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An important class of differential equations containing proportional delays are called
pantograph equations. This important class was named after Ockendon and Tayler [13].
Numbers of applications have been studied by many researchers of these equations in
applied sciences including biology, physics, economics, and electrodynamics. For more
details as regards the aforesaid equations, we refer to [14, 15].

Initial value problems involving Hilfer fractional derivatives were studied by several au-
thors; see for example [16–18] and the references therein. Nonlocal boundary value prob-
lems for the Hilfer fractional derivative were studied in [19]. Initial value problems for
pantograph equations with the Hilfer fractional derivative were studied in [15, 20].

To the best of our knowledge, there is no work on boundary value problems for panto-
graph equations with the Hilfer fractional derivative in the literature. This paper comes
to fill this gap, by introducing a new class of boundary value problems of pantograph
equations with Hilfer-type fractional differential equations and nonlocal integral bound-
ary conditions, of the form

HDα,βx(t) = f
(
t,x(t),x(λt)

)
, t ∈ [a,b], (1.1)

x(a) = 0, Ax(b) + BIδx(η) = c, η ∈ (a,b), (1.2)

where HDα,β is the Hilfer fractional derivative of order α, 1 < α < 2 and parameter β ,
0 ≤ β ≤ 1, f : [a,b] × R × R → R is a continuous function, Iδ is the Riemann–Liouville
fractional integral of order δ > 0, a ≥ 0, A,B, c ∈ R and 0 < λ < 1.

Existence and uniqueness results are proved by using well-known fixed point theorems.
We make use of Banach’s fixed point theorem to obtain the uniqueness result, while the
nonlinear alternative of Leray–Schauder type [21] and Krasnoselskii’s fixed point theorem
[22] are applied to obtain the existence results for the problem (1.1)–(1.2).

After that we study the multi-valued version of the problem (1.1)–(1.2) by considering
the inclusion problem

HDα,βx(t) ∈ F
(
t,x(t),x(λt)

)
, t ∈ [a,b], (1.3)

x(a) = 0, Ax(b) + BIδx(η) = c, η ∈ (a,b), (1.4)

where F : [a,b] × R × R → P(R) is a multi-valued function (P(R) is the family of all
nonempty subsets of R).

For the problem (1.3)–(1.4) we prove existence results for both cases, convex valued
(upper semicontinuous case) and non-convex valued (Lipschitz case) multifunctions. For
the case when the multi-valued F has convex values we use the Bohnenblust–Karlin fixed
point theorem, Martelli’s fixed point theorem and the nonlinear alternative for Kakutani
maps. For the lower semicontinuous case the existence result is based in nonlinear alter-
native of Leray–Schauder type together with a selection theorem for lower semicontin-
uous maps with decomposable values. Finally in the case of possible non-convex valued
multi-valued map we apply a fixed point theorem for contractive multi-valued maps due
to Covitz and Nadler.

The outline of the paper is as follows: We present our main work for single-valued case
in Sect. 3, and for multi-valued case in Sect. 4, while Sect. 2 contains some preliminary
concepts related to our problem. Examples are constructed to illustrate the main results.
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2 Preliminaries
In this section, we introduce some notations and definitions of fractional calculus and
multi-valued analysis and present preliminary results needed in our proofs later [2, 5].

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 of a continuous
function u : [a, ∞) → R, is defined by

Iαu(t) =
1

Γ (α)

∫ t

a
(t – s)α–1u(s)ds,

provided the right-hand side exists on (a, ∞).

Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 of a continu-
ous function u, is defined by

RLDαu(t) := DnIn–αu(t) =
1

Γ (n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–1u(s)ds,

where n = [α] + 1, [α] denotes the integer part of real number α, provided the right-hand
side is point-wise defined on (a, ∞).

Definition 2.3 The Caputo fractional derivative of order α > 0 of a continuous function
u, is defined by

CDαu(t) := In–αDnu(t) =
1

Γ (n – α)

∫ t

a
(t – s)n–α–1

(
d
ds

)n

u(s)ds, n – 1 < α < n,

provided the right-hand side is point-wise defined on (a, ∞).

In [8] (see also [9]) another new definition of the fractional derivative was suggested.
The generalized Riemann–Liouville fractional derivative is defined as follows.

Definition 2.4 The generalized Riemann–Liouville fractional derivative or the Hilfer
fractional derivative of order α and parameter β of a function u is defined by

HDα,βu(t) = Iβ(n–α)DnI(1–β)(n–α)u(t),

where n – 1 < α < n, 0 ≤ β ≤ 1, t > a, D = d
dt .

Remark 2.5 When β = 0 the Hilfer fractional derivative corresponds to the Riemann–
Liouville fractional derivative

HDα,0u(t) = DnIn–αu(t),

while when β = 1 the Hilfer fractional derivative corresponds to the Caputo fractional
derivative

HDα,1u(t) = In–αDnu(t).
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In the following lemma we present the compositional property of Riemann–Liouville
fractional integral operator with the Hilfer fractional derivative operator.

Lemma 2.6 ([9]) Let f ∈ L(a,b), n – 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, I(n–α)(1–β)f ∈ ACk[a,b].
Then

(
IαHDα,β f

)
(t) = f (t) –

n–1∑

k=0

(t – a)k–(n–α)(1–β)

Γ (k – (n – α)(1 – β) + 1)
lim
t→a+

dk

dtk
(
I(1–β)(n–α)f

)
(t).

The following lemma deals with a linear variant of the boundary value problem (1.1)–
(1.2).

Lemma 2.7 Let a ≥ 0, 1 < α < 2, γ = α + 2β – αβ , h ∈ C([a,b],R) and

Λ =
A(b – a)γ –1

Γ (γ )
+
B(η – a)γ +δ–1

Γ (γ + δ)
�= 0. (2.1)

Then the function x is a solution of the boundary value problem

HDα,βx(t) = h(t), t ∈ [a,b], (2.2)

x(a) = 0, Ax(b) + BIδx(η) = c, η ∈ (a,b), (2.3)

if and only if

x(t) = Iαh(t) +
(t – a)γ –1

ΛΓ (γ )
[
c – AIαh(b) – BIα+δh(η)

]
. (2.4)

Proof Assume that x is a solution of the nonlocal (2.2)–(2.3). Operating the fractional
integral Iα on both sides of equation (2.2) and using Lemma 2.6, we obtain

x(t) = c0
(t – a)–(2–α)(1–β)

Γ (1 – (2 – α)(1 – β))
+ c1

(t – a)1–(2–α)(1–β)

Γ (2 – (2 – α)(1 – β))
+ Iαh(t)

= c0
(t – a)γ –2

Γ (γ – 1)
+ c1

(t – a)γ –1

Γ (γ )
+ Iαh(t),

since (1 – β)(2 – α) = 2 – γ , where c0 and c1 are some real constants.
From the first boundary condition x(a) = 0 we can obtain c0 = 0, since limt→a(t –a)γ –2 =

∞. Then we get

x(t) = c1
(t – a)γ –1

Γ (γ )
+ Iαh(t). (2.5)

From Ax(b) + BIδx(η) = c we found

c1 =
1
Λ

[
c – AIαh(b) – BIα+δh(η)

]
.

