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1 Introduction
In this paper, we consider the initial value problems of the second-order hybrid functional
differential equation (in short SHDE):

⎧
⎨

⎩

d2

dt2 ( x(t)–h(t,x(ϕ1(t)))
f (t,x(ϕ2(t))) ) = g(t, x(ϕ3(t))) t ∈ J = [0, T],

x(0) = h(0, x(0)) and x′(0) = dh
dt |t=0,

(1.1)

where f ∈ C(J × R,R \ {0}), g ∈ C(J × R,R), h ∈ C(J × R, R), and ϕi ∈ C(J) with ϕi(0) = 0,
i = 1, 2, 3. By a solution of SHDE (1.1) we mean a function x ∈ C(J ,R) such that

(i) the function t → x(t)–h(t,x(ϕ1(t)))
f (t,x(ϕ2(t))) is continuous for each x ∈ C(J ,R) and

(ii) x satisfies the equations in (1.1).
The importance of the investigations of hybrid differential equations lies in the fact that
they include several dynamic systems as special cases. The consideration of hybrid dif-
ferential equations is implicit in the works of Krasnoselskii [1] and extensively treated in
several papers on hybrid differential equations with different perturbations. See [2–9] and
[10] and the references therein. This class of hybrid differential equations includes the per-
turbations of original differential equations in different ways.

Here we study the existence of solutions for the initial value problem of second-order
hybrid differential equation (1.1). Some remarks and an example to illustrate our results
are given.
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This paper is organized as follows: In Sect. 2, we recall some useful preliminaries. In
Sect. 3, we prove an auxiliary theorem related to the linear variant of problem (1.1) and
state sufficient conditions which guarantee the existence of solutions to problem (1.1).
Also, conditions are added to our problem in order to obtain a new existence theorem,
and an illustrative example is presented.

2 Preliminaries
In this section, we introduce some basic definitions and preliminary facts which we need
in the sequel.

Definition 2.1 ([11]) An algebra X is a vector space endowed with an internal composi-
tion law noted by

(·) : X × X → X, (x, y) → x.y,

which is associative and bilinear. A normed algebra is an algebra endowed with a norm
satisfying the following property:

For all x, y ∈ X, we have

‖x.y‖ ≤ ‖x‖.‖y‖.

A complete normed algebra is called a Banach algebra.

Definition 2.2 ([11]) Let X be a normed vector space. A mapping T : X → X is called
D-Lipschitzian if there exists a continuous and nondecreasing function φ : R+ →R

+ such
that

‖Tx – Ty‖ ≤ φ
(‖x – y‖)

for all x, y ∈ X, where φ(0) = 0.

Sometimes, we call the function φ to be a D-function of the mapping T on X. Obvi-
ously, every Lipschitzian mapping is D-Lipschitzian. Further, if φ(r) < r, for r > 0, then T
is called a nonlinear contraction on X. An important fixed point theorem that has been
commonly used in the theory of nonlinear integral equations is a generalization of the
Banach contraction mapping principle proved in [11].

Recently Dhage in [12] has proven a fixed point theorem involving three operators in
a Banach algebra by blending the Banach fixed point theorem with Shauder’s fixed point
principle.

Lemma 2.3 ([13]) Let S be a nonempty, closed convex, and bounded subset of a Banach
algebra X, and let A, C : X → X and B : S → X be three operators such that:

(a) A and C are Lipschitzian with Lipschitz constants δ and ρ , respectively;
(b) B is compact and continuous;
(c) x = AxBy + Cx ⇒ x ∈ S for all y ∈ S;
(d) δM + ρ < r for r > 0 where M = ‖B(S)‖.

Then the operator equation AxBx + Cx = x has a solution in S.
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3 Main results
In this section, we formulate our main result for SHDE (1.1) depending on the fixed point
theorems due to Dhage [13].

Let X = C(J ,R) of the vector of all real-valued continuous functions on J = [0, T]. We
equip the space X with the norm ‖x‖ = supt∈J |x(t)|. Clearly, C(J ,R) is a complete normed
algebra with respect to this supremum norm. Consider the following assumptions:

(A1) The functions f : J ×R →R\{0} and h : J ×R→ R are continuous, and there exist
two functions k, L ∈ C(J ,R+), with norms ‖k‖ and ‖L‖ respectively, such that

∣
∣h(t, x) – h(t, y)

∣
∣ ≤ k(t)|x – y|,

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ L(t)|x – y|

for all t ∈ J and x, y ∈ R.
(A2) g : J ×R → R. There exist a function p ∈ C(J ,R+) and a continuous nondecreasing

function Ψ : [0,∞) → (0,∞) such that

∣
∣g(t, x)

∣
∣ ≤ p(t)Ψ

(|x|), ∀(t, x) ∈ J ×R.

(A3) ϕi : J → J are continuous functions with ϕi(0) = 0, i = 1, 2, 3.
(A4) There exists a number r > 0 such that

r ≥ H + G‖p‖Ψ (r) T2

2

1 – (‖L‖‖p‖Ψ (r) T2
2 + ‖k‖)

, (3.1)

where G = supt∈J |f (t, 0)|, H = supt∈J |h(t, 0)|, and

‖L‖‖p‖Ψ (r)
T2

2
+ ‖k‖ < 1. (3.2)

Now, we shall prove the following lemma.

