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initial conditions (at{Tn}0� n� N–1) on each subdomain, given by the solution initially
computed on the coarse grid (Step 1).

The parareal method allows for an accurate parallel computation of ODEs, and we refer
to [16, 21, 29] for details about this celebrated method for solving ordinary/partial differ-
ential equations. It is in particular successfully combined with traditional domain decom-
position methods in space. Indeed it allows us to use a very large number of processors
going beyond the usual limits of efficiency of domain decomposition methods with a too
large number of spatial subdomains. In this paper, we are interested in the extension of the
parareal method to FODEs, which have become very popular over this past decade. The
recent progress in fractional differential equation solvers [6, 7, 25, 27, 30, 33, 39] is largely
motivated by the development of fractional differential models in physics, mechanics, epi-
demiology, and applied probability allowing to take into account nonlocal in space or time
effects [9–11, 15, 26, 30, 35, 37]. The main purpose of this paper is then to study efficient
parallel algorithms for fractional ordinary and partial differential equations. In particu-
lar, we propose an original algorithm combining a parallelization in space and time. Very
few works actually exist on parallel-in-time methods for FODEs; however, let us cite [38]
where a parareal method along with collocation and Fourier-based FODE solvers is de-
veloped. At this stage, we do not consider realist models from the literature, but focus on
toy-scalar linear equations, for which it is possible to provide a relatively precise analy-
sis and to exhibit the strong convergence and efficiency properties. In this paper, we first
propose a parareal version of standard Gorenflo’s scheme for approximating FODE [40].
In this goal, we consider

D�
t y(t) = f

(
t, y(t)

)
, y(0) = y0, t � [0; T] (1)

for 0 < � < 1, T > 0, and where f is a non-highly oscillatory Lipschitz continuous func-
tion. Lipschitz continuity allows for existence of a unique solution, while the non-highly
oscillatory condition will allow for an efficient and accurate use standard quadratures. In
particular the existence of unique solutions can be proved in some weighted subsets of
C� , see [19] for details. The analysis will be presented for the parareal-Gorenflo scheme
approximating a linear FODE:

D�
t y(t) = –� y(t) + g(t), y(0) = y0, (2)

where � > 0, 0 < � < 1, and g � C0([0; T]). The operator D�
t = CD�

t is here defined as a
Caputo’s derivative [40], that is,

CD�
t y(t) =

1
� (1 – � )

∫ t

0
(t – � )–� D� y(� ) d� ,

where the special gamma function � , for Re(z) > 0, is defined as

� (z) :=
∫ �

0
xz–1ex dx,

and � (p) = (p – 1)! for p � N� . We also recall the definition of Caputo’s derivative CI �
t y(t)

CI �
t y(t) =

1
� (� )

∫ t

0
(t – � )� –1y(� ) d� . (3)
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Hence, (1) and (say) for y(0) = 0, and y solution to (2) we have

y(t) = –
�

� (� )

∫ t

0
(t – � )� –1D�

� y(� ) d� +
1

� (� )

∫ t

0
(t – � )� –1g(� ) d� .

The well-posedness (existence and uniqueness) of this equation is analyzed in [14] for
Lipschitz functions f . Let us also refer to [28, 31, 34] for other types of fractional differ-
ential equations. The main difficulty in parallelizing a FODE comes from the fact that the
fractional derivative is a nonlocal integro-differential operator. As a consequence, it is no
more possible to directly and efficiently compute in parallel the differential equation on
fine grids, as usually proposed in the parareal method. In this paper, we propose a natural
strategy which consists in computing in parallel the fractional integrals by decomposing
them into a local (containing the “singularity” and computed with a fine resolution) and a
history part (computed with a coarse resolution).

In the second part of the paper, we are then interested in a parallel algorithm for space-
time fractional differential equations of the form

D�
t u(t, x) = –� (x)D�

x u(t, x), u(0, x) = u0 � L2(R),

on [0; T] × R, with � in the set of continuous and bounded real function C0
b(R), 0 < � < 1

and � > 0. We recall that, denoting m = � � � , Caputo’s derivative D�
x = CD�

x in this case is
given by

CD�
x u(t, x) =

1
� (m – � )

∫ x

–�
(x – y)m–1–� � m

x u(t, y) dy.

Notice that several alternative definitions of fractional derivatives exist [12] such as the
Riemann–Liouville (RL) fractional derivative of order � over the interval ] – � ; x], which
is defined by

RLD�
x u(t, x) =

1
� (m – � )

� m

� xm

∫ x

–�

u(t, y)
(x – y)� –m+1 dy, (4)

while the right RL fractional derivative is given by

RL
xD� u(t, x) =

(–1)m

� (m – � )
� m

� xm

∫ +�

x

u(t, y)
(y – x)� –m+1 dy.

Similarly, we introduce the left fractional Riemann–Liouville integral operator of order �

as follows:

RLI �
x u(x) =

1
� (� )

∫ x

–�

u(t, y)
(x – y)1–�

dy. (5)

Through these notations, we have the relation

RLD�
x u(t, x) =

� m

� xm
RLIm–�

x u(t, x). (6)
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Let us also recall that the two derivatives are linked by the simple relation

RLD�
x u(x) = CD�

x u(x) +
1

� (1 – � )
×

u(a)
(x – a)�

for some real a. These definitions can naturally be used to define spatial fractional deriva-
tives. However, to define the spatial fractional derivative, we rather use the Fourier-based
definition (Riesz’s derivative denoted by RD�

x ) which will be more convenient and which
could still be implemented on a bounded spatial domain. Denoting by 	 the co-variable to
x in Fourier space, and by F the corresponding Fourier transform, we define

RD�
x u(t, x) = F–1((i	 )� F

(
u(t, 	 )

))
.