Substituting the values of c1 in (2.5), we obtain the solution (2.4). The converse follows
by direct computation. This completes the proof. �
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3 Main results for the single-valued problem (1.1)–(1.2)
In view of Lemma 2.7, we define an operator A : C → C by

(Ax)(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαf

(
s,x(s),x(λs)

)
(b)

– BIα+δ f
(
s,x(s),x(λs)

)
(η)

)
+ Iαf

(
s,x(s),x(λs)

)
(t). (3.1)

It should be noticed that problem (1.1)–(1.2) has solutions if and only if the operator A
has fixed points.

In the following, for the sake of convenience, we set

Ω =
(b – a)γ –1

|Λ|Γ (γ )

[
|A| (b – a)α

Γ (α + 1)
+ |B| (η – a)α+δ

Γ (α + δ + 1)

]
+

(b – a)α

Γ (α + 1)
. (3.2)

We prove existence as well as existence and uniqueness results, for the boundary value
problem (1.1)–(1.2) by using well-known fixed point theorems.

Our existence and uniqueness result is based on Banach’s fixed point theorem.

Theorem 3.1 Assume that:
(H1) there exists a constant L > 0 such that

∣
∣f (t,x1,x2) – f (t, y1, y2)

∣
∣ ≤ L

(|x1 – y1| + |x2 – y2|)

for each t ∈ [a,b] and xi, yi ∈ R, i = 1, 2.
If

2LΩ < 1, (3.3)

where Ω is defined by (3.2), then the boundary value problem (1.1)–(1.2) has a unique
solution on [a,b].

Proof We transform the boundary value problem (1.1)–(1.2) into a fixed point problem,
x = Ax, where the operator A is defined as in (3.1). Observe that the fixed points of the op-
erator A are solutions of problem (1.1)–(1.2). Applying the Banach contraction mapping
principle, we shall show that A has a unique fixed point.

We let supt∈[a,b] |f (t, 0, 0)| = M < ∞, and choose

r ≥ MΩ + |c|(b – a)γ –1/|Λ|Γ (γ )
1 – 2LΩ

. (3.4)

Now, we show that ABr ⊂ Br , where Br = {x ∈ C : ‖x‖ ≤ r}. For any x ∈ Br , we have

∣∣(Ax)(t)
∣∣

≤ sup
t∈[a,b]

{
(t – a)γ –1

|Λ|Γ (γ )
(|c| + |B|Iα+δ

∣
∣f

(
s,x(s),x(λs)

)∣∣(η) + |A|Iα∣
∣f

(
s,x(s),x(λs)

)∣∣(b)
)

+ Iα
∣
∣f

(
s,x(s),x(λs)

)∣∣(t)
}
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≤
{

(b – a)γ –1

|Λ|Γ (γ )
(|c| + |B|Iα+δ

(∣∣f
(
s,x(s),x(λs)

)
– f (s, 0, 0)

∣
∣ +

∣
∣f (s, 0, 0)

∣
∣)(η)

+ |A|Iα(∣∣f
(
s,x(s),x(λs)

)
– f (s, 0, 0)

∣∣ +
∣∣f (s, 0, 0)

∣∣)(b)
)

+ Iα
(∣∣f

(
s,x(s),x(λs)

)
– f (s, 0, 0)

∣∣ +
∣∣f (s, 0, 0)

∣∣)(b)
}

≤ (
2L‖x‖ + M

){ (b – a)γ –1

|Λ|Γ (γ )

[
|A| (b – a)α

Γ (α + 1)
+ |B| (η – a)α+δ

Γ (α + δ + 1)

]
+

(b – a)α

Γ (α + 1)

}

+ |c| (b – a)γ –1

|Λ|Γ (γ )

≤ (2Lr + M)Ω + |c| (b – a)γ –1

|Λ|Γ (γ )
≤ r,

which implies that ABr ⊂ Br .
Next, we let x, y ∈ C . Then, for t ∈ [a,b], we have

∣∣(Ax)(t) – (Ay)(t)
∣∣

≤
{

(b – a)γ –1

|Λ|Γ (γ )
(|B|Iα+δ

∣
∣f

(
s,x(s),x(λs)

)
– f

(
s, y(s), y(λs)

)∣∣(η)

+ |A|Iα∣
∣f

(
s,x(s),x(λs)

)
– f

(
s, y(s), y(λs)

)∣∣(b)
)

+ Iα
∣∣f

(
s,x(s),x(λs)

)
– f

(
s, y(s), y(λs)

)∣∣(b)
}

≤ 2L
{

(b – a)γ –1

|Λ|Γ (γ )

[
|A| (b – a)α

Γ (α + 1)
+ |B| (η – a)α+δ

Γ (α + δ + 1)

]
+

(b – a)α

Γ (α + 1)

}
‖x – y‖

= 2LΩ‖x – y‖,

which implies that ‖Ax – Ay‖ ≤ 2LΩ‖x – y‖. As 2LΩ < 1, A is a contraction. Therefore,
we deduce by the Banach contraction mapping principle that A has a fixed point which is
the unique solution of the boundary value problem (1.1)–(1.2). The proof is completed. �

Example 3.2 Consider the nonlocal boundary value problem for the Hilfer-type panto-
graph fractional differential equation of the form

⎧
⎨

⎩

HD
3
2 , 2

5 x(t) = e
1
2 –t

17+2t (
x2(t)+|x(t)|

1+|x(t)| + 2 sinx( 1
2 t)) + t2 + 1, t ∈ [ 1

2 , 5
2 ],

x( 1
2 ) = 0, 2

3x( 5
2 ) + 3

4 I
1
2 x( 3

2 ) = 4
5 .

