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Abstract
We consider the first type boundary value problem of the heat equation in two space
dimensions on special polygons with interior angles αjπ , j = 1, 2, . . . ,M, where
αj ∈ { 12 , 13 , 23 }. To approximate the solution we develop two difference problems on
hexagonal grids using two layers with 14 points. It is proved that the given implicit
schemes in both difference problems are unconditionally stable. It is also shown that
the solutions of the constructed Difference Problem 1 and Difference Problem 2
converge to the exact solution on the grids of order O(h2 + τ 2) and O(h4 + τ )
respectively, where h and

√
3
2 h are the step sizes in space variables x1 and x2

respectively and τ is the step size in time. Furthermore, theoretical results are justified
by numerical examples on a rectangle, trapezoid and parallelogram.

Keywords: Finite difference method; Hexagonal grid; Stability analysis; Error bounds;
Two dimensional heat equation

1 Introduction
The use of differential equations in modeling of physical phenomenon is inevitable. Some
modeling examples include but are not limited to the modeling of musical instruments
such as string and wind instruments using digital waveguides, addressed by Smith [1].
For modeling of infectious diseases see Ahmed et al. [2], and for auto-catalytic chemical
reactions see Iqbal et al. [3]. More examples may be given to atmospheric and oceano-
graphic models (see Sadourny et al. [4]–Randall et al. [5]). Analytical techniques cannot
solve most of the model problems appearing in practice. Therefore, numerical simulations
gain importance in getting an understanding of dynamical systems.

One of the most important issues in numerical methods for the solution of dynamical
problems is the well-founded choice of stable and economical computational algorithms.
In numerical calculations of nuclear reactors it has been found worthwhile to use the im-
plicit schemes for the solution of a two dimensional age–diffusion equation by Ehrlich
and Hurwitz [6]. Most recently, by Ahmed et al. [2] a novel and time efficient positiv-
ity preserving numerical scheme to find the solution of an epidemic model involving a
reaction–diffusion system in three dimensions has been designed. By Iqbal et al. [3] an
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unconditionally stable and structure preserving computational technique for fractional
order Schnakenberg model has been given.

High accurate implicit schemes on triangular nets whose meshes are equilateral trian-
gles for the two dimensional diffusion equation

∂u
∂t

= ω

(
∂2u
∂x2

1
+

∂2u
∂x2

2

)
, (1)

where, ω > 0 is the thermometric conductivity or the diffusivity were studied by Richtmyer
and Morton [7]. The analogue of O(h2 + τ 2) accurate, unconditionally stable three layer
scheme with 9 points on hexagonal grids and a three layer scheme with 21 points, a two
layer scheme with 14 points both converging with order O(h4 +τ 2) to the exact solution on
hexagonal grids were given in Richtmyer and Morton [7]. Therein, the diffusion problem
with heat source on a rectangle that irregular grids have centers h

2 units away from the
sides of the rectangle at any time moment t with neighboring points emerging through
these sides was not considered.

In the last few decades, hexagonal grid methods became of interest in many applied
problems such as dynamical meteorology, dynamical oceanography and in the simu-
lation of electrical wave phenomena. Sadourny et al. [4] developed a finite difference
scheme for numerical integration of the nondivergent barotropic vorticity equation with
an icosahedral–hexagonal grid covering the sphere. The given difference scheme for the
advection of vorticity exactly conserved total vorticity, total square vorticity, and total ki-
netic energy. The authors of [4] showed that the high degree of the isotropy of the hexago-
nal grid made the formulation of an energy and vorticity conserving scheme simpler than
for rectangular grids. Williamson [8] gave finite difference approximations for a nondi-
vergent, barotropic model expressed in term of a streamfunction for an arbitrary trian-
gular grid, which were applied to the spherical geodesic grid. Subsequently, Sadourney
and Morel [9] demonstrated the applicability of the hexagonal grids to the primitive equa-
tions of fluid dynamics. Also, Sadourney [10], Thacker [11, 12], Salmon and Talley [13],
Ničkovič [14] considered various aspects of the finite differencing on hexagonal grids.
Later Ničkovič et al. [15] showed that hexagonal lattices have some advantages over com-
monly used square grids. As the authors in [15] mentioned “having better isotropy, they
provide more accurate dispersion of gravity waves than square grids do and therefore they
can be more appropriate for simulation of smaller-scale divergent processes”.

Recently, in the article Lee et al. [16] hexagonal grid finite difference methods were de-
rived in a finite volume approach involving a standard Laplacian. The obtained schemes
were used in the simulation of electrical wave phenomena propagated in two dimensional
reserved-C type cardiac tissue, exhibiting both linear and spiral waves more efficiently
than a similar computation carried out on rectangular finite volume schemes.

Dosiyev and Celiker [17] gave the approximation on the hexagonal grid of the Dirichlet
problem for Laplace’s equation. The fourth order matching operator on the hexagonal
grid was constructed and applied to justify a hexagonal version of the combined Block–
Grid method for the Dirichlet problem with corner singularity. Thus, they obtained O(h4)
order of accuracy where h is the step size when using the 7-point scheme on the hexagonal
grid instead of using 9-point scheme on the rectangular grid giving the computational
advantages such as memory space and computational cost. Further, Dosiyev and Celiker
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[18] investigated a fourth order block-hexagonal grid approximation for the solution of
Laplace’s equation on special polygons with singularities. It has been justified that in these
polygons if the boundary functions away from the singular corners are from the Hölder
classes C4,λ, 0 < λ < 1, the uniform error is of order O(h4) when the hexagon grid is applied
in the “nonsingular” part of the domain.

Main contributions by this research are that we give two layer implicit schemes with 14
points by using the hexagonal grids for approximating the solution of first type boundary
value problem of the heat equation in two space dimensions on special polygons Ω with
interior angles αjπ , j = 1, 2, . . . , M, where αj ∈ { 1

2 , 1
3 , 2

3 }. It is assumed that the heat source,
the initial and boundary functions are given on QT = Ω × [0, T], where x = (x1, x2) ∈ Ω and
t ∈ [0, T]; the solution belongs to the Hölder space C6+α,3+ α

2
x,t (QT ), 0 < α < 1. Special differ-

ence schemes are proposed for the hexagonal grids that have centers h
2 units away from

the orthogonal sides of these polygons at time moment t, which have a neighboring point
in the pattern emerging through these sides. In Sect. 2, we consider the first type bound-
ary value problem for a two dimensional heat equation on special polygons. In Sect. 3, a
two layer implicit difference scheme with 14 points on hexagonal grids is proposed and
it is proved that this scheme is unconditionally stable and the solution of the constructed
Difference Problem 1 converges to the exact solution on the grids with O(h2 + τ 2) order
of accuracy. In Sect. 4, we give a two layer implicit unconditionally stable scheme with
14 points on hexagonal grids and showed that the solution of the constructed Difference
Problem 2 converges to the exact solution on the grids with O(h4 + τ ) order of accuracy.
Section 5 is devoted to numerical experiments to justify the obtained theoretical results.