Based on this definition, we will use a pseudospectral method based on discrete Fourier
transform for spatial approximation. We again refer to [6, 7, 13, 30, 36] for some discus-
sions about fractional operators and fractional differential equations. Finally, we discuss
the combination of the parallel in time and space algorithms along with some numerical
experiments.

This paper is organized as follows. Section 2 is dedicated to the derivation of the parareal
method based on Gorenflo’s scheme for solving FODE. Using in particular the parareal
method and standard parallel FFTs, we then derive in Sect. 3 a parallel algorithm for space-
time fractional differential equations. We finally conclude in Sect. 4.

2 Parareal-Gorenflo algorithm for fractional differential equations
We denote by � T a coarse grid time-step and by � t a fine grid time-step such that � T =
R� t. The coefficient R � N\{ 0} corresponds to the number of subiterations in-time for
each large time-step � T . We denote Tn = n� T and tn;i := n� T + i
 t for n = 0, . . . , N –1 and
for i = 0, . . . , R such that t0,0 = 0 and tN–1;R = T . For a total of N coarse grid time iterations,
we proceed to

– sequential computations on[0; TN ];
– parallel computations on each[Tn; Tn+1] requiring computations from[0; Tn] and on

the grids[Tn; Tn+1] =
⋃R

i=1[tn;i–1; tn;i], with n = 0, . . . , N – 1.
We now derive the algorithm and provide some analytical details.

2.1 Gorenflo’s scheme
We approximate (2) with Gorenflo’s scheme [17], which reads (on the coarse grid, using
the notation {yn

� T }n approximating {y(Tn)}n) as follows:

yn+1
� T = –�� T � yn

� T –
n+1∑

i=1

w(� )
i yn+1–i

� T + � T � g(Tn+1), (7)

where yn
� T approximates y(Tn), and the weights read

w(� )
i =

i∑

l=1

� (l – � )
� (–� )� (l + 1)

. (8)

Gorenflo’s scheme, which extends Grünwald–Letnikov’s idea of a finite difference approx-
imation of the fractional integral. In theory any other FODE solver could be combined



Lorin Advances in Difference Equations        (2020) 2020:283 Page 5 of 21

Figure 1 Numerical experiment 1. (Left) Coefficients {w(� )
i }1� i� 20 for � = 0.25, 0.5, 0.75. (Right) Convergence

graph for Gorenflo’s scheme

with the parareal method such as those presented in [23] or the one used in [38]. The
coefficients w(� )

i for � = 0.25, 0.5, 0.75 are reported for 1 � i � 20 in Fig. 1. The choice of
this method is motivated by its simplicity and the fact that it is possible to easily increase
its order of convergence. Other methods, such as the ones used in [23], can naturally be
explored.

Numerical experiment 1. We present a simple experiment from [17]: for 0 < � < 1,

D�
t y(t) = –y(t) + t2 +

2t2–�

� (3 – � )
, y(0) = 0, t � [0, 1],

for which an explicit solution yexact(t) = t2 exists. We report the convergence graph in Fig. 1
(Right), that is, the � 2-norm error as a function of the time-steps; we numerically estimate
the order of convergence of the method which on this specific example (� = 0.5) leads to
p 	 1.5. We refer to [25] on the derivation and convergence analysis of this scheme. In a
compact form (7) reads

Yn+1
� T = C� T

(
Yn

� T
)
,

where Yn
� T = [y0

� T , . . . , yn
� T ] � Rn+1, where we use the convenient notation from [38]. The

algebraic operator C� T (from Rn+1 to Rn+2) basically constructs the solution at time tn+1

from the solutions at previous times from (7).
We first discuss the absolute stability of Gorenflo’s scheme on a (coarse) grid:

yn+1
� T = –�� T � yn

� T –
n+1∑

i=1

w(� )
i yn+1–i

� T + � T � g(Tn+1),

which can also be rewritten

Yn+1
� T = M� T Yn

� T + Gn+1
� T ,
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where Gn+1
� T = [g(T1), . . . , g(Tn+1)] and the matrix M� T = {m� T ;ij}i,j is defined as

⎧
⎪⎪⎨

⎪⎪⎩

m� T ;ij = 0, i > j,

m� T ;ij = –w(� )
1 – �� t� , i = j – 1,

m� T ;ij = –w(� )
i , i > j + 1,

where {w(� )
i }i is defined in (8). We are interested in the conditional stability of Gorenflo’s

scheme. We then have the following.

Proposition 2.1 For 1 > � > 0, � > 0, Gorenflo’s scheme is conditionally absolutely stable
in the sense that

lim
n
�

∣
∣yn

� T
∣
∣ = 0, for any � T � (� /� )1/� .

Proof We aim to study the limit at infinity of the numerical solution to

D�
t y(t) = –� y(t), y(0) = 1, (9)

when t goes to infinity. As Gorenflo’s method requires a priori y(0) = 0, we reformulate (9)
as

D�
t y(t) = –� y(t) – � , y(0) = 0. (10)

The solution to (9) is hence deduced from (10) by adding 1: y � y + 1. Then Gorenflo’s
scheme with n � 0

yn+1
� T = –�� T � yn

� T –
n+1∑

i=1

w(� )
i yn+1–i

� T – �� T � .