(3.5)

Here α = 3/2, β = 2/5, λ = 1/2, a = 1/2, b = 5/2, A = 2/3, B = 3/4, δ = 1/2, η = 3/2, c = 4/5.
The setting yields γ = 17/10, Λ = 1.872599119 and Ω = 4.129461300. Now, we put

f (t,x1,x2) =
e

1
2 –t

17 + 2t

(
x2

1 + |x1|
1 + |x1| + 2 sinx2

)
+ t2 + 1,

which satisfies (H1) as

∣∣f (t,x1,x2) – f (t, y1, y2)
∣∣ ≤ 2e 1

2 –t

17 + 2t
(|x1 – y1| + |x2 – y2|) ≤ 1

9
(|x1 – y1| + |x2 – y2|).
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Setting L = 1/9, we obtain 2LΩ ≈ 0.9176580667 < 1 which shows that inequality (3.3) is
true. Then, by the conclusion of Theorem 3.1, we deduce that the boundary value problem
(3.5) has a unique solution on [1/2, 5/2].

Next we present two existence results. The first is based on the well-known Krasnoselskii
fixed point theorem ([22]).

Theorem 3.3 Let f : [a,b] × R × R → R be a continuous function satisfying (H1). In ad-
dition we assume that:

(H2) |f (t,x, y)| ≤ ϕ(t), ∀(t,x, y) ∈ [a,b] ×R ×R, and ϕ ∈ C([a,b],R+).
Then the boundary value problem (1.1)–(1.2) has at least one solution on [a,b], provided

L
(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
< 1. (3.6)

Proof Setting supt∈[a,b] ϕ(t) = ‖ϕ‖ and choosing

ρ ≥ ‖ϕ‖Ω + |c| (b – a)γ –1

|Λ|Γ (γ )
(3.7)

(where Ω is defined by (3.2)), we consider Bρ = {x ∈ C : ‖x‖ ≤ ρ}. We define the operators
A1, A2 on Bρ by

A1x(t) = Iαf
(
s,x(s),x(λs)

)
(t), t ∈ [a,b],

and

A2x(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – BIα+δf

(
s,x(s),x(λs)

)
(η) – AIαf

(
s,x(s),x(λs)

)
(b)

)
, t ∈ [a,b].

For any x, y ∈ Bρ , we have

∣∣(A1x)(t) + (A2y)(t)
∣∣

≤ sup
t∈[a,b]

{
(t – a)γ –1

|Λ|Γ (γ )
(|c| + |B|Iα+δ

∣
∣f

(
s,x(s),x(λs)

)∣∣(η) + |A|Iα∣
∣f

(
s,x(s),x(λs)

)∣∣(b)
)

+ Iα
∣
∣f

(
s,x(s),x(λs)

)∣∣(t)
}

≤ ‖ϕ‖
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)
+ |c| (b – a)γ –1

|Λ|Γ (γ )

= ‖ϕ‖Ω + |c| (b – a)γ –1

|Λ|Γ (γ )
≤ ρ.

This shows that A1x + A2y ∈ Bρ . It is easy to see, using (3.6), that A2 is a contraction
mapping.

Continuity of f implies that the operator A1 is continuous. Also, A1 is uniformly
bounded on Bρ as

‖A1x‖ ≤ (b – a)α

Γ (α + 1)
‖ϕ‖.
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Now we prove the compactness of the operator A1.
We define sup(t,x)∈[a,b]×Bρ×Bρ

|f (t,x, y)| = f̄ < ∞, and consequently, for any t1, t2 ∈ [a,b]
with t1 < t2, we have

∣∣(A1x)(t2) – (A1x)(t1)
∣∣ =

1
Γ (α)

∣
∣∣
∣

∫ t1

a

[
(t2 – s)α–1 – (t1 – s)α–1]f

(
s,x(s),x(λs)

)
ds

+
∫ t2

t1
(t2 – s)α–1f

(
s,x(s),x(λs)

)
ds

∣
∣∣∣

≤ f̄
Γ (α + 1)

[
2(t2 – t1)α +

∣∣(t2 – a)α – (t1 – a)α
∣∣],

which is independent of x and tends to zero as t2 – t1 → 0. Thus, A1 is equicontinuous.
So A1 is relatively compact on Bρ . Hence, by the Arzelá–Ascoli theorem, A1 is compact
on Bρ . Thus all the assumptions of Krasnoselskii’s fixed point theorem ([22]) are satisfied.
So the conclusion of Krasnoselskii’s fixed point theorem implies that the boundary value
problem (1.1)–(1.2) has at least one solution on [a,b]. �

Example 3.4 Consider the nonlocal boundary value problem for the Hilfer-type panto-
graph fractional differential equation of the form

⎧
⎨

⎩

HD
5
3 , 1

2 x(t) = 5 tan–1 |x(t)|
9+3t + 2 sin |x(t/4)|

4+3t + e–2t , t ∈ [ 1
3 , 5

3 ],

x( 1
3 ) = 0, 3

5x( 5
3 ) + 1

4 I
3
2 x( 2

3 ) = 3
4 .

(3.8)

Here α = 5/3, β = 1/2, λ = 1/4, a = 1/3, b = 5/3, A = 3/5, B = 1/4, δ = 3/2, η = 2/3 and
c = 3/4. Then we compute that γ = 11/6, Λ ≈ 0.8175877260, Ω ≈ 2.139687890 and

Ω1 :=
(b – a)γ –1

|Λ|Γ (γ )

[ |B|(η – a)α+δ

Γ (α + δ + 1)
+

|A|(b – a)α

Γ (α + 1)

]
≈ 1.066150326.

From (3.8), we can find that

∣∣f (t,x1,x2) – f (t, y1, y2)
∣∣ ≤ 5

9 + 3t
|x1 – y1| +

2
4 + 3t

|x2 – y2|

≤ 9
10

(|x1 – y1| + |x2 – y2|).

This means that the condition (H1) is satisfied with L = 9/10. We get LΩ1 ≈
0.9595352934 < 1 and

∣∣f (t,x, y)
∣∣ ≤ 5π

2(9 + 3t)
+

2
4 + 3t

+ e–2t ,

which satisfy conditions (3.6) and (H2), respectively. Applying Theorem 3.3, the boundary
value problem (3.8) has at least one solution on [1/3, 5/3].

Remark 3.5 In Theorem 3.1, the existence and uniqueness of solutions for the given prob-
lem is established by means of the Banach contraction mapping principle. In Theorem 3.3
the existence of solutions is established via the Krasnoselskii fixed point theorem. The
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proof of this result is based on the idea of splitting the operator A into the sum of two
operators A1 and A2 such that A1 is contractive and A2 is compact. One can notice that
the entire operator A is not required to be contractive. On the other hand, Theorem 3.1
deals with the existence of a unique solution of the given problem via the Banach contrac-
tion mapping principle, in which the entire operator A is shown to be contractive. Thus,
the linkage between contractive conditions imposed in Theorems 3.3 and 3.1 provides
a precise estimate to pass onto a unique solution from the existence of a solution for the
problem at hand. In Example 3.8 above we note that Theorem 3.1 is not applicable because
2LΩ ≈ 3.851438202 > 1.