2 First type boundary value problem of the heat equation on special polygons
Let x = (x1, x2), and Ω be an open simply connected polygon and υj, j = 1, 2, . . . , M, be its
sides, including the ends, enumerated counterclockwise (υ0 = υM , υ1 = υM+1), and also let
αjπ , j = 1, 2, . . . , M, where αj ∈ { 1

2 , 1
3 , 2

3 } be the interior angles formed by the sides υj–1 and
υj. Furthermore, let S =

⋃M
j=1 υj be the boundary of Ω and denote by Ω = Ω ∪S the closure

of Ω . Let QT = Ω × [0, T), with lateral surface ST , more precisely, the set of points (x, t),
x ∈ S and t ∈ [0, T]; also QT shows the closure of QT . Let l be a noninteger positive number,

Cl, l
2

x,t (QT ) be the Banach space of functions u(x, t) that are continuous in QT together with
all derivatives of the form

∂r+s1+s2 u
∂tr ∂xs1

1 ∂xs2
2

for 2r + s1 + s2 < l (2)

with bounded norm

‖u‖
C

l, l
2

x,t (QT )
= 〈u〉(l)

QT
+

[l]∑
j=0

〈u〉(j)
QT

, (3)

where

〈u〉(j)
QT

=
∑

2r+s1+s2=j

max
QT

∣∣∣∣ ∂r+s1+s2 u
∂tr ∂xs1

1 ∂xs2
2

∣∣∣∣, j = 0, 1, 2, . . . , [l], (4)

〈u〉(l)
QT

= 〈u〉(l)
x + 〈u〉( l

2 )
t , (5)



Buranay and Arshad Advances in Difference Equations        (2020) 2020:309 Page 4 of 24

〈u〉(l)
x =

∑
2r+s1+s2=[l]

〈
∂r+s1+s2 u

∂tr ∂xs1
1 ∂xs2

2

〉l–[l]

x
, (6)

〈u〉( l
2 )

t =
∑

0<l–2r–s1–s2<2

〈
∂r+s1+s2 u

∂tr ∂xs1
1 ∂xs2

2

〉 l–2r–s1–s2
2

t
, (7)

and the quantities 〈u〉αx , 〈u〉βt for α,β ∈ (0, 1) are defined as

〈u〉αx = sup
(x,t),(x′,t)∈QT

|u(x, t) – u(x′, t)|
|x – x′|α , (8)

〈u〉βt = sup
(x,t),(x,t′)∈QT

|u(x, t) – u(x, t′)|
|t – t′|β . (9)

We consider the first type boundary value problem for two space dimensional heat equa-
tion.

Boundary Value Problem (BVP)

Lu = f (x, t) on QT , (10)

u(x, 0) = ϕ(x) on Ω , (11)

u(x, t) = φ(x, t) on ST , (12)

where x = (x1, x2) and L ≡ ∂
∂t – ω( ∂2

∂x2
1

+ ∂2

∂x2
2

) and ω > 0 is constant.

The differentiability properties of solutions of boundary value problems for the Laplace
equation on polygons were given by Volkov [19]. For elliptic equations, the behaviour of
solutions near singularities of the boundary of the domain had been treated by Kondrat’ev
[20]. For the differentiability properties of solutions of the parabolic equations on cylin-
drical domains with smooth boundary, see Ladyženskaja et al. [21], and Friedman [22].
The smoothness of solutions of parabolic equations in regions with edges was studied by
Azzam and Kreyszig for the Dirichlet [23] and for the mixed boundary value problems
in [24]. Hence, in this paper the obtained subsequent theoretical and numerical results
are given under the assumption that the heat source function f (x, t) and the initial and
boundary functions ϕ(x) and φ(x, t) respectively, are given such that the BVP has unique
solution u belonging to the class C6+α,3+ α

2
x,t (QT ).

Remark 1 It is known that the use of classical finite difference method to solve the bound-
ary value problems with singularities is ineffective. Therefore, a special construction is
usually needed for the numerical scheme near the singularities in such a way that the or-
der of convergence is the same as in the case of a smooth solution (see Dosiyev and Celiker
[17], Dosiyev [25] and Dosiyev et al. [26]).

3 Second order accurate difference problem
Let h > 0, we assign Ωh a hexagonal grid on Ω , with step size h, defined as the set of nodes

Ωh =
{

x = (x1, x2) ∈ Ω : x1 =
i′ – j′

2
h, x2 =

√
3(i′ + j′)

2
h,
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Figure 1 Hexagonal grid on a rectangle

Figure 2 Hexagonal grid on a parallelogram

Figure 3 Hexagonal grid on a trapezoid

i′ = 1, 2, . . . ; j′ = 0 ± 1 ± 2, . . .
}

, (13)

as shown in Fig. 1, Fig. 2 and Fig. 3 when Ω is a rectangle, parallelogram and trapezoid
respectively. Let υh

j , j = 1, 2, . . . , M be the set of nodes on the interior of υj and let υ̂h
j =

υj–1 ∩ υj be the jth vertex of Ω , Sh =
⋃M

j=1(υh
j ∪ υ̂h

j ),Ωh = Ωh ∪ Sh. We assume that the
lengths of the sides of the polygon are given such that irregular hexagon grids only have a
right neighboring point or a left neighboring point emerging through the side of Ω when
the center of the hexagon is h

2 units away from this side. Accordingly, we shall call these
points right ghost points and left ghost points. Further, let Ω∗lh, Ω∗rh denote the set of
interior nodes whose distance from the boundary is h

2 and the hexagon has a left ghost
point as shown in Fig. 4 or a right ghost point given in Fig. 5, respectively. We also denote
by Ω∗h = Ω∗lh ∪ Ω∗rh and Ω0h = Ωh\Ω∗h. Next, let

γτ =
{

tk = kτ , τ =
T
M′ , k = 1, . . . , M′

}
, (14)

γ τ =
{

tk = kτ , τ =
T
M′ , k = 0, . . . , M′

}
, (15)
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Figure 4 The illustration of the solution uk+1P2
and

ukP2 on the left ghost points

Figure 5 The illustration of the solution uk+1P5
and

ukP5 on the right ghost points

and the set of internal nodes and lateral surface nodes be defined by

Ωhγτ = Ωh × γτ =
{

(x, t) : x ∈ Ωh, t ∈ γτ

}
, (16)

Sh
T = Sh × γ τ =

{
(x, t) : x ∈ Sh, t ∈ γ τ

}
. (17)

Let Ω∗lhγτ = Ω∗lh × γτ ⊂ Ωhγτ and Ω∗rhγτ = Ω∗rh × γτ ⊂ Ωhγτ and Ω∗hγτ = Ω∗lhγτ ∪
Ω∗rhγτ , also Ω0hγτ = Ωhγτ\Ω∗hγτ . We use the following notations:

P0 denotes the center of the hexagon.
Patt(P0) is the pattern of the hexagon consisting the neighboring points Pi, i = 1, . . . , 6.
Inc denotes the incidence matrix related to the neighborhood topology of all the
hexagon centers.
λs(K) present the eigenvalues λs, s = 1, 2, . . . , N of real matrix K ∈ RN×N .
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Also

uk+1
P1 = u

(
x1 –

h
2

, x2 +
√

3
2

h, t + τ

)
, uk+1

P3 = u
(

x1 –
h
2

, x2 –
√

3
2

h, t + τ

)
,

uk+1
P2 = u(x1 – h, x2, t + τ ), uk+1

P5
= u(x1 + h, x2, t + τ ),

uk+1
P4 = u

(
x1 +

h
2

, x2 –
√

3
2

h, t + τ

)
, uk+1

P6
= u

(
x1 +

h
2

, x2 +
√

3
2

h, t + τ

)
,

uk+1
P0 = u(x1, x2, t + τ ), uk+1

PA
= u(̂p, x2, t + τ ), (̂p, x2, t + τ ) ∈ Sh

T ,

where the value of p̂ = x1 – h
2 if P0 ∈ Ω∗lhγτ and p̂ = x1 + h

2 if P0 ∈ Ω∗rhγτ as also given in
(29). Analogously, the values uk

Pi
i = 0, . . . , 6 and uk

PA
present the exact solution at the same

space coordinates of Pi i = 0, . . . , 6 and PA respectively, but at time level t. Also we use the
notations uk+1

h,τ ,Pi
, i = 0, . . . , 6, uk+1

h,τ ,PA
, and uk

h,τ ,Pi
, i = 0, . . . , 6, uk

h,τ ,PA
to present the numerical

solution at the same space coordinates of Pi, i = 0, . . . , 6 and PA for time moments t + τ

and t = kτ , respectively. Further, f k+ 1
2

P0
= f (x1, x2, t + τ

2 ) and f k+ 1
2

PA
= f (̂p, x2, t + τ

2 ) where p̂ is
as defined in (29).

For the numerical solution of the BVP we propose the following difference problem.

