periodic solution that is globally exponentially stable.

Proof According to Theorem 3.1, system (8) has a weighted pseudo almost periodic so-
lution x = (x1, x2, . . . , xn)T . Assume that its initial value is ϕ = (ϕ1,ϕ2, . . . ,ϕn)T . Suppose
that y = (y1, y2, . . . , yn)T is an arbitrary solution of system (8) with the initial value ψ =
(ψ1,ψ2, . . . ,ψn)T . Then, by (8), we have

(
xi(t) – yi(t)

)∇
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= –ai(t)
(
xi(t) – yi(t)

)
+ ai(t)

∫ t

t–δi(t)

(
x∇

i (u) – y∇
i (u)

)∇u

+
n∑

j=1

bij(t)
(
fj
(
xj

(
t – τij(t)

))
– fj

(
yj

(
t – ηij(t)

)))

+
n∑

j=1

cij(t)
(
gj
(
x∇

j
(
t – τij(t)

))
– gj

(
y∇

j
(
t – τij(t)

)))
, i ∈ I. (9)

Multiplying both sides of (9) by ê–ai (t0,ρ(t)) and integrating over [t0, t]T, we obtain

xi(t) – yi(t)

=
(
xi(t0) – yi(t0)

)
ê–ai (t, t0) +

∫ t

t0

ê–ai

(
t,ρ(s)

)

×
(

ai(s)
∫ s

s–δi(s)

(
x∇

i (u) – y∇
i (u)

)∇u

+
n∑

j=1

bij(s)
(
fj
(
xj

(
s – τij(s)

))
– fj

(
yj

(
s – ηij(s)

)))

+
n∑

j=1

cij(s)
(
gj
(
x∇

j
(
s – τij(s)

))
– gj

(
y∇

j
(
s – τij(s)

))))∇s, i ∈ I. (10)

Denote

Θi(ω) = a–
i – ω – exp

(
ω sup

s∈T
μ(s)

)(
a+

i δ+
i exp

(
ωδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
ωη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
ωτ+

ij
))

and

Θ∗
i (ω) = a–

i – ω –
(

a+
i exp

(
ω sup

s∈T
ν(s)

)
+ a–

i

)(
a+

i δ+
i exp

(
ωδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
ωη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
ωτ+

ij
))

, i ∈ I.

Then, by (A3), for i ∈ I , we have

Θi(0) = a–
i – Qi > 0

and

Θ∗
i (0) = a–

i –
(
a–

i + a+
i
)
Qi > 0, i ∈ I.

Because Θi and Θ∗
i are continuous on [0, +∞) and Θi(ω),Θ∗

i (ω) → –∞, as ω → +∞, so
there exist ξi, ξ ∗

i such that Θi(ξi) = Θ∗
i (ξ ∗

i ) = 0 and Θi(ω) > 0 for ω ∈ (0, ξi), Θ∗
i (ω) > 0 for
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ω ∈ (0, ξ ∗
i ), i ∈ I . Let c = mini∈I{ξi, ξ ∗

i }, we have Θi(c) ≥ 0, Θ∗
i (c) ≥ 0, i ∈ I . Hence, we can

take a positive constant 0 < λ < min{c, mini∈I{a–
i }} with 
νλ ∈R+

ν such that

Θi(λ) > 0, Θ∗
i (λ) > 0, i ∈ I,

which imply that

exp(λ sups∈T ν(s))
a–

i – λ

(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))

< 1

and

(
1 +

a+
i exp(λ sups∈T ν(s))

a–
i – λ

)(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))

< 1, i ∈ I.

Denote C̃ = maxi∈I{ a–
i

Qi
}, then by (A3) we have C̃ > 1. Hence,

1
C̃

<
exp(λ sups∈T ν(s))

a–
i – λ

(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))

, i ∈ I.

Since ê
νλ(t, t0) > 1 for t ∈ [t0 – ϑ , t0]T, it is easy to see that

∥∥x(t) – y(t)
∥∥

1 ≤ C̃ê
νλ(t, t0)‖ζ‖0, ∀t ∈ [t0 – ϑ , t0]T.