First we notice that w(� )
1 = –� � (–1, 0) and more generally � < –w(� )

i . As a consequence,
we can rewrite the scheme as

yn+1
� T =

(
� – �� T � )

yn
� T –

n+1∑

i=2

w(� )
i yn+1–i

� T + �� T � . (11)

We prove by induction that {yn
� T }n is decreasing and bounded from below by –1:

1. We assume thatyn
� T � yn–1

� T � · · · � y0 = 0. We have

yn
� T =

(
� – �� T � )

yn–1
� T –

n∑

i=2

w(� )
i yn–i

� T – �� T � . (12)

Thus

yn+1
� T – yn

� T =
(
� – �� T � )(

yn
� T – yn–1

� T
)

–
n+1∑

i=2

w(� )
i yn–i+1

� T +
n∑

i=2

w(� )
i yn–i

� T
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=
(
� – �� T � )(

yn
� T – yn–1

� T
)

–
n∑

i=2

w(� )
i

(
yn–i+1

� T – yn–i
� T

)
– w(� )

n+1y0

=
(
� – �� T � )(

yn
� T – yn–1

� T
)

–
n∑

i=2

w(� )
i

(
yn–i+1

� T – yn–i
� T

)
.

Hence, as (i) the coe�cientsw(� )
i are negative, (ii) less than1 in absolute value, and

(iii) y0 = 0, we get

yn+1
� T – yn

� T =
(
� – �� T � )(

yn
� T – yn–1

� T
)

+
n∑

i=2

∣∣w(� )
i

∣∣(yn–i+1
� T – yn–i

� T
)

� 0,

and conclude that at least for� T � (� /� )1/� we getyn+1
� T � yn

� T . Hence, the sequence

{yn
� T }n is increasing. Notice that applying a standard discrete Gronwall inequality

would lead to a similar conclusion and can be used for proving the convergence of

the method.

yn+1
� T – yn

� T �
(
y1

� T – y0
� T

)
exp

(
(
� – �� T � )

| +
n∑

i=2

∣∣w(� )
i

∣∣
)

.

2. We still assume by induction thatyn
� T � –1 for all n � 0. As

yn+1
� T =

(
� – �� T � )

yn
� T –

n∑

i=1

w(� )
i+1yn–i

� T – �� T � (13)

and

yn
� T =

(
� – �� T � )

yn–1
� T –

n∑

i=2

w(� )
i yn–i

� T – �� T � .

Hence, for� – �� T � � 0,

yn
� T � � yn–1

� T –
n∑

i=2

w(� )
i yn–i

� T

and–
∑n

i=2 w(� )
i yn–i

� T � (� – 1). Thus, yet under the assumption� – �� T � � 0 and

usingyn
� T � –1, we have

yn+1
� T =

(
� – �� T � )

yn
� T –

n∑

i=1

w(� )
i+1yn–i

� T – �� T �

�
(
� – �� T � )

yn
� T + (� – 1) – �� T �

�
(
� – �� T � )(

1 + yn
� T

)
– 1

� –1.
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Thus {yn
� T }n is decreasing and bounded then convergent to say y� . Taking the limit in n,

we get

– lim
n
�

n∑

i=2

w(� )
i yn–i

� T =
(
1 – � – �� T � )

y� . (14)

Taking for instance � T = (� /� )1/� in Gorenflo’s scheme gives

yn
� T = –

n∑

i=2

w(� )
i yn–i

� T – � ,

and using (14), we get

y� = (1 – � )y� – � .

We then deduce that the solution is convergent to y� = –1. �

2.2 Parareal algorithm for fractional differential equations
We now explicitly derive a parallel algorithm for FODE. Each interval [Tn; Tn+1] for 0 �

n � N – 1 is then decomposed in R time-subdomains. For 0 � � � NR – 1 (corresponding
to time (n – 1)� T + i� t with 0 � i � R), Gorenflo’s scheme on the fine grid reads

y� +1
� t = –�� t� y�

� t –
� +1∑

j=1

w(� )
j y� +1–j

� t + � t� g(tn;i).

It would be naturally highly inefficient to solve (even in parallel) the FODE on a “full” fine
grid. In order to derive the parareal algorithm, we need to justify that the solution to (2)
can be approximated thanks to a sum of “local” FODEs.

If we decompose [0; T] =
⋃N–1

n=0 [Tn; Tn+1], and for 1 � n � N – 1, we denote by yn the
solution to

1
� (1 – � )

∫ t

Tn

(t – � )–� D� yn(� ) d� = –� yn(t) for t � [Tn; Tn+1], yn(Tn) = yn–1(Tn).

We naturally have the following.

Lemma 1 If � � (0, 1), for any 1 � n � N – 1, we a priori have y|[Tn ;Tn+1] = yn, where y is a
solution to (2).

This is a simple consequence on the fact that fractional derivatives and integrals are
nonlocal operators. The integral decomposition must be carefully designed.

Proof Recall that y1 and yn are the respective solutions to

1
� (1 – � )

∫ t

0
(t – � )–� D� y1(� ) d� = –� y1(t) for t � [0; T1], y1(0) = y0,
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and for n > 1,

1
� (1 – � )

∫ t

Tn

(t – � )–� D� yn(� ) d� = –� yn(t) for t � [Tn; Tn+1], yn(Tn) = yn–1(Tn).

