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Abstract
This paper investigates the event-triggered sampled-data synchronization problem of
complex networks with time-varying coupling delays. The sampled-data controller is
designed with event-triggered mechanisms. Some results in terms of a linear matrix
inequality are obtained to guarantee the asymptotical synchronization of complex
networks with time-varying coupling delays. Lastly, we test the effectiveness of the
proposed method via some numerical examples.
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1 Introduction
Recently, many synchronization schemes for complex networks have been proposed.
Some synchronization strategies can achieve good performance by various methods [1–
15]. In this paper, the main central point is constricted in the field of sampled-data control
due to the development of digital control techniques that has occurred in two decades.
Generally, there exist several methods or techniques concerning with digital control. For
example, discretization is the most direct approach applied to digital control. However,
owing to the complicated dynamics of chaotic Lur’e systems, the exact discrete model is
with difficultly obtained. In order to improve the inter-sampling performance, sampled-
data control has been often utilized to build hybrid system models via a zero-order hold
(ZOH) [7–13]. For example, the sampled-data fuzzy controller was designed for chaotic
synchronization in [7] and sampled-data synchronization of chaotic Lur’e systems with
time delays was also studied in [13]. However, these schemes have been generally de-
manded with a fixed sampling period and the actual sampling rate maybe is very high.
Aim to solve the above problem, the event-triggered sampled-data controller can be de-
signed to apply for the synchronization of chaotic Lur’e systems. Nowadays, some results
for event-triggered control are enumerated, such as [16–18]. Following these novel ideas,
the event-triggered communication scheme is considered and the sufficient condition in
terms of linear matrix inequality (LMI) is derived to guarantee the asymptotical synchro-
nization of chaotic Lur’e systems. The main contributions of this paper can be described
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as: (1) event-triggered nonuniform sampling is considered in complex networks with time-
varying coupling delays; (2) the nonlinear part of the node system is also handled.

2 Problem formulation
Consider the following complex networks with time-varying coupling delays consisting of
N nodes via an event-triggered control approach:

ẋi(t) = Axi(t) + Bf
(
xi(t)

)
+ c

N∑

j=1

gijΓ xj
(
t – τ (t)

)

+ ui(tik ), t ∈ [tik , tik+1 ), (1)

where i = 1, 2, . . . , N , N is the number of nodes, k = 0, 1, . . . ,∞, xi(t) ∈R
n denotes the state

vector associated with the ith node, tik denotes the event-triggered instant and it is deter-
mined by the transmission error and the state error, ui(tik ) ∈R

n denotes the designed con-
trol law where the transmitted data packets are utilized along with the event-triggered con-
trol happening, τ (t) denotes the time-varying delay and satisfies the condition τ̇ (t) < ν ≤ 1,
A ∈ R

n×n, B ∈ R
n×m are known constant matrices, f : Rn → R

m is a continuous vector-
valued function, c is a constant coupling strength, Γ ∈ R

n×n denotes the inner coupling
matrix, G = (gij)N×N is the coupling configuration matrix: if nodes i and j (i �= j) are con-
nected, then gij > 0, otherwise gij = 0, the diagonal elements of matrix G are defined by
gii = –

∑N
j=1,i�=j gij, i = 1, 2, . . . , N . tk denotes the whole sampling instant and it is irregular.

Moreover, the serial number of transmitted data packets, denoted as ik , may be discontin-
uous for the existence of event-triggered mechanism where the transmitted data packets
refer to the ones successfully arriving at the plant. ik ∈N denotes the serial number of the
transmitted data packet such that {i0, i1, i2, . . .} ⊆ {0, 1, 2, 3, . . .}.

Let ei(t) = xi(t) – s(t) be the error vectors, where s(t) ∈ R
n is a solution of a target node

satisfying ṡ(t) = As(t) + Bf (s(t)). The sampled-data synchronization feedback controller is
designed as

ui(tik ) = Kiei(tik ), t ∈ [tik , tik+1 ), (2)

where Ki is the feedback gain matrix with appropriate dimensions. Then, the error dy-
namics of (1) can be obtained as follows:

ėi(t) = Aei(t) + Bg
(
ei(t)

)
+ c

N∑

j=1

gijΓ ej
(
t – τ (t)

)