Difference Problem 1

Θh,τ uk+1
h,τ = Λh,τ uk

h,τ + ψ on Ω0hγτ , (18)

Θ∗
h,τ uk+1

h,τ = Λ∗
h,τ uk

h,τ + E∗
h,τ φ + ψ∗ on Ω∗hγτ , (19)

uh,τ = ϕ(x), t = 0 on Ω
h, (20)

uh,τ = φ(x, t) on Sh
T , (21)

for k = 0, . . . , M′ – 1, where

ψ = f k+ 1
2

P0
, (22)

ψ∗ = f k+ 1
2

P0
–

1
6

f k+ 1
2

PA
, (23)

Θh,τ uk+1 =
(

1
τ

+
2ω

h2

)
uk+1

P0 –
ω

3h2

6∑
i=1

uk+1
Pi

, (24)

Λh,τ uk =
(

1
τ

–
2ω

h2

)
uk

P0 +
ω

3h2

6∑
i=1

uk
Pi

, (25)

Θ∗
h,τ uk+1 =

(
1
τ

+
7ω

3h2

)
uk+1

P0 –
ω

3h2

(
u(p + η, x2, t + τ )

+ u
(

p, x2 +
√

3
2

h, t + τ

)
+ u

(
p, x2 –

√
3

2
h, t + τ

))
, (26)

E∗
h,τ φ =

2ω

9h2

(
φ

(
p̂, x2 +

√
3

2
h, t + τ

)
+ φ

(
p̂, x2 –

√
3

2
h, t + τ

)

+ φ

(
p̂, x2 +

√
3

2
h, t

)
+ φ

(
p̂, x2 –

√
3

2
h, t

))
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+
(

1
6τ

+
8ω

9h2

)
φ (̂p, x2, t + τ ) +

(
–

1
6τ

+
8ω

9h2

)
φ (̂p, x2, t), (27)

Λ∗
h,τ uk =

(
1
τ

–
7ω

3h2

)
uk

P0 +
ω

3h2

(
u
(

p, x2 +
√

3
2

h, t
)

+ u
(

p, x2 –
√

3
2

h, t
)

+ u(p + η, x2, t)
)

, (28)

and

⎧⎨
⎩

p = x1 + h
2 , p̂ = x1 – h

2 , η = h
2 if P0 ∈ Ω∗lhγτ ,

p = x1 – h
2 , p̂ = x1 + h

2 , η = – h
2 if P0 ∈ Ω∗rhγτ .

(29)

3.1 The stability and convergence analysis for Difference Problem 1
Theorem 2 The order of approximation of the implicit scheme in Difference Problem 1 is
O(h2 + τ 2).

Proof Let (x1, x2, t + τ ) ∈ Ω∗γτ be the center of the hexagon (P0) at time moment t + τ .
By the continuity of the solution u, the heat equation (10) is also satisfied at the boundary
points (̂p, x2, t + τ

2 ) denoted by PA. Therefore, we give the O(h2 + τ 2) difference approxi-
mation of the heat equation (10) at (̂p, x2, t + τ

2 ) when p̂ = x1 – h
2 as

uk+1
h,τ ,PA

– uk
h,τ ,PA

τ
= ω

(
2
h2

(
uk+1

h,τ ,P0 – 2uk+1
h,τ ,PA

+ uk+1
h,τ ,P2

)

+
2

3h2

(
uk+1

h,τ ,P1 – 2uk+1
h,τ ,PA

+ uk+1
h,τ ,P3

)
+

2
h2

(
uk

h,τ ,P0 – 2uk
h,τ ,PA

+ uk
h,τ ,P2

)

+
2

3h2

(
uk

h,τ ,P1 – 2uk
h,τ ,PA

+ uk
h,τ ,P3

))
+ f k+ 1

2
PA

. (30)

Using Eq. (30) the following equation can be derived for the sum of left ghost points P2 at
time moments t + τ , and t = kτ ,

uk+1
h,τ ,P2 + uk

h,τ ,P2 =
h2

2τω
uk+1

h,τ ,PA
+

8
3

uk+1
h,τ ,PA

– uk+1
h,τ ,P0 –

1
3

uk+1
h,τ ,P1 –

1
3

uk+1
h,τ ,P3 –

h2

2τω
uk

h,τ ,PA

+
8
3

uk
h,τ ,PA

– uk
h,τ ,P0 –

1
3

uk
h,τ ,P1 –

1
3

uk
h,τ ,P3 –

h2

2ω
f k+ 1

2
PA

. (31)

Analogously, we use the following difference approximation of the heat equation (10) at
the boundary points (̂p, x2, t + τ

2 ) when p̂ = x1 + h
2 :

uk+1
h,τ ,PA

– uk
h,τ ,PA

τ
= ω

(
2
h2

(
uk+1

h,τ ,P0 – 2uk+1
h,τ ,PA

+ uk+1
h,τ ,P5

)

+
2

3h2

(
uk+1

h,τ ,P4 – 2uk+1
h,τ ,PA

+ uk+1
h,τ ,P6

)
+

2
h2

(
uk

h,τ ,P0 – 2uk
h,τ ,PA

+ uk
h,τ ,P5

)

+
2

3h2

(
uk

h,τ ,P4 – 2uk
h,τ ,PA

+ uk
h,τ ,P6

))
+ f k+ 1

2
PA

, (32)
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with the order of approximation O(h2 + τ 2). The sum of right ghost points P5 at time
moments t + τ , and t = kτ is obtained from (32),

uk+1
h,τ ,P5

+ uk
h,τ ,P5

=
h2

2τω
uk+1

h,τ .PA
+

8
3

uk+1
h,τ ,PA

– uk+1
h,τ ,P0 –

1
3

uk+1
h,τ ,P4 –

1
3

uk+1
h,τ ,P6

–
h2

2τω
uk

h,τ ,PA

+
8
3

uk
h,τ ,PA

– uk
h,τ ,P0 –

1
3

uk
h,τ ,P4 –

1
3

uk
h,τ ,P6

–
h2

2ω
f k+ 1

2
PA

. (33)

Using (31), (33) and (18) we obtain the scheme (19). Let the error function be εh,τ = uh,τ –u.
Then εh,τ satisfies the following difference problem:

Θh,τ ε
k+1
h,τ = Λh,τ ε

k
h,τ + Ψ k

1 on Ω0hγτ , (34)

Θ∗
h,τ ε

k+1
h,τ = Λ∗

h,τ ε
k
h,τ + Ψ k

2 on Ω∗hγτ , (35)

εh,τ = 0, t = 0 on Ω
h, (36)

εh,τ = 0 on Sh
T , (37)

where,

Ψ k
1 = Λh,τ uk – Θh,τ uk+1 + ψ , (38)

Ψ k
2 = Λ∗

h,τ uk – Θ∗
h,τ uk+1 + ψ∗. (39)

Let Θ̂h,τ be the operator that coincides with Θh,τ for the points in Ω0hγτ , and coincides
with Θ∗

h,τ for the points in Ω∗hγτ . Analogously, let Λ̂h,τ be the operator that coincides
with Λh,τ for the points in Ω0hγτ and coincides with Λ∗

h,τ for the points in Ω∗hγτ . Further
Ψ̂ k denotes the truncation error Ψ k

1 and Ψ k
2 for the points belonging to Ω0hγτ and Ω∗hγτ

respectively. Then the system (34)–(37) can be given as

Θ̂h,τ ε
k+1
h,τ = Λ̂h,τ ε

k
h,τ + Ψ̂ k on Ωhγτ , (40)

εh,τ = 0, t = 0 on Ω
h, (41)

εh,τ = 0 on Sh
T . (42)

Using Taylor’s expansion around the point (x1, x2, t + τ
2 ) and from the assumption that

u ∈ C6+α,3+ α
2

x,t (QT ), we obtain the Ψ̂ k = O(h2 + τ 2) order of the approximation. Thus, the
order of the approximation of the implicit scheme in Difference Problem 1 is O(h2 +
τ 2). �

Next we analyze the stability for Difference Problem 1 by using spectral method. Let us
label the interior grid points in Ωhγτ by Qj, j = 1, 2, . . . , N at every time level along spatial
variable x1 (lexicographical ordering). The neighboring topology of all hexagon centers
can be given by the set

T =
{

(i, j) : if the grid Qi ∈ Patt(Qj), i = j, 1 ≤ i, j ≤ N
}

, (43)
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and shows the sparsity pattern of the incidence matrix Inc. Thus, the entries of the matrix
Inc ∈ RN×N are