We claim that

∥∥x(t) – y(t)
∥∥

1 ≤ C̃ê
νλ(t, t0)‖ζ‖0, ∀t ∈ (t0, +∞)T. (11)

To prove that (11) holds, we first show that, for any � > 1, the following inequality holds:

∥∥x(t) – y(t)
∥∥

1 < �C̃ê
νλ(t, t0)‖ζ‖0, ∀t ∈ (t0, +∞)T, (12)

that is, for i ∈ I ,

∥∥xi(t) – yi(t)
∥∥
A < �C̃ê
νλ(t, t0)‖ζ‖0, ∀t ∈ (t0, +∞)T. (13)

In fact, if (13) is not true, then there exist some i ∈ I and t1 ∈ (t0, +∞)T such that

∥∥xi(t1) – yi(t1)
∥∥
A ≥ �C̃‖ζ‖0ê
νλ(t1, t0)
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and

∥∥xi(t) – yi(t)
∥∥
A < �C̃‖ζ‖0ê
νλ(t, t0), t ∈ (t0, t1)T.

Hence, one can choose a constant c ≥ 1 such that

∥∥xi(t1) – yi(t1)
∥∥
A = c�C̃‖ζ‖0ê
νλ(t1, t0) (14)

and

∥∥xi(t) – yi(t)
∥∥
A < c�C̃‖ζ‖0ê
νλ(t, t0), t ∈ (t0, t1)T. (15)

By (10), (14), (15), and C̃ > 1, we have

∥∥xi(t1) – yi(t1)
∥∥
A

=

∥∥∥∥∥
(
xi(t0) – yi(t0)

)
ê–ai (t1, t0) +

∫ t1

t0

ê–ai

(
t1,ρ(s)

)

×
(

ai(s)
∫ s

s–δi(s)

(
x∇

i (u) – y∇
i (u)

)∇u+

×
n∑

j=1

bij(s)
(
fj
(
xj

(
s – τij(s)

))
– fj

(
yj

(
s – ηij(s)

)))

+
n∑

j=1

cij(s)
(
gj
(
x∇

j
(
s – τij(s)

))
– gj

(
y∇

j
(
s – τij(s)

))))∇s

∥∥∥∥∥
A

<
∥∥xi(t0) – yi(t0)

∥∥
Aê–ai (t1, t0) + c�C̃‖ζ‖0ê
νλ(t1, t0)

∫ t1

t0

ê–ai

(
t1,ρ(s)

)

× êλ

(
t1,ρ(s)

)(
a+

i

∫ s

s–δi(s)
êλ

(
ρ(s), u

)∇u +
n∑

j=1

b+
ijL

f
j êλ

(
ρ(s), s – ηij(s)

)

+
n∑

j=1

c+
ijL

g
j êλ

(
ρ(s), s – τij(s)

))∇s

=
∥∥xi(t0) – yi(t0)

∥∥
Aê–ai (t1, t0) + c�C̃‖ζ‖0ê
νλ(t1, t0)

∫ t1

t0

ê–ai⊕νλ

(
t1,ρ(s)

)

×
(

a+
i δ+

i êλ

(
ρ(s), s – δi(s)

)
+

n∑
j=1

b+
ijL

f
j êλ

(
ρ(s), s – ηij(s)

)

+
n∑

j=1

c+
ijL

g
j êλ

(
ρ(s), s – τij(s)

))∇s

≤ ∥∥xi(t0) – yi(t0)
∥∥
Aê–ai (t1, t0) + c�C̃‖ζ‖0ê
νλ(t1, t0)

∫ t1

t0

ê–ai⊕νλ

(
t1,ρ(s)

)

×
(

a+
i δ+

i exp
(
λ
(
δ+

i + sup
s∈T

ν(s)
))

+
n∑

j=1

b+
ijL

f
j exp

(
λ
(
η+

ij + sup
s∈T

ν(s)
))
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+
n∑

j=1

c+
ijL

g
j exp

(
λ
(
τ+

ij + sup
s∈T

ν(s)
)))