The Leray–Schauder’s nonlinear alternative ([21]) is used for our next existence result.

Theorem 3.6 Assume that:
(H3) there exist a continuous nondecreasing function ψ : [0, ∞) → (0, ∞) and a function

p ∈ C([a,b],R+) such that

∣
∣f (t,u, v)

∣
∣ ≤ p(t)ψ

(|u| + |v|) for each (t,u, v) ∈ [a,b] ×R× R;

(H4) there exists a constant M > 0 such that

M
ψ(2M)‖p‖Ω + |c|(b – a)γ –1/|Λ|Γ (γ )

> 1,

where Ω is defined by (3.2).
Then the boundary value problem (1.1)–(1.2) has at least one solution on [a,b].

Proof Let the operator A be defined by (3.1). Firstly, we shall show that A maps bounded
sets (balls) into bounded set in C . For a number r > 0, letBr = {x ∈ C : ‖x‖ ≤ r} be a bounded
ball in C . Then for t ∈ [a,b] we have

∣∣(Ax)(t)
∣∣

≤ sup
t∈[a,b]

{
(t – a)γ –1

|Λ|Γ (γ )
(|c| + |B|Iα+δ

∣
∣f

(
s,x(s),x(λs)

)∣∣(η) + |A|Iα∣
∣f

(
s,x(s),x(λs)

)∣∣(b)
)

+ Iα
∣∣f

(
s,x(s),x(λs)

)∣∣(t)
}

≤ ψ
(
2‖x‖)‖p‖

(
(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)

+ |c| (b – a)γ –1

|Λ|Γ (γ )
,

and, consequently,

‖Ax‖ ≤ ψ(2r)‖p‖Ω + |c| (b – a)γ –1

|Λ|Γ (γ )
.
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Next we will show that A maps bounded sets into equicontinuous sets of C . Let τ1, τ2 ∈
[a,b] with τ1 < τ2 and x ∈ Br . Then we have

∣
∣(Ax)(τ2) – (Ax)(τ1)

∣
∣

≤ (τ2 – a)γ –1 – (τ1 – a)γ –1

|Λ|Γ (γ )
(|B|Iα+δ

∣∣f
(
s,x(s),x(λs)

)∣∣(η)

+ |A|Iα∣
∣f

(
s,x(s),x(λs),x(λs)

)∣∣(b)
)

+
1

Γ (α)

∣∣∣
∣

∫ τ1

a

[
(τ2 – s)α–1 – (τ1 – s)α–1]f

(
s,x(s),x(λs)

)
ds

+
∫ τ2

τ1

(τ2 – s)α–1f
(
s,x(s),x(λs)

)
ds

∣∣
∣∣

≤ (τ2 – a)γ –1 – (τ1 – a)γ –1

|Λ|Γ (γ )
‖p‖ψ(2r)

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]

+
‖p‖ψ(2r)
Γ (α + 1)

[
2(t2 – t1)α +

∣∣(t2 – a)α – (t1 – a)α
∣∣].

As τ2 – τ1 → 0, the right-hand side of the above inequality tends to zero independently
of x ∈ Br . Therefore, by the Arzelá–Ascoli theorem, the operator A : C → C is completely
continuous.

The result will follow from the Leray–Schauder nonlinear alternative ([21]) once we have
proved the boundedness of the set of all solutions to equations x = νAx for ν ∈ (0, 1).

Let x be a solution. Then, for t ∈ [a,b], and following computations similar to the first
step, we have

∣∣x(t)
∣∣ ≤ ψ

(
2‖x‖)‖p‖Ω + |c| (b – a)γ –1

|Λ|Γ (γ )
,

which leads to

‖x‖
ψ(2‖x‖)‖p‖Ω + |c|(b – a)γ –1/|Λ|Γ (γ )

≤ 1.

In view of (H4), there exists M such that ‖x‖ �= M. Let us set

U =
{
x ∈ C

(
[a,b],R

)
: ‖x‖ < M

}
.

We see that the operator A : Ū → C is continuous and completely continuous. From the
choice of U , there is no x ∈ ∂U such that x = νAx for some ν ∈ (0, 1). Consequently, by the
nonlinear alternative of Leray–Schauder type ([21]), we deduce that A has a fixed point
x ∈ Ū which is a solution of the boundary value problem (1.1)–(1.2). This completes the
proof. �

Example 3.7 Consider the nonlocal boundary value problem for the Hilfer-type panto-
graph fractional differential equation of the form

⎧
⎨

⎩

HD
7
4 , 4

5 x(t) = e
1
4 –t

7+4t (( |x9(t)|
x8(t)+1 + x8(t/5)

|x7(t/5)|+1 )2 + 1), t ∈ [ 1
4 , 3

4 ],

x( 1
4 ) = 0, 1

3x( 3
4 ) + 3

7 I
5
2 x( 1

2 ) = 2
5 .

(3.9)
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Here α = 7/4, β = 4/5, λ = 1/5, a = 1/4, b = 3/4, A = 1/3, B = 3/7, δ = 5/2, η = 1/2, c = 2/5.
Now, we find constants γ = 39/20, Λ ≈ 0.1764175022 and Ω ≈ 0.3694499725. Also, the
nonlinear function can be expressed as

∣
∣f (t,x, y)

∣
∣ ≤ e

1
4 –t

7 + 4t
((|x| + |y|)2 + 1

)
.

Setting p(t) = (e(1/4)–t)/(7 + 4t) and ψ(u) = u2 + 1, we have ‖p‖ = 1/8 and ψ(|x| + |y|) =
(|x| + |y|)2 + 1. Thus we can compute that there exists a constant M ∈ (1.937052574,
3.476400259) satisfying inequality in (H4). Therefore, all conditions in Theorem 3.6 are
fulfilled. Thus the boundary value problem (3.9) has at least one solution on [1/4, 3/4].

4 Existence results for the multi-valued problem (1.3)–(1.4)
By C = C([a,b],R) we denote the Banach space of all continuous functions from [a,b] into
R with the norm

‖x‖ := sup
{∣∣x(t)

∣
∣ : t ∈ [a,b]

}
.

Also by L1([a,b],R) we denote the space of functions x : [a,b] → R such that ‖x‖L1 =
∫ b
a |x(t)|dt.
For a normed space (X, ‖·‖), we definePq(X) = {Y ∈ P(X) : Y has the property q}. Thus,

for example, Pcl,b(X) = {Y ∈ P(X) : Y is closed and bounded}, Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}.