+ Kiei(tik ), t ∈ [tik , tik+1 ), (3)

where i = 1, 2, . . . , N and g(ei(t)) = f (xi(t)) – f (s(t)). It is clear that (3) can be rewritten in a
vector-matrix form,

ė(t) = AN e(t) + BN ḡ
(
e(t)

)
+ c(G ⊗ Γ )e

(
t – τ (t)

)

+ Ke(tik ), t ∈ [tik , tik+1 ), (4)

where e(t) = [eT
1 (t), . . . , eT

N (t)]T , ḡ(e(t)) = [gT (e1(t)), . . . , gT (eN (t))]T , K = diag{K1, . . . , KN },
AN = IN ⊗ A, BN = IN ⊗ B.
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The error between the current sampling instant and the latest transmission instant
can be calculated as ē(tik +l) = e(tik +l) – e(tik ) where l = 1, 2, . . . , d, d = ik+1 – ik . The event-
triggered condition can be provided as

ēT (t)Φ ē(t) ≥ δeT (t)Φe(t), (5)

where δ > 0 is a given scalar parameter, Φ is a positive-definite weighting matrix with
appropriate dimensions. If the event-triggered condition is satisfied, then the transmitted
signals will be sent. Otherwise the sampling signals will not be sent. Ω := [tik , tik +l) can be
described as Ω =

⋃d
l=1 Ωl where Ωl := [tik +l–1, tik +l).

Assumption 1 There exists a constant h > 0 such that

tk+1 – tk ≤ h, k = 0, 1, . . . ,∞, (6)

where h denotes the upper bound of the interval between two consecutive sampling in-
stants.

Assumption 2 ([19]) There exists a diagonal matrix Λ = diag{λ1, . . . ,λN } > 0 such that
the nonlinear part of the node system satisfies the following condition in the domain of
definition:

(
f (x) – f (y)

)T(
f (x) – f (y)

) ≤ (x – y)TΛ(x – y). (7)

Combining (4) and (5), the final error dynamics can be described as

ė(t) = AN e(t) + BN ḡ
(
e(t)

)
+ c(G ⊗ Γ )e

(
t – τ (t)

)

+ K
(
e
(
t – d(t)

)
– ē(tik +l)

)
, t ∈ Ωl, (8)

where d(t) = t – tik +l . It is explicit that –h ≤ d(t) < 0 due to Ωl and (6). The control objective
is to design the controller gain matrix K such that the error dynamics (8) is asymptotically
stable, i.e., e(t) → 0 as t → ∞.

3 Main results
In this section, the event-triggered sampled-data synchronization scheme will be given.

Theorem 1 Given the scalars h > 0, δ > 0, the error dynamics (8) is global asymptotically
stable concerning with the event-triggered condition (5), if there exist matrices P = PT > 0,
Q = QT > 0, R = RT > 0, Φ = ΦT > 0, Λ = diag{λ1, . . . ,λN } > 0, any matrices N1, N2, N3,
M1, M2, M3 with appropriate dimensions, and the controller gain matrix K , such that the
following condition holds:

[
Θ hN
∗ –hR

]

< 0, (9)
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where

Θ =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

Φ11 Φ12 Φ13 Φ14 Φ15

∗ Φ22 Φ23 Φ24 Φ25

∗ ∗ Φ33 Φ34 Φ35

∗ ∗ ∗ Φ44 0
∗ ∗ ∗ ∗ Φ55

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, N =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

N1

N2

N3

0
0

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

,

Φ11 = Q + N1 + NT
1 + M1AN + AT

N MT
1 + M1BN BT

N MT
1 + 3Λ,

Φ12 = P + NT
2 – M1 + AT

N MT
2 ,

Φ13 = –N1 + NT
3 + M1K + AT

N MT
3 ,

Φ14 = cM1(G ⊗ Γ ),

Φ15 = –M1K ,

Φ22 = hR – M2 – MT
2 + M2BN BT

N MT
2 ,

Φ23 = –N2 + M2K – MT
3 ,

Φ24 = cM2(G ⊗ Γ ),

Φ25 = –M2K ,

Φ33 = –N3 – NT
3 + M3K + KT MT

3 + M3BN BT
N MT

3 + δΦ ,

Φ34 = cM3(G ⊗ Γ ),

Φ35 = –M3K ,

Φ44 = –(1 – ν)Q,

Φ55 = –Φ .