Trivially we have y|[0;T1] = y1. Next, on any interval [Tn; Tn+1], we have yn(Tn) = yn–1(Tn). If
y|[Tn ;Tn+1] = yn, then for t � [Tn; Tn+1]

–�
(
y|[Tn ;Tn+1](t) – yn(t)

)
=

1
� (1 – � )

[∫ Tn

0
(t – � )–� D� y(� ) d�

+
∫ Tn+1

Tn

(t – � )–� (
D� y(� ) – D� yn(� )

)
d�

]

|[Tn ;Tn+1]

is equivalent to

1
� (1 – � )

∫ Tn

0
(t – � )–� D� y(� ) d� |[Tn ;Tn+1] = 0,

which is in general not true. �

The proposition shows that in order to derive a consistent parareal method, it is nec-
essary on each [Tn; Tn+1] to include a nonlocal contribution from [0; Tn], corresponding
to

1
� (1 – � )

∫ Tn

0
(t – � )–� D� y(� ) d� |[Tn ;Tn+1].

Let us now detail the corresponding parareal method. Recall that different schemes can be
used on the coarse and fine levels. Generally speaking, computations on fine grids will be
only performed in parallel, while the coarse grid ones will be performed either in parallel
or sequentially. We now detail the algorithms.

Algorithm The overall parareal algorithm reads using usual compact notations [29, 38]

Yn+1;k
� T = C� T

(
Yn;k

� T
)

– C� T
(
Yn;k–1

� T
)

+F� T
(
Yn;k–1

� t
)
, (15)

where k denotes the domain decomposition in-time index/iteration, and where Yn;k
� T �

Rn+1 represents [y0;k
� T , . . . , yn;k

� T ], that is, the approximate solution on the coarse grid (but
eventually computed by combining fine and coarse grid computations) at iteration k us-
ing the scheme (7). However, the computation of this quantity differs from the parareal
method for ODEs due to the nonlocality of fractional operators. We proceed as follows:

– for k � 1, we computein parallel

F� T
(
Yn;k

� T
)

=
[
F� T

(
y0;k

� T
)
, . . . ,F� T

(
yn;k

� T
)]

,

and whereF� T (yn;k
� T ) denotes the approximate solution to

D�
t y(t) = –� y(t) + g(t), t � [Tn; Tn+1],
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which is equivalent, thanks to (3), to

y(t) = y(Tn) –
�

� (� )

∫ t

Tn

(t – � )� –1y(� ) d� +
1

� (� )

∫ t

Tn

(t – � )� –1g(� ) d� ,

with initial data given atTn, and computedpartially on a “ne grid {tn;0, . . . , tn;R} �

[Tn; Tn+1]R+1. Unlike the di�erential case, the nonlocality in time requires a special care.

Indeed, on any interval[Tn; Tn+1], we still need to include a contribution of former

times (t < Tn). In other words, this leads to a potentially very computationally complex

method, even if it is solved in parallel. More speci“cally, fort � [Tn; Tn+1], we rewrite

I �
t y(t) =

1
� (� )

∫ t

0
(t – � )� –1y(� ) d�

=
1

� (� )

∫ Tn

0
(t – � )� –1y(� ) d� +

1
� (� )

∫ t

Tn

(t – � )� –1y(� ) d� .

In particular, for anyTn � t � Tn+1, we also have

y(t) = y(0) –
�

� (� )

[ n–1∑

j=0

∫ Tj+1

Tj

(t – � )� –1y(� ) d� +
∫ t

Tn

(t – � )� –1y(� ) d�

]

+
1

� (� )

∫ t

0
(t – � )� –1g(� ) d� .

We propose to approximate the “rst integral (history part) using a coarse grid approx-

imation at iterationk, and the second one on a “ne grid. More speci“cally, we approx-

imate on thecoarsegrid

Hn(t) = –
�

� (� )

∫ Tn

0
(t – � )� –1y(� ) d� .

Notice that we do not have to deal with singularities on this integral, any (higher order)

quadrature rule can be utilized. We approximate this term attn;i = Tn + i� t, say by

(using a rectangle rule for simplicity)

Hn;i = –� T � �
n∑

j=1

(n – j + i/R)� – (n – j – 1 + i/R)�

� (� + 1)
yj

� T , (16)

while the local part

Ln(t) =
1

� (� )

∫ t

Tn

(t – � )� –1y(� ) d�

is approximated using the“ne grid on [Tn; Tn+1]. The local part can simply be rewritten

as

Ln(t) =
1

� (� )

∫ t–Tn

0
(t – Tn – � )� –1y(� + Tn) d� ,
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Figure 2 Parareal algorithm with fine/coarse grid in F� T -step

with y(Tn) given. For instance,

Ln(Tn+1) =
1

� (� )

∫ � T

0
(� T – � )� –1y(� + Tn) d� .