For each y ∈ C([a,b],R), define the set of selections of F by

SF ,x :=
{
v ∈ L1([a,b],R

)
: v(t) ∈ F

(
t,x(t),x(λt)

)
on [a,b]

}
.

The following lemma will be used in the sequel.

Lemma 4.1 ([23]) Let X be a separable Banach space. Let F : [a,b] × R × R → Pcp,c(X)
be an L1-Carathéodory multi-valued map and let Θ be a linear continuous mapping from
L1([a,b],X) to C([a,b],X). Then the operator

Θ ◦ SF : C
(
[a,b],X

) → Pcp,c
(
C

(
[a,b],X

))
, x 
→ (Θ ◦ SF )(x) = Θ(SF ,x)

is a closed graph operator in C([a,b],X) ×C([a,b],X).

Before stating and proving our main existence results for problem (1.3)–(1.4), we will
give the definition of its solution.

Definition 4.2 A function x ∈ AC2([a,b],R) is said to be a solution of the problem (1.3)–
(1.4) if x(a) = 0, Ax(b) + BIδx(η) = c, and there exists a function v ∈ L1([a,b],R) with v ∈
F(t,x, y) a.e. on [a,b] such that

x(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv(s)(b) – BIα+δv(s)(η)

)
+ Iαv(s)(t).
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4.1 The upper semicontinuous case
Consider first the case when F has convex values. Our first result is based on Bohnenblust–
Karlin fixed point theorem.

Lemma 4.3 ((Bohnenblust–Karlin) [24]) Let X be a Banach space, D a nonempty subset
of X, witch is bounded, closed and convex. Suppose G : [a,b] × R → P(R) is upper semi-
continuous with closed, convex values, and G(D) ⊂ D and G(D) is compact. Then G has a
fixed point.

Theorem 4.4 Assume that:
(A1) F : [a,b] × R× R → Pcp,c(R) is L1-Carathéodory; i.e.

(i) t 
−→ F(t,x, y) is measurable for each x, y ∈ R;
(ii) (x, y) 
−→ F(t,x, y) is upper semicontinuous for almost all t ∈ [a,b];

(iii) for each ρ > 0, there exists ϕρ ∈ L1([a,b],R+) such that

∥∥F(t,x, y)
∥∥ = sup

{|v| : v ∈ F(t,x, y)
} ≤ ϕρ(t)

for all x, y ∈ R with ‖x‖, ‖y‖ ≤ ρ and for a.e. t ∈ [a,b];
(A2)

lim inf
ρ→∞

1
ρ

∫ b

a
φρ(t)dt = μ. (4.1)

Then the boundary problem (1.3)–(1.4) has at least one solution on [a,b] provided that

{
(b – a)γ –1

|Λ|Γ (γ )

(
|A| b

α–1

Γ (α)
+ |B| ηα+δ–1

Γ (α + δ)

)
+

bα–1

Γ (α)

}
μ < 1. (4.2)

Proof In order to transform the problem (1.3)–(1.4) into a fixed point problem, we con-
sider the multi-valued map: N : C([a,b],R) → P(C([a,b],R)) defined by

N(x) =

⎧
⎪⎨

⎪⎩

h ∈ C([a,b],R) :

h(t) =

{
(t–a)γ –1

ΛΓ (γ ) (c – AIαv(s)(b) – BIα+δv(s)(η))
+ Iαv(s)(t), v ∈ SF ,x.

It is clear that fixed points of N are solutions of problem (1.3)–(1.4). In turn, we need to
show that the operator N satisfies all condition of Lemma 4.3. The proof is constructed in
several steps.
Step 1. N(x) is convex for each x ∈ C([a,b],R).
Indeed, if h1, h2 belongs to N(x), then there exist v1, v2 ∈ SF ,x such that, for each t ∈ [a,b],

we have

hi(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαvi(s)(b) – BIα+δvi(s)(η)

)
+ Iαvi(s)(t), i = 1, 2.
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Let 0 ≤ θ ≤ 1. Then, for each t ∈ [a,b], we have

[
θh1 + (1 – θ )h2

]
(t) =

(t – a)γ –1

ΛΓ (γ )
(
c – AIα

[
θv1(s) + (1 – θ )v2(s)

]
(b)

– BIα+δ
[
θv1(s) + (1 – θ )v2(s)

]
(η)

)

+ Iα
[
θv1(s) + (1 – θ )v2(s)

]
(t).

Since F has convex values, that is, SF ,x is convex, we have

θh1 + (1 – θ )h2 ∈ N(x).

Step 2. N(x) maps bounded sets (balls) into bounded sets in C([a,b],R).
For a positive number ρ , let Bρ = {x ∈ C([a,b],R) : ‖x‖ ≤ ρ} be a bounded ball in

C([a,b],R). We shall prove that there exists a positive number ρ ′ such that N(Bρ′ ) ⊆ Bρ′ .
If not, for each positive number ρ , there exists a function xρ(·) ∈ Bρ , ‖N(xρ)‖ > ρ for some
t ∈ [a,b] and

hρ(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαvr(s)(b) – BIα+δvr(s)(η)

)
+ Iαvr(s)(t)

for some vρ ∈ SF ,xρ . However, on the other hand, we have

ρ <
∥
∥N(xρ)

∥
∥

≤ (b – a)γ –1

ΛΓ (γ )
(|c| + |A|Iα∣∣v(s)

∣∣(b) + |B|Iα+δ
∣∣v(s)

∣∣(η)
)

+ Iα
∣∣v(s)

∣∣(t)

≤
{

(b – a)γ –1

|Λ|Γ (γ )

(
|A| b

α–1

Γ (α)
+ |B| ηα+δ–1

Γ (α + δ)

)
+

bα–1

Γ (α)

}∫ b

a
φρ(s)ds + |c| (b – a)γ –1

|Λ|Γ (γ )
.

Dividing both sides by ρ and taking the lower limit as ρ → ∞, we get

1 ≤ μ

{
(b – a)γ –1

|Λ|Γ (γ )

(
|A| b

α–1

Γ (α)
+ |B| ηα+δ–1

Γ (α + δ)

)
+

bα–1

Γ (α)

}
,

which contradicts (4.2). Hence there exists a positive number ρ such that N(Bρ) ⊆ Bρ .
Step 3. N(x) maps bounded sets into equicontinuous sets of C([a,b],R).
Let x be any element in Bρ and h ∈ N(x), then there exists a function v ∈ SF ,x such that,

for each t ∈ [a,b], we have

h(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv(s)(b) – BIα+δv(s)(η)

)
+ Iαv(s)(t).