Incij =

⎧⎨
⎩

0 if (i, j) /∈ T ,

1 if (i, j) ∈ T .
(44)

The algebraic linear system of equations obtained by the Difference Problem 1 can be
given in matrix form:

KUk+1 = SUk + τ
(
Fk+ 1

2 + Gk∗)
, (45)

where K , S ∈ RN×N are given as

K =
(

I +
ωτ

h2 B
)

, S =
(

I –
ωτ

h2 B
)

(46)

and

B = D1 –
1
3

Inc ∈ RN×N . (47)

Here Uk+1, Uk , Fk+ 1
2 and Gk∗ are vectors of order N and Fk+ 1

2 and Gk∗ are obtained by
evaluating the heat source function in (22), (23) at time level (k + 1

2 )τ and the boundary
and initial functions in Difference Problem 1 (18)–(21), respectively. Also k∗ denotes that
values at time moments t + τ , and t = kτ are used, and I is the identity matrix. D1 is a
diagonal matrix with entries

d1,jj =

⎧⎨
⎩

2 if Qj ∈ Ω0hγτ ,
7
3 if Qj ∈ Ω∗hγτ ,

j = 1, 2, . . . , N . (48)

Lemma 3 (Lemma 6.2 of [27]) Let K = [kij] be N × N matrix with kij ≤ 0 for all i = j and
kii > 0. If K is strictly diagonally dominant then K is an M-matrix.

Theorem 4 (Theorem 4.9 of [27]) If K = [kij] is strictly diagonally dominant or irreducibly
diagonally dominant, then K is nonsingular. If in addition its diagonal entries are positive,
i.e. kii > 0, then Re(λs(K)) > 0 for all eigenvalues λs of K .

Lemma 5 (a) The matrix B in (47) is a symmetric positive definite matrix.
(b) The matrix K in (46) is nonsingular M-matrix and is also a symmetric positive defi-

nite matrix.

Proof (a) Using (43) if Qi ∈ Patt(Qj) for i = j, 1 ≤ i, j ≤ N this implies that Qj ∈ Patt(Qi)
giving IncT = Inc. Thus, B is symmetric and since a hexagonal grid is a connected grid
in a simply connected polygon Ω , using (47) one can easily show that the matrix B is an
irreducibly diagonally dominant matrix with bii > 0, i = 1, . . . , N . Hence by Theorem 4, B
is a positive definite matrix.

(b) The main diagonal entries kii > 0, i = 1, . . . , N , and kij ≤ 0 for i = j, and 1 ≤ i, j ≤ N .
Since kii >

∑N
j=1,j =i |kij| for all i = 1, 2, . . . , N , the matrix K = I + ωτ

h2 D1 – ωτ

3h2 Inc is strictly
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diagonally dominant matrix and Lemma 3 implies that K is an M-matrix and its inverse
K–1 ≥ 0. Also KT = (I + ωτ

h2 B)T = K and K is symmetric real matrix. Therefore, all eigenval-
ues λs of K are real. Using Theorem 4 we find that Re(λs(K)) = λs(K) > 0 for all eigenvalues
λs of K ; thus, K is a symmetric positive definite matrix. �

Theorem 6 The implicit scheme of the Difference Problem 1 is unconditionally stable and
the solution uh,τ converges to the exact solution u with order of accuracy (h2 + τ 2).

Proof On the basis of Lemma 5, the matrices B and K are symmetric and positive definite
matrices. Since K is symmetric, K–1 is also symmetric and the eigenvalues of K–1 satisfy
0 < λs(K–1) ≤ 1

1+ ωτ

h2 min1≤s≤N (λs(B)) < 1 for ωτ

h2 > 0 and we get ‖K–1‖2 < 1. Also

(
K–1S

)T = SK–1 =
(

I –
ωτ

h2 B
)(

I +
ωτ

h2 B
)–1

=
1

det(I + ωτ

h2 B)

(
I –

ωτ

h2 B
)

Adj
(

I +
ωτ

h2 B
)

=
(

I +
ωτ

h2 B
)–1[

I –
1

det(I + ωτ

h2 B)

(
I +

ωτ

h2 B
)

×
(

ωτ

h2 B
)

Adj
(

I +
ωτ

h2 B
)]

=
(

I +
ωτ

h2 B
)–1(

I –
ωτ

h2 B
)

= K–1S, (49)

where det(I + ωτ

h2 B) and Adj(I + ωτ

h2 B) are the determinant and the adjoint matrix of K =
I + ωτ

h2 B, respectively. Thus K–1S is a real symmetric matrix; therefore, the eigenvalues
λs(K–1S) are real. Using the Gershgorin theorem for the estimation of the spectrum of the
matrix B gives

0 < λs(B) ≤ 4. (50)

Since B is a symmetric positive definite matrix, it follows that B = PT DP with P orthogonal
and D diagonal matrix of eigenvalues λs(B). Then K = I + ωτ

h2 B = PT (I + ωτ

h2 D)P and K–1 =
PT (I + ωτ

h2 D)–1P and

K–1S = PT
(

I +
ωτ

h2 D
)–1

PPT
(

I –
ωτ

h2 D
)

P, (51)

that is, the matrix K–1S is similar to (I + ωτ

h2 D)–1(I – ωτ

h2 D) so from (49) we get

∥∥K–1S
∥∥

2 = ρ
(
K–1S

)
= max

1≤s≤N

∣∣∣∣λs

((
I +

ωτ

h2 D
)–1(

I –
ωτ

h2 D
))∣∣∣∣

≤
∣∣∣∣1 – ωτ

h2 min1≤s≤N (λs(B))
1 + ωτ

h2 min1≤s≤N (λs(B))

∣∣∣∣ < 1 for
ωτ

h2 > 0. (52)

Using (52) and by induction follows that

∥∥Uk+1∥∥
2 ≤ ∥∥K–1S

∥∥
2

∥∥Uk∥∥
2 + τ

∥∥K–1∥∥
2

(∥∥Fk+ 1
2
∥∥

2 +
∥∥Gk∗∥∥

2

)
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≤ ∥∥U0∥∥
2 + τ

k∑
k′=0

(∥∥Fk′+ 1
2
∥∥

2 +
∥∥Gk′∗ ∥∥

2

)
. (53)

Since K–1S is a real symmetric matrix it is also a normal matrix; hence, the von Neumann
condition for stability is sufficient as well as necessary for stability (see Lax and Richtmyer
[28]). Therefore, Eq. (53) shows that the implicit scheme in Difference Problem 1 is un-
conditionally stable. The error function εh,τ satisfying (40)–(42) can be given in the matrix
form (45) at time level t = (k + 1)τ as

KEk+1 = SEk + τ Ψ̂ k . (54)

where, E is vector of order N . Thus, from Theorem 2 and (53), (54) we have

∥∥Ek+1∥∥
2 ≤ τ

k∑
k′=0

∥∥Ψ̂ k′∥∥
2 ≤ c1

(
h2 + τ 2), (55)

where, c1 is positive constant independent from h and τ and depends on the bounded
derivatives of the solution u of the form (2) of at most sixth order in the truncation error
Ψ̂ k as given in (38) and (39). Let ‖εk+1

h,τ ‖C =
⋂

Ωhγτ {t=(k+1)τ } max|εk+1
h,τ | = ‖Ek+1‖∞, then on

the basis of norm concordance and using (55) we get

∥∥εk+1
h,τ

∥∥
C ≤ ∥∥Ek+1∥∥

2 ≤ c1
(
h2 + τ 2). (56)

Therefore, the solution uh,τ converges to the exact solution u with order of accuracy (h2 +
τ 2). �

4 Fourth order accurate implicit difference problem
Let f k+1

P0
= f (x1, x2, t + τ ), f k+1

PA
= f (̂p, x2, t + τ ) and f k

PA
= f (̂p, x2, t) where, p̂ is as defined in

(29). Analogously ∂2
x1 f k+1

P0
= ∂2f

∂x2
1
|(x1,x2,t+τ ) and ∂2

x2f k+1
P0

= ∂2f
∂x2

2
|(x1,x2,t+τ ). We give the following

difference problem for the solution of the given BVP.