∇s

≤
{

ê–ai⊕νλ(t1, t0)
c�C̃

+ exp
(
λ sup

s∈T
ν(s)

)(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))∫ t1

t0

ê–ai⊕νλ

(
t1,ρ(s)

)∇s

}
c�C̃‖ζ‖0ê
νλ(t1, t0)

≤
{

ê–ai⊕νλ(t1, t0)
c�C̃

+ exp
(
λ sup

s∈T
ν(s)

)(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))1 – ê–ai⊕νλ(t1, t0)

a–
i – λ

}
c�C̃‖ζ‖0ê
νλ(t1, t0)

<

{[
1
C̃

–
exp(λ sups∈T ν(s))

a–
i – λ

(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))]

ê–ai⊕νλ(t1, t0) +
exp(λ sups∈T ν(s))

a–
i – λ

(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))}

c�C̃‖ζ‖0ê
νλ(t1, t0)

< c�C̃‖ζ‖0ê
νλ(t1, t0).

Similarly, in view of (10), we have

∥∥x∇
i (t1) – y∇

i (t1)
∥∥
A

< a+
i ‖ζ‖0ê–ai (t1, t0) + c�C̃‖ζ‖0ê
νλ(t1, t0)

(
a+

i

∫ t1

t1–δi(t1)
êλ(t1, u)∇u

+
n∑

j=1

b+
ijL

f
j êλ

(
t1, t1 – ηij(t1)

)
+

n∑
j=1

c+
ijL

g
j êλ

(
t1, t1 – τij(t1)

))

+ a+
i c�C̃‖ζ‖0ê
νλ(t1, t0)

∫ t1

t0

ê–ai⊕νλ

(
t1,ρ(s)

)(
a+

i δ+
i êλ

(
ρ(s), s – δi(s)

)

+
n∑

j=1

b+
ijL

f
j êλ

(
ρ(s), s – ηij(s)

)
+

n∑
j=1

c+
ijL

g
j êλ

(
ρ(s), s – τij(s)

))∇s

≤ a+
i ‖ζ‖0ê–ai (t1, t0) + c�C̃‖ζ‖0ê
νλ(t1, t0)

×
(

a+
i δ+

i exp
(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))(

1 + a+
i exp

(
λ sup

s∈T
ν(s)

)∫ t1

t0

ê–ai⊕νλ

(
t1,ρ(s)

)∇s
)
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<

{[
1
C̃

–
exp(λ sups∈T ν(s))

a–
i – λ

(
a+

i δ+
i exp

(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))]

ê–ai⊕νλ(t1, t0) +
(

1 +
a+

i exp(λ sups∈T ν(s))
a–

i – λ

)

×
(

a+
i δ+

i exp
(
λδ+

i
)

+
n∑

j=1

b+
ijL

f
j exp

(
λη+

ij
)

+
n∑

j=1

c+
ijL

g
j exp

(
λτ+

ij
))}

c�C̃‖ζ‖0ê
νλ(t1, t0)

< c�C̃‖ζ‖0ê
νλ(t1, t0),

which contradicts (14), and so (13) holds. Letting � → 1, we obtain that (11) holds. Hence,
the weighted pseudo almost periodic solution of system (8) is globally exponentially stable.
The proof of Theorem 4.1 is completed. �

5 An example
In this section, we give an example to illustrate the feasibility of our results obtained in
this paper.

Example 5.1 In system (8), let m = 3, n = 2, the weight �(t) = e–|t|, and take the coefficients
as follows:

fj(x) = gj(x) =
1

120
e0 sin

(
x2 + x0) +

3
400

cos
(
x1 + x12)e1 +

1
150

e2 tanh x12

+
1

130
e3 sin

(
x13 + x1) +

√
3

210
e12 sin

√
3x12 +

3
500

cos
(
x2 + x13)e13

+
1

185
e23 tanh x23 +

1
150

e123 sin
(
x123 + x3),

u1(t) = 0.3e0 cos 2t + 0.35e1 cos 3t + 0.25e2 sin 4t + 0.45e3 cos
√

3t

+ 0.15e12 cos 2t + 0.4e13 cos 2t + 0.5e23 sin
√

2t + 0.2e123 sin
√

2t,

u2(t) = 0.25e0 cos 2t + 0.3e1 sin 3t + 0.2e2 cos 2t + 0.35e3 sin
√

3t

+ 0.4e12 cos 3t + 0.3e13 sin 2t + 0.25e23 sin
√

2t + 0.3e123 sin
√

2t,

b11(t) = b12(t) = 0.001e0 cos
√

2t + 0.003e1 sin 3t + 0.003e3 cos
√

3t

+ 0.0015e12 sin 2t + 0.004e13 cos 4t + 0.004e23 cos
√

5t + 0.001e123 sin
√

7t,

b21(t) = b22(t) = 0.002e0 sin 3t + 0.003e2 cos
√

3t

+ 0.0015e12 cos 2t + 0.003e13 sin 5t + 0.001e123 cos
√

2t,

c11(t) = c22(t) = 0.0015e0 cos 3t + 0.003e3 sin 9t

+ 0.005e12 cos 2t + 0.004e23 sin
√

2t + 0.001e123 sin
√

2t,

c12(t) = c21(t) = 0.002e0 cos 3t + 0.003e2 sin
√

5t

+ 0.001e3 sin 2t + 0.0015e12 cos 2t + 0.004e13 cos 4t,
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a1(t) = 0.95 – 0.01 sin
√

2t, a2(t) = 0.9 + 0.03 cos 3t.

If T = R, then we take

τij(t) =
1
2
| cos 2t|, δi(t) =

1
3
| sin 3t|, ηij(t) =

1
4
| cos

√
2t|, i, j = 1, 2,

and if T = Z, then we take

τij(t) = 2e–2| cos(π t+ 3π
2 )|, δi(t) =

∣∣∣∣cos

(
π t +

π

2

)∣∣∣∣, ηij(t) = e–| sin 2π t|, i, j = 1, 2.

By calculating, we have a–
1 = 0.94, a–

2 = 0.87, a+
1 = 0.96, a+

2 = 0.93, Lf
1 = Lf

2 = Lg
1 = Lg

2 = 1
70 ,

‖f (0)‖A = ‖g(0)‖A = 3
400 , b+

11 = b+
12 = 0.004, b+

21 = b+
22 = 0.003, c+

11 = c+
22 = 0.005, c+

12 = c+
21 =

0.004, u+
1 = 0.5, u+

2 = 0.4.
Take Υ = 3, for i, j = 1, 2, when T = R,

δ+
i =

1
3

, τ+
ij =

1
2

, η+
ij =

1
4

, P1 ≈ 1.4609, P2 ≈ 1.3308,

Q1 ≈ 0.3202, Q2 ≈ 0.3102,

max

{
P1

a–
1

,
P2

a–
2

, P1

(
1 +

a+
1

a–
1

)
, P2

(
1 +

a+
2

a–
2

)}
≈ max{1.5541, 1.5297, 2.9529, 2.7534}

= 2.9529 < Υ = 3

and

max

{
Q1

a–
1

,
Q2

a–
2

, Q1

(
1 +

a+
1

a–
1

)
, Q2

(
1 +

a+
2

a–
2

)}

≈ max{0.3406, 0.3566, 0.6472, 0.6418} = 0.6472 = κ < 1,

when T = Z,

δ+
i = 0, τ+

ij = 2, η+
ij = 1, P1 ≈ 0.8009, P2 ≈ 0.4008,

Q1 = Q2 ≈ 0.0002,

max

{
P1

a–
1

,
P2

a–
2

, P1

(
1 +

a+
1

a–
1

)
, P2

(
1 +

a+
2

a–
2

)}
≈ max{0.8520, 0.4607, 1.6188, 0.8292}

= 1.6188 < Υ = 3

and

max

{
Q1

a–
1

,
Q2

a–
2

, Q1

(
1 +

a+
1

a–
1

)
, Q2

(
1 +

a+
2

a–
2

)}

≈ max{0.00021, 0.00023, 0.00040, 0.00041} = 0.00041 = κ < 1.