Let τ1, τ2 ∈ [a,b], τ1 < τ2. Thus

∣
∣h(t2) – h(t1)

∣
∣

≤ (τ2 – a)γ –1 – (τ1 – a)γ –1

|Λ|Γ (γ )
(|B|Iα+δ

∣∣v(s)
∣∣(η) + |A|Iα∣∣v(s)

∣∣(b)
)

+
1

Γ (α)

∣
∣∣∣

∫ τ1

a

[
(τ2 – s)α–1 – (τ1 – s)α–1]v(s)ds +

∫ τ2

τ1

(τ2 – s)α–1v(s)ds
∣
∣∣∣.
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The right-hand side of the above inequality clearly tends to zero independently of x ∈ Bρ

as τ1 → τ2. As a consequence of Steps 1–3 together with the Arzelá–Ascoli theorem, we
conclude that N : C([a,b],R) → P(C([a,b],R)) is completely continuous.
Step 4. N(x) is closed for each x ∈ C([a,b],R).
Let {un}n≥0 ∈ N(x) be such that un → u (n → ∞) in C([a,b],R). Then u ∈ C([a,b],R)

and there exists vn ∈ SF ,xn such that, for each t ∈ [a,b],

un(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαvn(s)(b) – BIα+δvn(s)(η)

)
+ Iαvn(s)(t).

As F has compact values, we pass onto a subsequence (if necessary) to find that vn con-
verges to v in L1([a,b],R). Thus v ∈ SF ,x and for each t ∈ [a,b], we have

un(t) → v(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv(s)(b) – BIα+δv(s)(η)

)
+ Iαv(s)(t).

Hence, u ∈ N(x).
Next we show that the operator N is upper semicontinuous. In order to do so, it is

enough to establish that N has a closed graph ([25, Proposition 1.2]).
Step 5. N has a closed graph.
Let xn → x∗, hn ∈ N(xn) and hn → h∗. We need to show that h∗ ∈ N(x∗). Now hn ∈ N(xn)

implies that there exists vn ∈ SF ,xn such that, for each t ∈ [a,b],

hn(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαvn(s)(b) – BIα+δvn(s)(η)

)
+ Iαvn(s)(t).

We must show that there exists v∗ ∈ SF ,x∗ such that, for each t ∈ [a,b],

h∗(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv∗(s)(b) – BIα+δv∗(s)(η)

)
+ Iαv∗(s)(t).

Consider the continuous linear operator Θ : L1([a,b],R) → C([a,b],R) by

v → Θ(v)(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv(s)(b) – BIα+δv(s)(η)

)
+ Iαv(s)(t).

Observe that ‖hn(t) – h∗(t)‖ → 0 as n → ∞ and, thus, it follows from Lemma 4.1 that
Θ ◦ SF ,x is a closed graph operator. Moreover, we have

hn ∈ Θ(SF ,xn ).

Since xn → x∗, Lemma 4.1 implies that

h∗(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv∗(s)(b) – BIα+δv∗(s)(η)

)
+ Iαv∗(s)(t)

for some v∗ ∈ SF ,x∗
Hence, we conclude that N is a compact multi-valued map, u.s.c. with convex closed

values. As a consequence of Lemma 4.3, we deduce that N has a fixed point which is a
solution of the boundary problem (1.3)–(1.4). This completes the proof. �
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Next, we give an existence result based upon the following form of fixed point theorem
which is applicable to completely continuous operators [26].

Lemma 4.5 Let X a Banach space, and T : X → Pb,cl,c(X) be a completely continuous
multi-valued map. If the set E = {x ∈ X : νx ∈ T(x),ν > 1} is bounded, then T has a fixed
point.

Theorem 4.6 Assume that the following hypotheses hold:
(A3) F : [a,b] × R× R → Pb,cl,c(R) is a L1-Carathéodory multi-valued map;
(A4) there exists a function h ∈ C([a,b],R) such that

∥
∥F(t,x, y)

∥
∥ ≤ h(t) for a.e. t ∈ [a,b] and each x, y ∈ R.

Then the problem (1.3)–(1.4) has at least one solution on [a,b].

Proof Consider N defined in the proof of Theorem 4.4. As in Theorem 4.4, we can show
that N is convex and completely continuous. It remains to show that the set

E =
{
x ∈ C

(
[a,b],R

)
: νx ∈ N(x),ν > 1

}

is bounded. Let x ∈ E , then νx ∈ N(x) for some ν > 1 and there exists a function v ∈ SF ,x

such that

x(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv(s)(b) – BIα+δv(s)(η)

)
+ Iαv(s)(t).

For each t ∈ [a,b], we have

∣∣x(t)
∣∣ ≤ (b – a)γ –1

ΛΓ (γ )
(|c| + |A|Iα∣∣v(s)

∣∣(b) + |B|Iα+δ
∣∣v(s)

∣∣(η)
)

+ Iα
∣∣v(s)

∣∣(t)

≤ ‖h‖
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)

+ |c| (b – a)γ –1

|Λ|Γ (γ )
.

Taking the supremum over t ∈ [a,b], we get

‖x‖ ≤ ‖h‖
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)

+ |c| (b – a)γ –1

|Λ|Γ (γ )
< ∞.

Hence the set E is bounded. As a consequence of Lemma 4.5 we deduce that N has at least
one fixed point which implies that the problem (1.3)–(1.4) has a solution on [a,b]. �

Our final existence result in this subsection is based on the Leray–Schauder nonlinear
alternative for Kakutani maps ([21]).
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Theorem 4.7 Assume that (H4) and (A1) hold. In addition we assume that:
(A5) there exists a continuous nondecreasing function ψ : [0, ∞) → (0, ∞) and a func-

tion p ∈ C([a,b],R+) such that ‖F(t,x, y)‖P := sup{|v| : v ∈ F(t,x, y)} ≤ p(t)ψ(|x|)
for each (t,x, y) ∈ [a,b] ×R× R.

Then the boundary value problem (1.3)–(1.4) has at least one solution on [a,b].

Proof Consider the operator N defined in the proof of Theorem 4.4. Let x ∈ νN(x) for
some ν ∈ (0, 1). We show there exists an open set U ⊆ C([a,b],R) with x /∈ N(x) for any
ν ∈ (0, 1) and all x ∈ ∂U . Let ν ∈ (0, 1) and x ∈ νN(x). Then there exists v ∈ L1([a,b],R)
with v ∈ SF ,x such that, for t ∈ [a,b], we have

x(t) = ν
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv(s)(b) – BIα+δv(s)(η)

)
+ νIαv(s)(t).