Difference Problem 2

Θ̃h,τ uk+1
h,τ = Λ̃h,τ uk

h,τ + ψ̃ on Ω0hγτ , (57)

Θ̃∗
h,τ uk+1

h,τ = Λ̃∗
h,τ uk

h,τ + Ẽ∗
h,τ φ + ψ̃∗ on Ω∗hγτ , (58)

uh,τ = ϕ(x), t = 0 on Ω
h, (59)

uh,τ = φ(x, t) on Sh
T , (60)

k = 0, . . . , M′ – 1, where

ψ̃ = f k+1
P0 +

1
16

h2(∂2
x1 f k+1

P0 + ∂2
x2 f k+1

P0

)
, (61)

ψ̃∗ =
h2

96τω
f k+1
PA

–
h2

96τω
f k
PA

–
1
6

f k+1
PA

+ f k+1
P0

+
1

16
h2(∂2

x1 f k+1
P0 + ∂2

x2 f k+1
P0

)
, (62)
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Θ̃h,τ uk+1 =
(

3
4τ

+
4ω

h2

)
uk+1

P0 +
(

1
24τ

–
2ω

3h2

) 6∑
i=1

uk+1
Pi

, (63)

Λ̃huk =
3

4τ
uk

P0 +
1

24τ

6∑
i=1

uk
Pi

, (64)

Θ̃∗
h,τ uk+1 =

(
17

24τ
+

14ω

3h2

)
uk+1

P0 +
(

1
24τ

–
2ω

3h2

)(
u
(

p, x2 +
√

3
2

h, t + τ

)

+ u
(

p, x2 –
√

3
2

h, t + τ

)
+ u(p + η, x2, t + τ )

)
, (65)

Ẽ∗
h,τ φ =

(
–

1
36τ

+
4ω

9h2

)(
φ

(
p̂, x2 +

√
3

2
h, t + τ

)
+ φ

(
p̂, x2 –

√
3

2
h, t + τ

))

+
(

1
18τ

+
16ω

9h2

)
φ (̂p, x2, t + τ ) +

1
36τ

(
φ

(
p̂, x2 +

√
3

2
h, t

)

+ φ

(
p̂, x2 –

√
3

2
h, t

))

–
1

18τ
φ (̂p, x2, t), (66)

Λ̃∗
h,τ uk =

17
24τ

uk
P0 +

1
24τ

(
u
(

p, x2 +
√

3
2

h, t
)

+ u
(

p, x2 –
√

3
2

h, t
)

+ u(p + η, x2, t)
)

, (67)

and p, p̂,η are as defined in (29).
We remark that ψ̃ in (61) can be taken as (see also Lee et al. [16])

ψ̃ =
3
4

f k+1
P0 +

1
24

6∑
i=1

f k+1
Pi

. (68)

4.1 The stability and convergence analysis of Difference Problem 2
Theorem 7 The order of approximation of the implicit scheme in Difference Problem 2 is
O(h4 + τ ).

Proof Let (x1, x2, t + τ ) ∈ Ω∗lhγτ be the center of the hexagon (P0) at time level t + τ . The
heat equation (10) is also satisfied at the boundary points (̂p, x2, t + τ ) and (̂p, x2, t) where,
p̂ = x1 – h

2 . We give the difference approximation of the heat equation (10) at these bound-
ary points (PA),

uk+1
h,τ ,PA

– uk
h,τ ,PA

τ

= ω

(
4
h2

(
uk+1

h,τ ,P0 – 2uk+1
h,τ ,PA

+ uk+1
h,τ ,P2

)

+
4

3h2

(
uk+1

h,τ ,P1 – 2uk+1
h,τ ,PA

+ uk+1
h,τ ,P3

))
+ f k+1

PA
, (69)

uk+1
h,τ ,PA

– uk
h,τ ,PA

τ
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= ω

(
4
h2

(
uk

h,τ ,P0 – 2uk
h,τ ,PA

+ uk
h,τ ,P2

)

+
4

3h2

(
uk

h,τ ,P1 – 2uk
h,τ ,PA

+ uk
h,τ ,P3

))
+ f k

PA
, (70)

respectively, both with order of approximation O(h2 + τ ). For the left ghost points from
Eq. (69) we get

uk+1
h,τ ,P2 =

(
h2

4τω
+

8
3

)
uk+1

h,τ ,PA
–

h2

4τω
uk

h,τ ,PA
– uk+1

h,τ ,P0 –
1
3

uk+1
h,τ ,P1

–
1
3

uk+1
h,τ ,P3 –

h2

4ω
f k+1
PA

, (71)

and from (70) results

uk
h,τ ,P2 =

h2

4τω
uk+1

h,τ ,PA
+

(
8
3

–
h2

4τω

)
uk

h,τ ,PA
– uk

h,τ ,P0 –
1
3

uk
h,τ ,P1

–
1
3

uk
h,τ ,P3 –

h2

4ω
f k
PA

. (72)

Analogously, when (x1, x2, t + τ ) ∈ Ω∗rhγτ for the right ghost points approximation we
obtain

uk+1
h,τ ,P5

=
(

h2

4τω
+

8
3

)
uk+1

h,τ ,PA
–

h2

4τω
uk

h,τ ,PA
– uk+1

h,τ ,P0 –
1
3

uk+1
h,τ ,P4 –

1
3

uk+1
h,τ ,P6

–
h2

4ω
f k+1
PA

, (73)

uk
h,τ ,P5

=
h2

4τω
uk+1

h,τ ,PA
+

(
8
3

–
h2

4τω

)
uk

h,τ ,PA
– uk

h,τ ,P0 –
1
3

uk
h,τ ,P4 –

1
3

uk
h,τ ,P6

–
h2

4ω
f k
PA

. (74)

Using (71)–(74) and (57) we obtain the scheme (58). Let the error function be εh,τ = uh,τ –u.
Then εh,τ satisfies the following difference problem:

Θ̃h,τ ε
k+1
h,τ = Λ̃h,τ ε

k
h,τ + Ψ̃ k

1 on Ω0hγτ , (75)

Θ̃∗
h,τ ε

k+1
h,τ = Λ̃∗

h,τ ε
k
h,τ + Ψ̃ k

2 on Ω∗hγτ , (76)

εh,τ = 0, t = 0 on Ω
h, (77)

εh,τ = 0 on Sh
T , (78)

where,

Ψ̃ k
1 = Λ̃h,τ uk – Θ̃h,τ uk+1 + ψ̃ , (79)

Ψ̃ k
2 = Λ̃∗

h,τ uk – Θ̃∗
h,τ uk+1 + ψ̃∗. (80)

Let ̂̃Θh,τ be the operator that coincides with Θ̃h,τ for the points in Ω0hγτ , and coincides
with Θ̃∗

h,τ for the points in Ω∗hγτ . Analogously, let ̂̃Λh,τ be the operator that coincides
with Λ̃h,τ for the points in Ω0hγτ and coincides with Λ̃∗

h,τ for the points in Ω∗hγτ . Also
̂̃Ψ k

denotes the truncation error Ψ̃ k
1 and Ψ̃ k

2 for the points belonging to Ω0hγτ and Ω∗hγτ ,
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respectively. Then the system (75)–(78) can be given as

̂̃Θh,τ ε
k+1
h,τ = ̂̃Λh,τ ε

k
h,τ + ̂̃Ψ k

on Ωhγτ , (81)

εh,τ = 0, t = 0 on Ω
h, (82)

εh,τ = 0 on Sh
T . (83)

Using Taylor’s expansion at the point (x1, x2, t + τ ) and from the assumption that u ∈
C6+α,3+ α

2
x,t (QT ) we obtain the ̂̃Ψ = O(h4 + τ ) order of the approximation. Therefore, the

order of approximation of the implicit scheme in Difference Problem 2 (57)–(60) is
O(h4 + τ ). �

The algebraic linear system of equations obtained by the Difference Problem 2 can be
presented in matrix form

K̃Uk+1 = S̃Uk + τ
(̃
Fk∗

+ G̃k∗)
, (84)

where K̃ , S̃ ∈ RN×N are given as

K̃ =
(

D̃1 +
1

24
Inc +

ωτ

h2 B̃
)

, S̃ =
(

D̃1 +
1

24
Inc

)
, (85)

B̃ = D̃2 –
2
3

Inc ∈ RN×N . (86)

F̃k∗ and G̃k∗ are vectors of order N obtained by evaluating the heat source function f in
(61), (62) and the boundary and initial function values in Difference Problem 2 (57)–(60),
respectively. Also k∗ denotes that values from (k + 1)τ and kτ are used and D̃1, D̃2 are
diagonal matrices with entries

d̃1,jj =

⎧⎨
⎩

3
4 if Qj ∈ Ω0hγτ ,
17
24 if Qj ∈ Ω∗hγτ ,

j = 1, 2, . . . , N , (87)

d̃2,jj =

⎧⎨
⎩

4 if Qj ∈ Ω0hγτ ,
14
3 if Qj ∈ Ω∗hγτ ,

j = 1, 2, . . . , N , (88)

respectively.