Proof Construct the following Lyapunov–Krasovskii functional:

V (t) = eT (t)Pe(t) +
∫ t

t–τ (t)
eT (s)Qe(s) ds +

∫ 0

–h

∫ t

t–θ

ėT (s)Rė(s) ds dθ

where P = PT > 0, Q = QT > 0, and R = RT > 0. Moreover, the following equations hold for
any appropriate dimensional matrices Nj (j = 1, 2, . . . , 3) and Ml (l = 1, 2, 3):

[
eT (t)N1 + ėT (t)N2 + eT(

t – d(t)
)
N3

]

×
[

e(t) – e
(
t – d(t)

)
–

∫ t

t–d(t)
ė(s) ds

]
= 0, (10)

[
eT (t)M1 + ėT (t)M2 + eT(

t – d(t)
)
M3

] × [
–ė(t) + AN e(t) + BN ḡ

(
e(t)

)

+ c(G ⊗ Γ )e
(
t – τ (t)

)
+ Ke

(
t – d(t)

)
– Kē(tik +l)

]
= 0. (11)
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Combining (10) and (11), the corresponding time derivative of V (t) is given by

V̇ (t) ≤ 2ėT (t)Pe(t) + eT (t)Qe(t) – (1 – ν)eT(
t – τ (t)

)
Qe

(
t – τ (t)

)

+ hėT (t)Rė(t) +
∫ t

t+h
ėT (s)Rė(s) ds + 2

[
eT (t)N1 + ėT (t)N2

+ eT(
t – d(t)

)
N3

] ×
[

e(t) – e
(
t – d(t)

)
–

∫ t

t–d(t)
ė(s) ds

]

+ 2
[
eT (t)M1 + ėT (t)M2 + eT(

t – d(t)
)
M3

] × [
–ė(t) + AN e(t)

+ BN ḡ
(
e(t)

)
+ c(G ⊗ Γ )e

(
t – τ (t)

)
+ Ke

(
t – d(t)

)
– Kē(tik +l)

]

+ ēT (tik +l)Φ ē(tik +l) – ēT (tik +l)Φ ē(tik +l).

Utilizing Lemma 1 and Lemma 2 in [20], (5), and (7), the following result can be obtained:

V̇ (t) ≤ ςT (t)
(
Θ + hNR–1NT)

ς (t)

where ς (t) = [eT (t)ėT (t)eT (t – d(t))eT (t – τ (t))ēT (tik +l)]T , matrices Θ and N are defined in
(9). It is explicit that, if Θ + hNR–1NT < 0 holds, then V̇ (t) < 0 for any nonzero ς (t). Using
the Schur complement [21], the result in Theorem 1 can be obtained, and the proof is
completed. �

Note that the condition (9) in Theorem 1 is not a LMI. Thus, set M1 = J , M2 = ε1J , M3 =
ε2J and JK = V . Utilizing the Schur complement, the following corollary is obtained.

Corollary 1 Given the scalars ε1 > 0, ε2 > 0, h > 0, δ > 0, the error dynamics (8) is global
asymptotically stable concerning with the event-triggered condition (5), if there exist matri-
ces P = PT > 0, Q = QT > 0, R = RT > 0, Φ = ΦT > 0, Λ = diag{λ1, . . . ,λN } > 0, any matrices
N1, N2, N3, J , and V with appropriate dimensions, such that the following condition holds:

[
Θ̄ hN̄
∗ –hR

]

< 0, (12)

where

Θ̄ =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

Φ̄11 Φ̄12 Φ̄13 Φ̄14 Φ̄15 Φ̄16 0 0
∗ Φ̄22 Φ̄23 Φ̄24 Φ̄25 0 Φ̄27 0
∗ ∗ Φ̄33 Φ̄34 Φ̄35 0 0 Φ̄38

∗ ∗ ∗ Φ̄44 0 0 0 0
∗ ∗ ∗ ∗ Φ̄55 0 0 0
∗ ∗ ∗ ∗ ∗ Φ̄66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ̄77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄88