In view of (A5), we have, for each t ∈ [a,b],

∣
∣x(t)

∣
∣ ≤ (b – a)γ –1

ΛΓ (γ )
(|c| + |A|Iα∣

∣v(s)
∣
∣(b) + |B|Iα+δ

∣
∣v(s)

∣
∣(η)

)
+ Iα

∣
∣v(s)

∣
∣(t)

≤ ‖p‖ψ
(‖x‖)( (b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)

+ |c| (b – a)γ –1

|Λ|Γ (γ )
.

Consequently, we have

‖x‖
ψ(2‖x‖)‖p‖Ω + |c|(b – a)γ –1/|Λ|Γ (γ )

≤ 1.

In view of (H4), there exists M such that ‖x‖ �= M. Let us set

U =
{
x ∈ C

(
[a,b],R

)
: ‖x‖ < M

}
.

Proceeding as in the proof of Theorem 4.4, we claim that the operator N : U →
P(C([a,b],R)) is a compact, upper semicontinuous multi-valued map with convex closed
values. From the choice of U , there is no x ∈ ∂U such that x ∈ νN(x) for some ν ∈ (0, 1).
Consequently, by the nonlinear alternative of Leray–Schauder type ([21]), we deduce that
N has a fixed point x ∈ U which is a solution of the boundary value problem (1.3)–(1.4).
This completes the proof. �

4.2 The lower semicontinuous case
Here we study the case when F is not necessarily convex valued, by applying the nonlinear
alternative of Leray–Schauder type together with the selection theorem of Bressan and
Colombo [27] for lower semicontinuous maps with decomposable values.

Theorem 4.8 Assume that (H4), (A5) and the following condition hold:
(A6) F : [a,b] × R × R → P(R) is a nonempty compact-valued multi-valued map such

that (t,x, y) 
−→ F(t,x, y) is L⊗B ⊗B measurable and x 
−→ F(t,x, y) is lower semi-
continuous for each t ∈ [a,b].

Then the boundary value problem (1.3)–(1.4) has at least one solution on [a,b].
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Proof It follows from (A5) and (A6) that F is of l.s.c. type [28]. Then, by the selection theo-
rem of Bressan and Colombo [27], there exists a continuous function v : AC1([a,b],R) →
L1([a,b],R) such that v(x) ∈ F (x) for all v ∈ C([a,b],R), where F : C([a,b] × R) →
P(L1([a,b],R)) is the Nemytskii operator associated with F , defined as

F (v) =
{
w ∈ L1([a,b],R

)
: w(t) ∈ F

(
t, v(t), v(λt)

)
for a.e. t ∈ [a,b]

}
.

Consider the problem

HDα,βx(t) = f
(
x(t)

)
, t ∈ [a,b], (4.3)

x(a) = 0, Ax(b) + BIδx(η) = c, η ∈ (a,b). (4.4)

Observe that x is a solution to the boundary value problem (1.3)–(1.4) if x ∈
AC2([a,b],R) is a solution of the problem (4.3)–(4.4). In order to transform the problem
(4.3)–(4.4) into a fixed point problem, we define an operator N as

N(x) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαf

(
x(s)

)
(b) – BIα+δf

(
x(s)

)
(η)

)
+ Iαf

(
x(s)

)
(t).

It can easily be shown that N is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem 4.7. So we omit it. This completes the
proof. �

4.3 The Lipschitz case
In this subsection, we prove the existence of solutions for the boundary value problem
(1.3)–(1.4) with a non-convex valued right-hand side by applying a fixed point theorem
for multi-valued maps due to Covitz and Nadler [29].

Theorem 4.9 Assume that the following conditions hold:
(B1) F : [a,b] ×R×R → Pcp(R) is such that F(·,x, y) : [a,b] → Pcp(R) is measurable for

each x, y ∈ R.
(B2) Hd(F(t,x, y),F(t, x̄), ȳ) ≤ m(t)(|x– x̄|+ |y– ȳ|) for almost all t ∈ [a,b] and x, x̄, y, ȳ ∈ R

with m ∈ C([a,b],R+) and d(0,F(t, 0, 0)) ≤ m(t) for almost all t ∈ [a,b].
Then the boundary value problem (1.3)–(1.4) has at least one solution on [a,b] if

2
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)
‖m‖ < 1.

Proof We transform the boundary value problem (1.3)–(1.4) into a fixed point problem by
considering the operator N : C([a,b],R) → P(C([a,b],R)) defined at the beginning of the
proof of Theorem 4.4. We show that the operator N satisfies the assumptions of Covitz
and Nadler Theorem [29] in two steps.
Step I. N is nonempty and closed for every v ∈ SF ,x.
Note that the set-valued map F(·,x(·)) is measurable by the measurable selection theo-

rem (e.g., [30, Theorem III.6]) and it admits a measurable selection v : [a,b] → R. More-
over, by the assumption (B1), we have

∣∣v(t)
∣∣ ≤ m(t) + m(t)

∣∣x(t)
∣∣,
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i.e. v ∈ L1([a,b],R) and hence F is integrably bounded. Therefore, SF ,x �= ∅. Moreover
N(x) ∈ Pcl(C([a,b],R)) for each x ∈ C([a,b],R), as proved in Step 4 of Theorem 4.4.

Step II. Next we show that there exists θ < 1 such that

Hd
(
N(x),N(x̄)

) ≤ θ
(‖x – x̄‖ + ‖y – ȳ‖)

for each x, x̄y, ȳ ∈ AC2([a,b],R
)
.

Let x, x̄, y, ȳ ∈ AC2([a,b],R) and h1 ∈ N(x). Then there exists v1(t) ∈ F(t,x(t), y(t)) such
that, for each t ∈ [a,b],

h1(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv1(s)(b) – BIα+δv1(s)(η)

)
+ Iαv1(s)(t).

By (B2), we have

Hd
(
F(t,x, y),F(t, x̄, ȳ)

) ≤ m(t)
(∣∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣).

So, there exists w(t) ∈ F(t, x̄(t), ȳ(t)) such that

∣∣v1(t) – w
∣∣ ≤ m(t)

(∣∣x(t) – x̄(t)
∣∣ +

∣∣y(t) – ȳ(t)
∣∣), t ∈ [a,b].

Define U : [a,b] → P(R) by

U(t) =
{
w ∈ R :

∣∣v1(t) – w
∣∣ ≤ m(t)

(∣∣x(t) – x̄(t)
∣∣ +

∣∣y(t) – ȳ(t)
∣∣)}.