Over [Tn; Tn+1], that is,Rn � i + Rn � (R +1)n with 0 � n � N –1 and0 � i � R, rather

than computing on the “ne grid a complete Goren”o scheme

ynR+i+1;k
� t = –�� t� ynR+i;k

� t –
nR+i+1∑

j=1

w(� )
j ynR+i+1–j;k

� t + � t� g(tn;i),

which would be, as already mentioned above, highly ine�cient from the computational

point of view. We compute in parallel (indexed here byn)

ynR+i+1;k
� t = –�� t� ynR+i;k

� t –
i+1∑

j=1

w(� )
j ynR+i+1–j;k

� t + Hn;i + � t� g(tn;i),

whereHn;i is de“ned in (16), that is, the history contribution (from[0; Tn]) is computed

on the coarse grid and is consistent withD�
t y, see Fig.2. In other words, the contribu-

tion, the “ne-grid
∑nR+i+1

j=1 w(� )
j ynR+i+1–j;k

� t on [0; Tn], is replaced by a coarse grid approx-

imation Hn;i +
∑i+1

j=1 w(� )
j ynR+i+1–j;k

� t . These algebraic equations are explicit and are solved

with linear complexity. It is important to notice that at this stage, and say at timetn,

each processor should have access to the solution on the coarse grid at any time prior

to tn, which is however cheap from the computational and memory usage points of

view. The “ne grid (local part) contribution could also be approximated using a rect-

angle rule; recall that the parareal method does not require that the same method be

used on the “ne-grid and coarse-grid.

– for k � 1, the coarse grid contribution (prediction) reads formally

C� T
(
Yn;k

� T
)

=
[
C� T

(
y0;k

� T
)
, . . . ,C� T

(
yn;k

� T
)]

,

and whereC� T (yn;k
� T ) denotes the approximate solution to

D�
t y(t) = –� y(t) + g(t), t � [Tn; Tn+1],

computed on the coarse grid using Goren”o•s scheme (7).
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The convergence criterion is as follows. We repeat the iterations for 1 � k � k� , until
convergence (say in � � -norm on Rn+1)

max
1� n� N

∥∥Yn;k+1
� T – Yn;k

� T
∥∥

� � 
 ,

where 
 is a small fixed parameter, and the corresponding k is denoted by k� � N� . The
converged parareal-Gorenflo solution at final time is then YN ;k�

� T .
We propose an analysis of the order of the parareal method for the fractional equation

D�
t y = –� y,

approximated by the parareal-Gorenflo scheme. We propose to follow and then extend
the analysis presented in [29].

Proposition 2.2 Assume that the algorithm on the fine grid is exact. Then, at iteration k,
the parareal scheme has order k, that is, there exists ck(T) such that

∣
∣yn;k

� T – y(Tn)
∣
∣ + max

t� [Tn ;Tn+1]

∣
∣yn;k

� t (t) – y(t)
∣
∣ � ck(T)� Tk for all 0 � n � N – 1,

where y denotes the exact solution.

Notice that the extension to the case where the fine grid resolution is obtained by an
approximate numerical method (as described in this paper) is more technical and is not
presented here (see discussion below), but as in the classical parareal method for ODEs a
similar conclusion is expected. We also refer to [38], where the authors arrive at the same
conclusion with a different method. In order to prove the above proposition, we follow the
same steps as [29].

Proof The proof relies on the estimate of the jumps defined as follows:


 n+1;k = –�� T � 
 n;k –
n+1∑

i=1

w(� )
i 
 n+1–i;k + Sn;k ,

and we define

� n;k :=
(

 1;k , . . . , 
 n;k)T , Sn;k :=

(
0, S1;k , . . . , Sn–1;k)T , Yn;k :=

(
y1;k

� T , . . . , yn;k
� T

)T ,

where

Sn;k = yn–1;k
k (Tn) – yn;k

� T = G(� , � T)yn–1;k
� T – yn;k

� T ,

where we have denoted by G the exact semi-group for the FODE. We next introduce the
lower triangular matrix Mn in Rn× n

Mn� n;k = Sn;k ,
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where the pth line M(p)
n of Mn is defined as

M(p)
n =

[
–w(� )

p–1, . . . , –w(� )
1 – �� T � , 1, 0, . . . , 0

]
,

and Yn;k+1 = yn;k + � n;k = yn;k + M–1
n Sn;k . In particular

yn;k+1
� T = yn–1;k

� T (Tn) + 
 n;k = G(� , � T)yn–1;k
� T + 
 n;k .

We denote � n;k+1 = yn;k+1
� T – y(Tn), hence

� n;k+1 = G(� , � T)yn–1;k
� T – G(� , � T)y(Tn–1)

+
(

M–1
n

(
0, G(� , � T)y0;0

� T – y1;k
� T , . . . , G(� , � T)yn–2;k

� T – yn–1;k
� T

)T)
n.

Then

� n;k+1 = G(� , � T)� n–1;k +
(

M–1
n

(
0, G(� , � T)y0

� T – y1;k
� T , . . . , G(� , � T)yn–2;k

� T – yn–1;k
� T

)T)
n,

where we assume by induction assumption that |� n;k | � ck(T)� Tk . Then we rewrite

G(� , � T)yp–1;k
� T – yp;k

� T

= G(� , � T)
(
yp–1;k

� T – G
(
� , (p – 1)� T

)
y0

� T
)

–
(
yp;k

� T – G(� , p� T)y0
� T

)

= G(� , � T)� p–1;k – � p;k .

Next, we denote the triangular matrix Nn = {Nij}1� i,j� n := M–1
n

� n;k+1 = G(� , � T)� n–1;k +
n∑

j=2

Nnj
(
G(� , � T)� j–2;k – � j–1;k).