Lemma 8 The matrices K̃ , S̃ in (85) and B̃ in (86) are symmetric positive definite matrices.

Proof The matrix S̃ is nonnegative and strictly diagonally dominant matrix and B̃ is ir-
reducibly diagonally dominant matrices with positive main diagonal entries. Since Inc
is symmetric we see that B̃, S̃ are also symmetric. Thus, Theorem 4 implies that B̃, S̃
have positive eigenvalues. Therefore B̃, S̃ are symmetric positive definite matrices. Using
K̃ = S̃ + ωτ

h2 B̃ and that the sum of two symmetric positive definite matrices is symmetric
positive definite shows that K̃ is symmetric positive definite. �
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On the basis of Lemma 8, S̃ is invertible and the algebraic linear system (84) can be
rewritten as

ÃUk+1 = Uk + τ S̃–1(̃Fk∗
+ G̃k∗)

, (89)

Ã = I +
ωτ

h2 S̃–1B̃. (90)

Lemma 9 The matrix Ã in (90) is symmetric positive definite.

Proof S̃ = I – 1
16 B̃ and B̃ have the same basis vectors spanning their eigenspaces, therefore

on the basis of Lemma 8 and using that every real symmetric matrix is orthogonal equiv-
alent to a real diagonal matrix we have S̃ = PT�1P and B̃ = PT�2P where �1 and �2 are
diagonal matrices and P is orthogonal matrix of which the columns are the normalized
basis vectors spanning the eigenspaces of S̃ and B̃. From �–1

1 �2 = �2�
–1
1 it follows that

S̃–1B̃ =
(
PT�–1

1 P
)
PT�2P = PT�2�

–1
1 P =

(̃
S–1B̃

)T . (91)

So S̃–1B̃ is symmetric, thus S̃–1B̃ commutes. Since the product of two symmetric positive
definite matrices that commute is also symmetric positive definite (see [27] and [29]) we
have λs (̃S–1B̃) > 0 as

S̃–1B̃ = S̃–1B̃
1
2 B̃

1
2 = B̃– 1

2 B̃
1
2 S̃–1B̃

1
2 B̃

1
2 , (92)

that is, S̃–1B̃ is similar to the symmetric matrix B̃ 1
2 S̃–1B̃ 1

2 . We have

xT B̃
1
2 S̃–1B̃

1
2 x = zT S̃–1ż > 0, (93)

for every z = B̃ 1
2 x = 0. Thus, the eigenvalues λs (̃B

1
2 S̃–1B̃ 1

2 ) > 0, implying that λs (̃S–1B̃) > 0
and λs(Ã) > 0. �

Theorem 10 The implicit scheme of the Difference Problem 2 is unconditionally stable and
the solution uh,τ converges to the exact solution u with order of accuracy O(h4 + τ ).

Proof Using (90) Lemma 9 implies that

0 < λs
(
Ã–1) ≤ 1

1 + ωτ

h2 min1≤s≤N (λs (̃S–1B̃))
< 1, (94)

for ωτ

h2 > 0 and since Ã is symmetric matrix Ã–1 is also symmetric matrix, therefore
‖Ã–1‖2 < 1. Also using (85)–(90) and the Gershgorin theorem to estimate the spectrum
of B̃ we get 0 < λs (̃B) ≤ 8, and ‖(K̃)–1‖2 = ‖(̃SÃ)–1‖2 ≤ 2. Multiplying both sides of (89) by
Ã–1 and taking the second norm and by using norm properties and induction give

∥∥Uk+1∥∥
2 ≤ ∥∥Uk∥∥

2 + 2τ
(∥∥F̃k∗∥∥

2 +
∥∥G̃k∗∥∥

2

)

≤ ∥∥U0∥∥
2 + 2τ

k∑
k′=1

(∥∥F̃k′∗∥∥
2 +

∥∥G̃k′∗∥∥
2

)
. (95)
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Hence, the inequality (94) gives the Von Neumann necessary condition for stability. Since
Ã is real symmetric matrix it is also normal matrix and the condition (94) is as well as the
sufficient condition for stability (see Lax and Richtmyer [28]). Therefore, equation (95)
yields that the implicit scheme (18), (19) is unconditionally stable. The error function εh,τ

satisfying (81)–(83) can be given in the matrix form (89) at time level t = (k + 1)τ as

ÃEk+1 = Ek + τ S̃–1̂̃Ψ k
. (96)

where, E is vector of order N . Thus, from Theorem 2 and (95), (96) we have

∥∥Ek+1∥∥
2 ≤ 2τ

k∑
k′=0

∥∥̂̃Ψ k′∥∥
2 ≤ c2

(
h4 + τ

)
, (97)

where, c2 is positive constant independent from h and τ and depends on the bounded
derivatives of the solution u of the form (2) of at most sixth order in the truncation er-
ror ̂̃Ψ k

as given in (79) and (80). Using norm concordance and the inequality (97) we
get

∥∥εk+1
h,τ

∥∥
C ≤ ∥∥Ek+1∥∥

2 ≤ c2
(
h4 + τ

)
. (98)

Hence, the solution uh,τ converges to the exact solution u on the hexagonal grids with
order of accuracy (h4 + τ ). �

5 Numerical results
We consider the open polygon Ω as the rectangle ΩRec = {(x1, x2) : 0 < x1 < 1, 0 < x2 <√

3
2 }, the trapezoid ΩTra = {(x1, x2) : 0 < x2 <

√
3

2 , 0 < x1 < x2√
3 + 1} and the parallelogram

ΩPar = {(x1, x2) : 0 < x2 <
√

3
2 , x2√

3 < x1 < x2√
3 + 1} and we take t ∈ [0, 1]. We consider three

examples of which the constant ω in the operator L ≡ ∂
∂t – ω( ∂2

∂x2
1

+ ∂2

∂x2
2

) is taken one. All
the computations are performed using Mathematica in double precision on a personal
computer with properties AMD Ryzen 7 1800X Eight Core Processor 3.60 GHz. Also we
used conjugate gradient method to solve the obtained algebraic linear system of equations
at each time level. All tables adopt the following notations:

CTExi, i = 1, 2, 3 present the total Central Processing Unit time in seconds per time
level for the Example 1, Example 2 and Example 3, respectively.
neg means that CTExi, i = 1, 2, 3, is less than one milliseconds.