Since the multi-valued operator U(t)∩F(t, x̄(t), ȳ(t)) is measurable (Proposition III.4 [30]),
there exists a function v2(t) which is a measurable selection for U . So v2(t) ∈ F(t, x̄(t), ȳ(t))
and for each t ∈ [a,b], we have |v1(t) – v2(t)| ≤ m(t)(|x(t) – x̄(t)| + |y(t) – ȳ(t)|).

For each t ∈ [a,b], let us define

h2(t) =
(t – a)γ –1

ΛΓ (γ )
(
c – AIαv2(s)(b) – BIα+δv2(s)(η)

)
+ Iαv2(s)(t).

Thus,

∣∣h1(t) – h2(t)
∣∣

≤ (b – a)γ –1

ΛΓ (γ )
(|A|Iα∣∣v2(s) – v1(s)

∣∣(b) + |B|Iα+δ
∣∣v2(s) – v1(s)

∣∣(η)
)

+ Iα
∣∣v2(s) – v1(s)

∣∣(t)

≤ 2
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)
‖m‖‖x – x‖.

Hence

‖h1 – h2‖ ≤ 2
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)
‖m‖‖x – x‖.
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Analogously, interchanging the roles of x and x, we obtain

Hd
(
N(x),N(x̄)

)

≤ 2
(

(b – a)γ –1

|Λ|Γ (γ )

[
|B| (η – a)α+δ

Γ (α + δ + 1)
+ |A| (b – a)α

Γ (α + 1)

]
+

(b – a)α

Γ (α + 1)

)
‖m‖‖x – x‖.

Since N is a contraction, it follows by Covitz and Nadler’s lemma ([29]) that N has a fixed
point x which is a solution of (1.3)–(1.4). This completes the proof. �

Example 4.10 Consider the nonlocal boundary value problem for the Hilfer-type panto-
graph fractional differential inclusion of the form

⎧
⎨

⎩

HD
8
5 , 2

3 x(t) ∈ F(t,x(t),x(t/2)), t ∈ [ 3
5 , 9

5 ],

x( 3
5 ) = 0, 1

2x( 9
5 ) + 3

5 I
7
2 x( 7

5 ) = 2
3 .

(4.5)

Here α = 8/5, β = 2/3, λ = 1/2, a = 3/5, b = 9/5, A = 1/2, B = 3/5, δ = 7/2, η = 7/5, c = 2/3.
Next, by direct computations, we have γ = 28/15, Λ ≈ 0.6212581095, Ω ≈ 1.867435349
and Ω1 ≈ 0.9310211429.

(i) Let F(t,x(t),x(t/2)) be defined by

F(t,x, y) =
[( |x|

1 + |x| +
|y|

1 + |y|
)
e–t ,

(
x2

1 + |x| +
y2

1 + |y| + 1
)
e–t

]
. (4.6)

It is easy to see that the condition (A1) in Theorem 4.4 is satisfied. Indeed, we obtain from
(4.6) that ‖F(t,x, y)‖ ≤ (2ρ +1)e–t for all x, y ∈ Rwith ‖x‖, ‖y‖ ≤ ρ and for a.e. t ∈ [3/5, 9/5].
Next, we can find that

μ = lim inf
ρ→∞

1
ρ

∫ 9
5

3
5

(2ρ + 1)e–t dt ≈ 0.7670254956,

which leads to

μ

{
(b – a)γ –1

|Λ|Γ (γ )

(
|A| b

α–1

Γ (α)
+ |B| ηα+δ–1

Γ (α + δ)

)
+

bα–1

Γ (α)

}
≈ 0.7141169533 < 1.

Therefore, by Theorem 4.4, the boundary value problem (4.5) with (4.6) has at least one
solution on [3/5, 9/5].

(ii) Let F(t,x(t),x(t/2)) be defined by

F(t,x, y) =
[

1 + sin |x| + sin |y|
(15 + t)2 ,

(
t + 1
41

)(
1 +

|x|
1 + |x| +

|y|
1 + |y|

)]
. (4.7)

It is clear that F , defined in (4.7), is measurable for all x, y ∈ R. Next, we can compute that

Hd
(
F(t,x, y),F(t, x̄, ȳ)

) ≤
(
t + 1
41

)(|x – x̄| + |y – ȳ|), x, y, x̄, ȳ ∈ R, t ∈
[

3
5

,
9
5

]
.

By setting m(t) = (t + 1)/41, we get ‖m‖ = 14/205. Also, we have d(0,F(t, 0, 0)) ≤ m(t),
t ∈ [3/5, 9/5]. Hence we get 2Ω‖m‖ ≈ 0.2550643403 < 1. Thus, applying the conclusion of
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Theorem 4.9, we deduce that the boundary value problem (4.5) with (4.7) has at least one
solution on [3/5, 9/5].

5 Conclusion
In this paper we initiated the study of a new class of boundary value problems, involving
the Hilfer fractional derivative, for pantograph fractional differential equations and inclu-
sions supplemented by nonlocal integral boundary conditions. Existence and uniqueness
results are proved in the single-valued case. Banach’s fixed point theorem is used to ob-
tain the uniqueness result, while the nonlinear alternative of Leray–Schauder type and
Krasnoselskii’s fixed point theorem are applied to obtain the existence results. For the
multi-valued problem we prove existence results for both convex valued and non-convex
valued multifunctions. For the case when the multi-valued F has convex values we use the
Bohnenblust–Karlin fixed point theorem, Martelli’s fixed point theorem and the nonlin-
ear alternative for Kakutani maps. For the lower semicontinuous case the existence result
is based on the nonlinear alternative of Leray–Schauder type together with a selection
theorem for lower semicontinuous maps with decomposable values. Finally in the case
of a possible non-convex valued multi-valued map we use a fixed point theorem for con-
tractive multi-valued maps due to Covitz and Nadler. Examples illustrating the obtained
results are also presented.

The results presented in this paper are more general and correspond to several new
results corresponding to specific values of the parameters involved in the problem (1.1)–
(1.2. For instance, the nonlocal boundary condition given by (1.2) with A = 0, c = 0, B �= 0
can be conceived of as a conserved boundary condition as the sum of the values of the
continuous unknown function over the given interval of arbitrary length is zero. In other
words, our problem becomes an “average type” boundary value problem for Hilfer-type
fractional differential equations or inclusions. With B = 1, A = –1, c = 0 our boundary
condition (1.2) becomes x(b) = BIδx(η), etc. In our future work we plan to investigate the
existence of solutions for boundary value problems for other kinds of fractional differential
equations and boundary conditions.
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