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

, N̄ =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

N1

N2

N3

0
0
0
0
0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

Φ̄11 = Q + N1 + NT
1 + JAN + AT

N JT + 3Λ,

Φ̄12 = P + NT
2 – J + ε1AT

N JT ,

Φ̄13 = –N1 + NT
3 + V + ε2AT

N JT ,
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Φ̄14 = cJ(G ⊗ Γ ),

Φ̄15 = –V ,

Φ̄16 = JBN ,

Φ̄22 = hR – J – JT ,

Φ̄23 = –N2 + ε1V – ε2JT ,

Φ̄24 = cε1J(G ⊗ Γ ),

Φ̄25 = –ε1V ,

Φ̄27 = ε1JBN ,

Φ̄33 = –N3 – NT
3 + ε2V + ε2V T + δΦ ,

Φ̄34 = cε2J(G ⊗ Γ ),

Φ̄35 = –ε2V ,

Φ̄38 = ε2JBN ,

Φ̄44 = –(1 – ν)Q,

Φ̄55 = –Φ ,

Φ̄66 = –I,

Φ̄77 = –I,

Φ̄88 = –I.

Moreover, the sampled-data controller gain is given by K = J–1V .

4 Numerical examples
In this section, two numerical examples are given to demonstrate the effectiveness of the
proposed event-triggered sampled-data synchronization scheme.

Example 1 ([22]) A complex network with five coupled identical nodes is described as
follows:

ẋi(t) = Axi(t) + Bf
(
xi(t)

)
+

5∑

j=1

gijxj
(
t – τ (t)

)
+ ui(t), i = 1, 2, . . . , 5,

where

A =

⎡

⎢
⎣

–am1 a 0
1 –1 1
0 –b 0

⎤

⎥
⎦ , B =

⎡

⎢
⎣

–a(m0 – m1) 0 0
0 0 0
0 0 0

⎤

⎥
⎦ ,

G = 0.2 ×

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

–3 1 1 0 1
1 –4 1 1 1
1 1 –3 1 0
0 1 1 –3 1
1 1 0 1 –3

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,
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f (t) = 0.5
(∣∣xik(t) + c

∣∣ –
∣∣xik(t) – c

∣∣), k = 1, . . . , 3,

a = 9, b = 14.28, c = 1, m0 = –1/7, m1 = 2/7,

τ (t) = 0.4 + 0.1 sin(t), ν = 0.1.

Setting ε1 = ε2 = 1, and δ = 0.1, the condition (12) in Corollary 1 is feasible and the fol-
lowing result is obtained:

hmax = 0.18,

K = diag{K1, K2, K3, K4, K5},

where

K1 = K3 = K4 = K5 =

⎡

⎢
⎣

–2.0710 4.5512 0.3642
0.4899 –1.8005 0.6312

–0.3439 –9.3591 –1.4639

⎤

⎥
⎦ ,

K2 =

⎡

⎢
⎣

–2.1161 4.6243 0.3494
0.5075 –1.8259 0.6373

–0.3655 –9.3363 –1.4738

⎤

⎥
⎦ .

Example 2 ([22]) Complex network with three coupled identical nodes is described as
follows:

ẋi(t) = Axi(t) + Bf
(
xi(t)

)
+

3∑

j=1

gijxj
(
t – τ (t)

)
+ ui(t), i = 1, 2, . . . , 3,

where

A =

[
–0.5 0.2

0 0.95

]

, B =

[
1 0
0 –1

]

, G = 0.5 ×
⎡

⎢
⎣

–1 0 1
0 –1 1
1 1 –2

⎤

⎥
⎦ ,

f (t) =

[
tanh(0.2xi1(t))

tanh(0.75xi2(t))

]

, τ (t) = 0.2 + 0.05 sin(10t), ν = 0.05.

Setting ε1 = ε2 = 1, and δ = 0.1, the condition (12) in Corollary 1 is feasible and the fol-
lowing result is obtained:

hmax = 0.18,

K = diag{K1, K2, K3},

where

K1 = K2 =

[
–2.7786 0.0222
–0.1421 –2.9535

]

, K3 =

[
–2.8814 0.0291
–0.1212 –2.9829

]

.
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Through the above two numerical examples, we can find that the event-triggered
sampled-data synchronization is guaranteed for complex networks with time-varying
coupling delays.

5 Conclusion
In the present work, we deal with the event-triggered sampled-data synchronization prob-
lem of complex networks with time-varying coupling delays. In future work, more per-
formance requirements for the event-triggered sampled-data synchronization of complex
networks will be considered in a uniform network topological structure.
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