Example 1 (Test problem with smooth boundary and initial functions in the pure diffusion
case (f = 0))

Lu = 0 on QT ,

u(x1, x2, 0) = sin

(
π

6
x1 +

π

3
x2

)
on Ω ,

u(x1, x2, t) = e
–5π2

36 t sin

(
π

6
x1 +

π

3
x2

)
on ST ,

and, the exact solution is u(x1, x2, t) = e
–5π2

36 t sin( π
6 x1 + π

3 x2).
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Table 1 Computational time, maximum norm of the errors and the order of convergence by using
Difference Problem 1 for the Example 1 and Example 2 on a rectangle

(h,τ ) CTEx1 ‖εEx1(h,τ )Rec ‖∞ 2�Ex1
Rec CTEx2 ‖εEx2(h,τ )Rec ‖∞ 2�Ex2

Rec

(2–3, 2–8) neg 6.24429E-5 1.978 neg 9.35402E-3 1.983
(2–4, 2–9) 0.02 1.58525E-5 1.999 0.02 2.36716E-3 2.001
(2–5, 2–10) 0.03 3.96648E-6 1.999 0.03 5.91299E-4 2.002
(2–6, 2–11) 0.16 9.92099E-7 2.000 0.19 1.47588E-4 2.003
(2–7, 2–12) 1.52 2.48027E-7 2.000 1.66 3.68223E-5 2.004
(2–8, 2–13) 3.50 6.19891E-8 3.76 9.17993E-6

Example 2 (Test problem with decreased smoothness on the boundary, initial functions
and heat source)

Lu = –
(

37
12

t
25
12 sin

(
t

37
12

)
+

1147
72

x
25
6

1 +
1147

36
x

25
6

2

)
on QT ,

u(x1, x2, 0) =
1
2

x
37
6

1 + x
37
6

2 + 1 on Ω

u(x1, x2, t) =
1
2

x
37
6

1 + x
37
6

2 + cos
(
t

37
12

)
on ST ,

and the exact solution is u(x1, x2, t) = 1
2 x

37
6

1 + x
37
6

2 + cos(t 37
12 ).

On the grid points Ωhγτ , which is the closure of Ωhγτ we denote the error function
εh,τ by ε

Exi(h,τ )
Rec , εExi(h,τ )

Tra and ε
Exi(h,τ )
Par i = 1, 2 when Ω is the rectangle (ΩRec), trapezoid (ΩTra)

and parallelogram (ΩPar) respectively, for the Example 1 and Example 2. Also maximum
norms of the errors max

Ωhγτ
|εh,τ | for the Example 1 and Example 2 (i = 1, 2) are denoted

by ‖εExi(h,τ )
Rec ‖∞,‖εExi(h,τ )

Tra ‖∞ and ‖εExi(h,τ )
Par ‖∞ on ΩRec,ΩTra and ΩPar, respectively. Further,

we denote the order of convergence of the approximate solution uh,τ to the exact solution
u for the Example 1 and Example 2 obtained by using the Difference Problem 1 with

2�Exi
Rec = log2

( ‖εExi(2–μ ,2–λ)
Rec ‖∞

‖εExi(2–(μ+1),2–(λ+1))
Rec ‖∞

)
, i = 1, 2, (99)

2�Exi
Tra = log2

( ‖εExi(2–μ ,2–λ)
Tra ‖∞

‖εExi(2–(μ+1),2–(λ+1))
Tra ‖∞

)
, i = 1, 2, (100)

2�Ex1
Par = log2

( ‖εExi(2–μ ,2–λ)
Par, ‖∞

‖εExi(2–(μ+1),2–(λ+1))
Par ‖∞

)
, i = 1, 2, (101)

for the considered domains respectively. Table 1, Table 2, Table 3 demonstrate the CTEx1,
CTEx2 and the maximum norm of the errors for h = 2–μ,μ = 3, 4, 5, 6, 7, 8 when τ = 2–λ,λ =
8, 9, 10, 11, 12, 13 and the order of convergence of uh,τ to the exact solution u with respect
to h and τ obtained by using the constructed Difference Problem 1 for the Example 1 and
Example 2 on a rectangle, trapezoid and parallelogram, respectively. These tables show
that the proposed Difference Problem 1 has quadratic convergence order in both the spa-
tial and time variables.

Next we solve both examples by using the Difference Problem 2 and denote the obtained
order of convergence of the approximate solution uh,τ to the exact solution u for the Ex-
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Table 2 Computational time, maximum norm of the errors and the order of convergence by using
Difference Problem 1 for the Example 1 and Example 2 on a trapezoid

(h,τ ) CTEx1 ‖εEx1(h,τ )Tra ‖∞ 2�Ex1
Tra CTEx2 ‖εEx2(h,τ )Tra ‖∞ 2�Ex2

Tra

(2–3, 2–8) neg 7.47982E-5 1.971 neg 1.40022E-2 1.989
(2–4, 2–9) 0.02 1.90801E-5 1.999 0.02 3.52824E-3 2.001
(2–5, 2–10) 0.05 4.77247E-6 1.999 0.05 8.81499E-4 2.002
(2–6, 2–11) 0.20 1.19371E-6 2.000 0.25 2.20072E-4 2.002
(2–7, 2–12) 2.20 2.98412E-7 2.000 2, 33 5.49334E-5 2.002
(2–8, 2–13) 4.41 7.45783E-8 4.88 1.37127E-5

Table 3 Computational time, maximum norm of the errors and the order of convergence by using
Difference Problem 1 for the Example 1 and Example 2 on a parallelogram

(h,τ ) CTEx1 ‖εEx1(h,τ )Par ‖∞ 2�Ex1
Par CTEx2 ‖εEx2(h,τ )Par ‖∞ 2�Ex2

Par

(2–3, 2–8) neg 6.63405E-5 1.980 neg 1.31396E-2 1.992
(2–4, 2–9) 0.02 1.68183E-5 1.997 0.02 3.30422E-3 2.002
(2–5, 2–10) 0.03 4.21369E-6 2.000 0.05 8.24839E-4 2.001
(2–6, 2–11) 0.16 1.05350E-6 2.001 0.19 2.06009E-4 2.002
(2–7, 2–12) 1.58 2.63097E-7 2.002 1.63 5.14365E-5 2.002
(2–8, 2–13) 3.69 6.56738E-8 4.62 1.28391E-5

ample 1 and Example 2 (i = 1, 2) by

4�Exi
Rec = log2

( ‖εExi(2–μ ,2–λ)
Rec ‖∞

‖εExi(2–(μ+1),2–(λ+4))
Rec ‖∞

)
, i = 1, 2, (102)

4�Exi
Tra = log2

( ‖εExi(2–μ ,2–λ)
Tra ‖∞

‖εExi(2–(μ+1),2–(λ+4))
Tra ‖∞

)
, i = 1, 2, (103)

4�Exi
Par = log2

( ‖εExi(2–μ ,2–λ)
Par, ‖∞

‖εExi(2–(μ+1),2–(λ+4))
Par ‖∞

)
, i = 1, 2, (104)

for the considered domains respectively. Table 4, Table 5, Table 6 show the CTEx1, CTEx2,
maximum norm of the errors for h = 2–μ,μ = 4, 5, 6, 7, 8 when τ = 2–λ,λ = 6, 10, 14, 18, 22
and the order of convergence of uh,τ to the exact solution u with respect to h and τ ob-
tained by using the constructed Difference Problem 2 for the Example 1 and Example 2
on rectangle, trapezoid and parallelogram respectively. These tables demonstrate that the
approximate solution uh,τ of the proposed Difference Problem 2 converges to the exact
solution u with fourth order in the spatial variables and linearly with respect to time vari-
able t. Figure 6, Fig. 7 and Fig. 8 demonstrate the absolute error functions |εEx2(2–6,2–14)

Rec |,
|εEx2(2–6,2–14)

Par | and |εEx2(2–6,2–14)
Tra |, respectively, at time moments t = 0.25 and t = 0.75 ob-

tained by using the Difference Problem 2 for the numerical solution of Example 2 when
h = 2–6 and τ = 2–14.