As Nnn = 1 and Nn–1n = 0, and using exactly similar arguments as in [29] (although it is
algebraically a bit more heavy), we get that there exists c > 0 such that

∣
∣� n;k+1∣∣ � c� T2

n–1∑

j=0

∣
∣� j;k∣∣.

That is, as n� T � T , there exists ck+1(T) > 0 such that

� n;k+1 � ck+1(T)� Tk+1.

This concludes the proof. �

Denoting by yn;k
� T (resp. yn;k

� t ) the solution on the coarse (resp. fine) grid, we get

∣
∣yn;k

� T – y(Tn)
∣
∣ �

∣
∣yn;k

� T – yn;k
� t

∣
∣ +

∣
∣yn;k

� t – y(Tn)
∣
∣.
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Figure 3 Numerical experiment 2. � Yn
exact – Yn

� T � 2 as function of k with (Left) R = 4, � T = 2–6 and
� = 0.2, 0.4, 0.6, 0.8. (Right) � T = 2–3 and R = 2, 4, 8, 16

Then from y1;k
� T – G(� , � T)y0

� T we have

∣∣y1;k
� T – G(� , � T)y0

� T
∣∣ �

∣∣y1;k
� T – y1;k

� t
∣∣ +

∣∣y1;k
� t – G(� , � T)y0

� T
∣∣.

On the fine grid |y1;k
� t – G(� , � T)y0

� T | � c� t� T . This comes from the fact that the length
of the interval is � T and � t is the fine grid time step. By induction, we have the following.

Corollary 2.1 At iteration k, the parareal algorithm such that Gorenflo’s scheme is used
on both the coarse and fine grids is an order k method, that is,

∣∣yn;k
� T – y(Tn)

∣∣ + max
t� [Tn ;Tn+1]

∣∣yn;k
� t (t) – y(t)

∣∣ � ck(T)� Tk for all 0 � n � N – 1.

A detailed proof can actually be deduced from the theorem of convergence presented
in [38].

Numerical experiment 2. We present some simple experiments to illustrate the method
developed above. We still consider a benchmark presented in [17]: for 0 < � < 1,

D�
t y(t) = –y(t) + t2 +

2t2–�

� (3 – � )
, y(0) = 0, t � [0, 1],

for which an explicit solution yexact(t) = t2 exists. We denote by Yn;k
� T the parareal/Gorenflo

solution projected on the coarse grid at parareal iteration k. For different values of � , we
then report the error max1� n� N � Yn

exact – Yn;k
� T � 2 in logscale in Fig. 3 (Left) for different val-

ues of � , with � t = � T/R and R = 8, � T = 2–6. The test shows in particular the strong
dependence of the convergence rate as a function of the fractional derivative order. We
also report in Fig. 3 (Right) for � = 0.5, � T = 2–3 and respectively with R = 2, 4, 8, 16 sub-
domains the � � -norm error as function of k, that is,

max
1� n� N

∥
∥Yn;k+1

� T – Yn;k
� T

∥
∥

� .

In Fig. 4, we finally report the graph of convergence, calculated from max1� n� N � Yn;k�
� T –

y(Tn)� � as a function of coarse time-steps � T = 1/2i for i = 3, 4, 5, 6 and R = 4 subdo-
mains. All these experiments illustrate the convergence and efficiency of the parareal
method combined with Gorenflo’s scheme.
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Figure 4 Numerical experiment 2. Convergence
graph for R = 4

2.3 Computational complexity
We discuss the computational complexity and data storage of Gorenflo’s scheme for N
time iterations on a given time grid. At iteration 1 � n � N , the number of operations for
updating the solution is linear in n, that is, the overall computational complexity is O(N2).
Moreover, at iteration N , O(N) data must be stored. Regarding the computational com-
plexity of the parareal approach, we denote by N the number of iterations on the coarse
grid and NR on the fine grid. At each parareal iteration k, (i) O(N2) operations are per-
formed sequentially on the coarse grid, (ii) O(NR2) operations on each fine grid covering
[Tn; Tn+1]. The total number of operations is hence O(k� N(N + R2)). On p processors, the
complexity is O(k� N(N + R2)/p) per processor. Notice that a sequential computation on
a fine grid requires O(N2R2) operations.

3 Space-time parallel algorithm for linear fractional in space-time differential
equations

The approach which was presented above can be extended to fractional in space and time
equation:

D�
t u(t, x) = –� (x)D�

x u(t, x), u(0, x) = u0 � L2(R), (17)

with 0 < � < 1, � > 0, and � � C0
b(R) on [0; T]× R and where D�

t denotes Caputo’s derivative
and D�

x denotes Riesz’ derivative. In this case it is possible to implement a coupled pseu-
dospectral parareal method. Formally, denoting by û(t, ·) = Fxu(t, ·) the Fourier transform
in space (where 	 denotes the co-variable associated with x), we first assume that � is a
real constant. We directly have

D�
t û(t, 	 ) = –� (i	 )� û(t, 	 ).

We can then directly apply the parareal-Gorenflo’s method derived above. We set y	 (t) :=
(i	 )� û(t, 	 ), hence

D�
t y	 (t) = –� y	 (t).