Hence, whether T = R or T = Z, all the conditions of Theorems 3.1 and 4.1 are satisfied.
Therefore, system (8) has a weighted pseudo almost periodic solution, which is globally
exponentially stable (see Figs. 1–8).
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Figure 1 T =R. Transient states of the solutions x0i (t) and x1i (t) of system (8) with the initial values
x0i (0) = (0.1, –0.2)T , (–0.4, 0.3)T , (0.7, –0.8)T and x1i (0) = (–0.3, 0.4)T , (0.2, –0.5)T , (–0.1, 0.5)T , i = 1, 2

Figure 2 T =R. Transient states of the solutions x2i (t) and x3i (t) of system (8) with the initial values
x2i (0) = (–0.2, –0.3)T , (0.1, 0.25)T , (0.2, –0.1)T and x3i (0) = (0.1, –0.5)T , (0.5, 1)T , (–0.7, –0.3)T , i = 1, 2

Remark 5.1 There are no existing results that can be applied to Example 5.1.

6 Conclusion
In this paper, we have considered a class of Clifford-valued neutral-type neural networks
with leakage delays on time scales. By using the Banach fixed point theorem, the theory
of calculus on time scales, inequality techniques, and the proof by contradiction, we have
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Figure 3 T =R. Transient states of the solutions x12i (t) and x13i (t) of system (8) with the initial values
x12i (0) = (0.3, –0.4)T , (0.6, 0.4)T , (–0.1, –0.7)T and x13i (0) = (–0.1, 0.2)T , (–0.5, 0.4)T , (–0.2, 0.5)T , i = 1, 2

Figure 4 T =R. Transient states of the solutions x23i (t) and x123i (t) of system (8) with the initial values
x23i (0) = (0.3, 1)T , (–0.7, 0.7)T , (–1, –0.3)T and x123i (0) = (0.4, –0.5)T , (0.6, 0.2)T , (–0.1, –0.3)T , i = 1, 2

established the existence and exponential stability of weighted pseudo almost periodic
solutions for this class of neural networks. An example has been given to show the feasi-
bility of our results. This is the first paper to study the existence and global exponential
stability of weighted pseudo almost periodic solutions for Clifford-valued neutral-type
neural networks with leakage delays on time scales. The study of Clifford-valued neural
networks on time scales cannot only unify the research of real-valued neural networks,
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Figure 5 T = Z. Transient states of the solutions x0i (n) and x1i (n) of system (8) with the initial values
x0i (0) = (0.2, –0.1)T , (–0.3, 0.3)T , (0.5, –0.4)T and x1i (0) = (–0.4, 0.2)T , (0.5, –0.5)T , (–0.6, –0.1)T , i = 1, 2

Figure 6 T = Z. Transient states of the solutions x2i (n) and x3i (n) of system (8) with the initial values
x2i (0) = (0.2, –0.1)T , (–0.25, 0.15)T , (0.1, –0.2)T and x3i (0) = (0.1, 0.5)T , (–0.5, –0.2)T , (0.3, –0.4)T , i = 1, 2

complex-valued neural networks, and quaternion-valued neural networks, but also unify
the research of continuous-time neural networks and discrete-time neural networks. Our
method of this paper can be applied to study other types of the Clifford-valued neural
networks on times scales, such as BAM neural networks on time scales, shunting in-
hibitory cellular neural networks on time scales, high-order Hopfield neural networks,
and so on.
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Figure 7 T = Z. Transient states of the solutions x12i (n) and x13i (n) of system (8) with the initial values
x12i (0) = (0.3, –0.2)T , (–0.6, 0.5)T , (–0.1, –0.3)T and x13i (0) = (0.1, 0.3)T , (–0.2, –0.15)T , (–0.5, –0.1)T , i = 1, 2

Figure 8 T = Z. Transient states of the solutions x23i (n) and x123i (n) of system (8) with the initial values
x23i (0) = (0.2, –0.3)T , (–0.7, –0.5)T , (0.5, 0.7)T and x123i (0) = (0.4, 0.2)T , (–0.05, –0.3)T , (–0.4, 0.25)T , i = 1, 2
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