Example 3 (A benchmark problem)

Lu = f (x1, x2, t) on QT ,

u(x1, x2, 0) = 0 on ΩRec

u(0, x2, t) = u(1, x2, t) = u(x1, 0, t) = u
(

x1,
√

3
2

, t
)

= 0 on ST ,



Buranay and Arshad Advances in Difference Equations        (2020) 2020:309 Page 20 of 24

Table 4 Computational time, maximum norm of the errors and the order of convergence by using
Difference Problem 2 for the Example 1 and Example 2 on a rectangle

(h,τ ) CTEx1 ‖εEx1(h,τ )Rec ‖∞ 4�Ex1
Rec CTEx2 ‖εEx2(h,τ )Rec ‖∞ 4�Ex2

Rec

(2–4, 2–6) neg 4.95534E-4 3.965 0.02 4.66691E-3 3.981
(2–5, 2–10) 0.03 3.17373E-5 3.997 0.08 2.95518E-4 3.999
(2–6, 2–14) 0.14 1.98759E-6 3.999 0.34 1.84851E-5 4.000
(2–7, 2–18) 1.13 1.24291E-7 4.000 1.88 1.15518E-6 4.000
(2–8, 2–22) 3.24 7.76738E-9 3.98 7.21861E-8

Table 5 Computational time, maximum norm of the errors and the order of convergence by using
Difference Problem 2 for the Example 1 and Example 2 on a trapezoid

(h,τ ) CTEx1 ‖εEx1(h,τ )Tra ‖∞ 4�Ex1
Tra CTEx2 ‖εEx2(h,τ )Tra ‖∞ 4�Ex2

Tra

(2–4, 2–6) neg 5.97349E-4 3.967 0.02 5.24608E-3 3.980
(2–5, 2–10) 0.03 3.81931E-5 3.997 0.09 3.32497E-4 3.999
(2–6, 2–14) 0.20 2.39154E-6 4.000 0.45 2.08008E-5 4.000
(2–7, 2–18) 1.63 1.49520E-7 4.000 2.61 1.29993E-6 4.000
(2–8, 2–22) 4.18 9.34338E-9 4.53 8.12356E-8

Table 6 Computational time, maximum norm of the errors and the order of convergence by using
Difference Problem 2 for the Example 1 and Example 2 on a parallelogram

(h,τ ) CTEx1 ‖εEx1(h,τ )Par ‖∞ 4�Ex1
Par CTEx2 ‖εEx2(h,τ )Par ‖∞ 4�Ex2

Par

(2–4, 2–6) neg 5.25821E-4 3.963 0.02 4.35263E-3 3.981
(2–5, 2–10) 0.03 3.37165E-5 3.998 0.06 2.75544E-4 3.999
(2–6, 2–14) 0.17 2.11066E-6 4.000 0.30 1.72353E-5 4.000
(2–7, 2–18) 1.19 1.31906E-7 4.000 1.81 1.07708E-6 4.000
(2–8, 2–22) 3.98 8.24304E-9 4.78 6.73085E-8

Figure 6 Absolute error function |εEx2(2–6,2–14)Rec | at t = 0.25 and t = 0.75 obtained by using Difference Problem
2 for the Example 2

where,

f (x1, x2, t) = x
49
8

1

(
x2

2 –
√

3
2

x2

)
sin(x1 – 1) cos t

–
(

x2
2 –

√
3

2
x2

)
sin t

[
2009

64
x

33
8

1 sin(x1 – 1) +
49
4

x
41
8

1 cos(x1 – 1)

+ x
49
8

1 sin(x1 – 1)
]

– 2x
49
8

1 sin(x1 – 1) sin t.
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Figure 7 Absolute error function |εEx2(2–6,2–14)Par | at t = 0.25 and t = 0.75 obtained by using Difference Problem
2 for the Example 2

Figure 8 Absolute error function |εEx2(2–6,2–14)Tra | at t = 0.25 and t = 0.75 obtained by using Difference Problem
2 for the Example 2

The exact solution of Example 3 is not given. Using the proposed Difference Problem 1
we obtain the approximate solution u2–μ,2–λ (x1, x2, t) at each time level for μ = 4, 5, 6, and
λ = 9, 10, 11, respectively. Table 7 presents u2–μ,2–λ (x1, x2, t) at the grid points (0.125,

√
3

16 , 1),
(0.25,

√
3

16 , 1), (0.375,
√

3
16 , 1), (0.5,

√
3

16 , 1), (0.625,
√

3
16 , 1), (0.75,

√
3

16 , 1) and (0.875,
√

3
16 , 1) and the

order of convergence at the point P(x1, x2, t), denoted by

2�Ex3
Rec(P) = log2

∣∣∣∣ u2–4,2–9 (P) – u2–5,2–10 (P)
u2–5,2–10 (P) – u2–6,2–11 (P)

∣∣∣∣. (105)

Next by applying the given Difference Problem 2 we obtain the approximate solution
u2–μ,2–λ (x1, x2, t) at each time level for μ = 4, 5, 6, and λ = 6, 10, 14, respectively. The ap-
proximate solutions at the same chosen grid points and the order of convergence at these
points

4�Ex3
Rec(P) = log2

∣∣∣∣ u2–4,2–6 (P) – u2–5,2–10 (P)
u2–5,2–10 (P) – u2–6,2–14 (P)

∣∣∣∣. (106)

are shown in Table 8. By analyzing the values of (105) and (106) in the fifth columns of
Table 7 and Table 8 respectively, we conclude that the order of convergence is quadratic in
both the spatial and time variables on t = 1 when Difference Problem 1 is used, and it is of
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Table 7 Solution at some points on t = 1, and the order of convergence by using Difference Problem
1 for the Example 3

P u2–4,2–9 (P) u2–5,2–10 (P) u2–6,2–11 (P) 2�Ex3
Rec(P)

(0.125,
√
3

16 , 1) –4.58409E-6 –1.03024E-6 –1.4070E-7 1.998

(0.25,
√
3

16 , 1) –1.80759E-6 6.79206E-6 8.94335E-6 1.999

(0.375,
√
3

16 , 1) 7.67420E-5 9.37204E-5 9.79542E-5 2.004

(0.5,
√
3

16 , 1) 4.35627E-4 4.64628E-4 4.71821E-4 2.011

(0.625,
√
3

16 , 1) 1.36634E-3 1.40760E-3 1.41775E-3 2.023

(0.75,
√
3

16 , 1) 2.87207E-3 2.91762E-3 2.92870E-3 2.039

(0.875,
√
3

16 , 1) 3.75741E-3 3.78878E-3 3.79627E-3 2.066

Table 8 Solution at some points on t = 1, and the order of convergence by using Difference Problem
2 for the Example 3

P u2–4,2–6 (P) u2–5,2–10 (P) u2–6,2–14 (P) 4�Ex3
Rec(P)

(0.125,
√
3

16 , 1) 1.21289E-7 1.53563E-7 1.55701E-7 3.916

(0.25,
√
3

16 , 1) 9.57959E-6 9.6543E-6 9.65919E-6 3.933

(0.375,
√
3

16 , 1) 9.91752E-5 9.93431E-5 9.93539E-5 3.958

(0.5,
√
3

16 , 1) 4.73794E-4 4.74143E-4 4.74165E-4 3.988

(0.625,
√
3

16 , 1) 1.42033E-3 1.42094E-3 1.42098E-3 3.931

(0.75,
√
3

16 , 1) 2.93121E-3 2.93202E-3 2.93207E-3 4.018

(0.875,
√
3

16 , 1) 3.79768E-3 3.79832E-3 3.79836E-3 4.000

Figure 9 The approximate solution u2–6,2–14 (x1, x2, t) at time moments t = 0.25 and t = 1 for the Example 3
obtained by using Difference Problem 2

fourth order in the spatial variables and linear in time variable while Difference Problem 2
is applied. Figure 9 illustrates the approximate solution u2–6,2–14 (x1, x2, t) of the Example 3
obtained by using Difference Problem 2 at time moments t = 0.25 and t = 1.

6 Concluding remarks
Using hexagonal grids we proposed unconditionally stable two layer implicit difference
problems with 14 points for the solution of first type boundary value problem of the
heat equation in two space dimensions on special polygons. The methodology given in
this research may be extended to constructing highly accurate implicit splitting schemes
(fractional step methods) and alternating direction methods (ADI) (see Peaceman and
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Rachford[30], Douglas [31, 32] and [33]) for the solution of first type boundary value prob-
lem of the heat equation in three space dimensions.

Furthermore, the given schemes may be used to construct special difference problems
for the first order derivatives of the solution of first type boundary value problem of two di-
mensional heat equation on a rectangle with respect to the space variables. For the deriva-
tive of the solution of first type boundary value problem to the one dimensional heat equa-
tion, with respect to the space variable see Buranay and Farinola [34].
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