In this case the Fourier transform can easily be implemented in parallel, while the time-
fractional derivative can be parallelized using the parareal method. However, whenever �
is no more constant, even the sequential algorithm is not that simple anymore.
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3.1 Sequential algorithm
When � is space-dependent, it is no more possible to efficiently directly apply a Fourier
transform in space. In the latter case, we detail the proposed algorithm and we will then
focus on the parallelization aspects. We denote the spatial grid points and indices as fol-
lows:

DNx = {xk}k� ONx , ONx = {k � N/k = 0, . . . , Nx – 1},

and the uniform mesh size by � x := xk+1 – xk = 2Lx/Nx for the entire domain D :=
[–Lx, Lx]. The corresponding discrete wavenumbers are defined by 	 p = p /Lx for p �
PNx := {–Nx/2, . . . , Nx/2 – 1}. In practice, (17) is hence solved on a bounded spatial domain
[–Lx, Lx] with periodic boundary conditions. Regarding the pseudospectral approxima-
tions, we use the following notation:

ûp(t) =
Nx–1∑

k=0

u(t, xk)e–i	 p(xk+Lx), ũk(t) =
1

Nx

Nx/2–1∑

p=–Nx/2

ûp(t)ei	 p(xk+Lx). (18)

That is, ûp(t) is an approximate discrete Fourier transform with and ũk(t) is an approxima-
tion to u(t, xk) obtained through an approximate inverse discrete Fourier transform with,
for some c > 0,

max
k� ONx

∣
∣̃uk(t) –F–1(u)(t, xk)

∣
∣ � cN1/2–s

x
∥
∥u(t, ·)

∥
∥

Hs ,

for s > 1/2 (in 1d) and u(t, ·) � L1 � Hs periodic. In general, we do not have u(t, xk) = ũk(t).
Such pseudospectral projection is for instance studied in [8]. Typically, the high modes
which are neglected in the above approximation lead to the following aliasing error esti-
mates for u(t, ·) � Hr : there exists c > 0 such that

∥∥̃̂u(t, ·) – u(t, ·)
∥∥

Hs � cNs–r
x

∥∥u(t, ·)
∥∥

Hr ,

for some r > s > 1/2 (in 1d) and u(t, ·) � L1 � Hr periodic. We yet refer to [8] for details.
We then introduce a discrete operator [[D�

x ]] approximating F–1((i	 )� F ), that is,
D�

x u(t, xk) is approximated by

[[
D�

x
]]

uk(t) :=
1

Nx

Nx/2–1∑

p=–Nx/2

(i	 p)� ̂̃up(t)ei	 p((xk+Lx)+� ). (19)

This approximation was analyzed in [6] for approximating space fractional partial dif-
ferential equations or the Dirac equation in [5]. Interestingly, when solving the equation
as an initial boundary value problem (on a bounded domain [–Lx, Lx]), the above spec-
tral approach is still applicable. Indeed, imposing periodic boundary conditions u(t, Lx) =
u(t, –Lx), it is in principle possible to include absorbing layers [–Lx, –L�

x] � [L�
x , Lx] in (17)

in order to avoid (i) potential artificial wave reflections and to absorb (ii) periodic waves
traveling from one boundary to the next. Basically, denoting by S an absorbing function

S(x) =

⎧
⎨

⎩
1 if |x| < L�

x ,

1 + ei� �̃ (x) if L�
x � | x| < Lx,
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where the absorbing function �̃ : D 
 R is defined [3] as (� � N� )

�̃ (x) =

⎧
⎨

⎩
� (|x| – Lx), L�

x � | x| < Lx,

0, |x| < L�
x

(20)

with traditional absorbing function � absorbing functions. The rotation angle � is usually
fixed by the problem under study. Hence the equation is for instance transformed into

D�
t u(t, x) = –

� (x)
S� (x)

D�
x u(t, x), u(0, x) = u0.

From a practical point of view, the inclusion of the absorbing function in (17) does not
complexify the approximation or analysis. In the following, we can simply consider that S
is included in � .

Hence, the parallel-in-time algorithm is applied to any k � ONx with � k = � (xk) to

D�
t uk(t) = –� k

[[
D�

x
]]

uk(t).

It was shown and numerically observed in [2, 5] that applied to fractional in-space
(only) partial differential equations or to partial differential equations this (i) matrix-free,
(ii) Fourier-based pseudospectral approximation allows for spectral convergence, while
avoiding explicit convolution product computations. We then rewrite

uk(t) = uk(0) –
� k

� (� )

∫ t

0
(t – � )� –1[[D�

x
]]

D� uk(� ) d� .

This pseudospectral-type approach was also used for instance for fractional and par-
tial differential equations in [1, 3, 4, 6]. The pseudospectral-Gorenflo method reads on
a (coarse) time-grid, Tn = n� T with n = 0, . . . , Nx and k � ONx

un+1
k = –�� T � un

k – � k

n+1∑

i=1

w(� )
i

[[
D�

x
]]

un+1–i
k , (21)

where un = {un
k }k� ONx approximates {u(Tn, xk)}k� ONx and

[[
D�

x
]]

un
k :=

1
Nx

Nx/2–1∑

p=–Nx/2

(i	 p)� ̂̃un
pei	 p((xk+Lx)+� ). (22)

Denoting � := [� 1, . . . , � Nx ]T � 1 � RNx× Nx , and 1 the unit vector in RNx , the numerical
scheme reads overall

un+1 = –� T � � un – �
n+1∑

i=1

w(� )
i

[[
D�

x
]]

un+1–i. (23)

From traditional numerical analysis (see [8, 10, 11, 24, 26]), we expect that (i) for u0 �

Hs(R), and (ii) denoting un the pseudospectral parareal approximation of the u(Tn, ·), there
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Figure 5 Numerical experiment 3. (Left) Graph of convergence � u
NT
� T – uexact(T , ·)� 2 as function of � T in

logscale. (Right) Solution to (24) at t = T

exists c(T ; u0; k) > 0 such that after k parareal iterations

sup
1� n� NT

∥
∥un – u(Tn, ·)

∥
∥

2 � c(k; T ; u0)
(
� Tk + N–s

x
)
,

where � · � 2 is the � 2(� xZ).
Numerical experiment 3. In order to illustrate the spectral convergence in space, we

propose a simple test over [0; T] × [–Lx, Lx] with periodic boundary conditions at ± Lx

D1/2
t u(t, x) = –� (x)D1/2

x u(t, x), u(0, x) = u0, (24)

with u0(x) = exp(–x2 + ik0x) cos( x/2)/N , where k0 = –1, T = 0.1, Lx = 25, � (x) =
exp(–x2/100), and N is a normalization constant such that � u0� L2 = 1. As far as we know,
there is no explicit solution to this equation. We choose � T = 10–2 and make � x vary. We
report in logscale the � 2-norm error with a solution of reference at time t = T (computed
on a 5 × 105-point grid) as function of the space step from to 64 × 10–4 to 4 × 10–4 in
Fig. 5 (Left), and the solution at final time T (Right). The experiment again shows the nice
convergence properties of the proposed parallel methodology.

3.2 Space and time parallelization
In the following, we assume that p nodes/processors are used to solve in parallel a frac-
tional space-time differential equations.

Parallelization in space. The parallelization in space is relatively straightforward and is
two-fold. We assume in the following that we have access to p processors.

1. It is “rst based on the parallelization of the discrete Fourier transform (or fast Fourier

transform), namely of[[D�
x ]]un

k , which approximatesF–1((i	 )� F )u(t, xk). The

parallelization in space is hence “rst based on the parallel computation of “nite sums

involved in the discrete Fourier transforms. This is typically implemented thanks to

FFTW [18] on ONx andPNx .

2. Once[[D�
x ]]un is computed, in order to update (in time) the approximate solution,

we decompose

un
� =

{
un

k+(� –1)N (p)
x

}
1� k� N (p)

x
, un =

{
un

k+(� –1)N (p)
x

}
1� k� N (p)

x ;1� � � p,
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Figure 6 Parallelization in space and time

whereN (p)
x = Nx/p and1 � � � p. The following algorithm isembarrassinglyparallel

and does not require any communication: for� = 1, . . . , p,

un+1
� = –� T � � un

� – �
n+1∑

i=1

w(� )
i

[[
D�

x
]]

un+1–i
� . (25)

For a very large number of processors p � N\{ 0}, the first step of this parallelization in
space, more specifically the FFT parallelization, can be become inefficient (corresponding
to the discrete Fourier transform parallelization), in particular of course if p = O(Nx). The
latter condition can indeed occur with high performance computers which can possess
hundreds of thousands of processors. A coupling with parallelization in time becomes
relevant and is thus discussed in the following paragraph.

Parallelization in space and time. For a given number of processors p, we denote by
px and pt two integers such that p = px + pt . The key element in the simultaneous paral-
lelization in space and time is the commutation of D�

t and � (x)D�
x , that is, [D�

t , � (x)D�
x ] = 0,

where [·, ·] is the operator commutator. Whenever p is very large, we propose a paralleliza-
tion in space and time using px (resp. pt) processors for the parallelization in space (resp.
time). More specifically, we decomposeONx in px disjoint subdomainsONx =

⋃
� =1,...,px O

(� )
Nx

and pt processors are used for the parallelization in time. That is, for r� � O(� )
Nx with

� � { 1, . . . , px}, we perform a parallelization in time, as described in Sect. 2. The paralleliza-
tion in space requires standard FFT parallelizations (Step 1) to compute on px processors
[[D�

x ]]un and Algorithm (25) (Step 2) which is embarrassingly parallel and

un+1
� T ;� = C� T

(
un

� T ;�
)

– C� T
(
un

� T ;�
)

+F� T
(
un;

� t;�
)
, (26)

where we have denoted by un
� T ;� = {un;k

� T ;� }k the coarse grid in-time approximation of u (i)
at time Tn, (ii) iteration k, (iii) and r� � O(� )

Nx . The parallelization in time requires commu-
nications, see Fig. 6.

4 Conclusion
We have proposed a simple extension of the parareal method combined with a fractional
equation solver, namely Gorenflo’s scheme. The same strategy, based on the parareal
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method, can naturally be adapted to other FODE solvers and still benefit from the out-
standing convergence properties of the parareal method. Some mathematical properties,
such as stability, accuracy, etc., were also proposed along with numerical experiments
(Figs. 1, 4). The latter allowed to illustrate the analytical properties proven in the paper
and to show the feasibility of the approach from a practical point of view. Extension to
parallel algorithms to space-time fractional PDE solvers was also proposed. The spatial
parallelization was relying on (i) the Riesz derivative and (ii) the parallelization of the fast
Fourier transform, and was successfully combined with the parareal-based FODE solver,
see Fig. 5.

The extension of the proposed strategy to nonlinear scalar equations is currently inves-
tigated as well as its application to fractional physical models.
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