Lemma 3.1 Assume that hypotheses (A1) – (A4) hold. Then a function x ∈ C(J ,R) is a
solution of SHDE (1.1) if, and only if, it satisfies the following quadratic integral equation:

x = h
(
t, x

(
ϕ1(t)

))
+ f

(
t, x

(
ϕ2(t)

))
∫ t

0
(t – s)g

(
s, x

(
ϕ3(s)

))
ds. (3.3)

Proof First, assume that x is a solution of SHDE (1.1), applying integration to both sides
of (1.1) from 0 to t, we obtain

d
dt

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)

–
d
dt

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)∣
∣
∣
∣
t=0

=
∫ t

0
g
(
s, x

(
ϕ3(s)

))
ds.

On the other hand (due to the fact that f (0, x(0)) �= 0 and ϕi(0) = 0, i = 1, 2, 3), we have

d
dt

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)∣
∣
∣
∣
t=0

=
f (0, x(0))(x′(0) – dh

dt |t=0) – (x(0) – h(0, x(0))) df
dt |t=0

f 2(0, x(0))
= 0.
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Since

x(0) = h
(
0, x(0)

)
,

x′(0) =
dh
dt

∣
∣
∣
∣
t=0

,

therefore, we get

d
dt

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)

=
∫ t

0
g
(
s, x

(
ϕ3(s)

))
ds. (3.4)

Again integrating both sides of (3.4) from 0 to t, we obtain

x(t) – h(t, x(ϕ1(t)))
f (t, x(ϕ2(t)))

–
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

∣
∣
∣
∣
t=0

=
∫ t

0
(t – s)g

(
s, x

(
ϕ3(s)

))
ds, (3.5)

and we have

x(t) – h(t, x(ϕ1(t)))
f (t, x(ϕ2(t)))

∣
∣
∣
∣
t=0

=
x(0) – h(0, x(0))

f (0, x(0))
= 0.

Hence, Eq. (3.5) becomes

x(t) – h(t, x(ϕ1(t)))
f (t, x(ϕ2(t)))

=
∫ t

0
(t – s)g

(
s, x

(
ϕ3(s)

))
ds,

i.e.,

x(t) = h
(
t, x

(
ϕ1(t)

))
+ f

(
t, x

(
ϕ2(t)

))
∫ t

0
(t – s)g

(
s, x

(
ϕ3(s)

))
ds.

Thus, Eq. (3.3) holds.
Conversely, assume that x satisfies Eq. (3.3). Then dividing by f (t, x(t)) and making direct

differentiation for both sides of Eq. (3.3), we obtain

d
dt

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)

=
∫ t

0
g
(
s, x

(
ϕ3(s)

))
ds.

Then, again by direct differentiation, Eq. (1.1) is satisfied.

d2

dt2

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)

= g
(
t, x

(
ϕ3(t)

))
.

Again, substituting t = 0 in Eq. (3.3) (due to the fact that f (0, x(0)) �= 0 and ϕi(0) = 0, i =
1, 2, 3) yields

x(0) – h(0, x(0))
f (0, x(0))

→ 0 as t → 0,

hence x(0) = h(0, x(0)), and

d
dt

(
x(t) – h(t, x(ϕ1(t)))

f (t, x(ϕ2(t)))

)∣
∣
∣
∣
t=0

= 0,
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f (t, x(t))(x′(t) – dh
dt ) – (x(t) – h(t, x(t))) df

dt
f 2(t, x(t))

∣
∣
∣
∣
t=0

= 0,

f
(
0, x(0)

)
(

x′(0) –
dh
dt

∣
∣
∣
∣
t=0

)

–
(
x(0) – h

(
0, x(0)

))df
dt

∣
∣
∣
∣
t=0

= 0.

Since we have proven x(0) = h(0, x(0)), this yields x′(0) = dh
dt |t=0. The proof is completed. �

3.1 Existence of solution
Now, our target is to prove the following existence theorems.

Theorem 3.2 Assume that hypotheses (A1) – (A4) hold. Then SHDE (1.1) has at least one
solution defined on J .

Proof By Lemma 3.1, problem (1.1) is equivalent to the quadratic functional integral equa-
tion (3.3). Set X = C(J ,R) and define a subset S of X as

S :=
{

x ∈ X,‖x‖ ≤ r
}

,

where r satisfies inequality (3.1).
Clearly S is a closed, convex, and bounded subset of the Banach space X.
Corresponding to the functions f , g , and h, we introduce the three operators A : X → X,

B : S → X, and C : X → X defined by

(Ax)(t) = f
(
t, x

(
ϕ2(t)

))
, t ∈ J , (3.6)

(Bx)(t) =
∫ t

0
(t – s)g

(
s, x

(
ϕ3(t)

))
ds, t ∈ J , (3.7)

(Cx)(t) = h
(
t, x

(
ϕ1(t)

))
, t ∈ J . (3.8)

Then the integral equation (3.3) can be rewritten as follows:

x(t) = Ax(t) · Bx(t) + Cx(t), t ∈ J . (3.9)

We shall show that A, B, and C satisfy all the conditions of Lemma 2.3. This will be achieved
in the following series of steps.

Step 1. To show that A and C are Lipschitzian on X, let x, y ∈ X. So

∣
∣Ax(t) – Ay(t)

∣
∣ =

∣
∣f

(
t, x

(
ϕ2(t)

))
– f

(
t, y

(
ϕ2(t)

))∣
∣

≤ L(t)
∣
∣x

(
ϕ2(t)

)
– y

(
ϕ2(t)

)∣
∣ ≤ ‖L‖‖x – y‖,

which implies ‖Ax – Ay‖ ≤ ‖L‖‖x – y‖ for all x, y ∈ X. Therefore, A is a Lipschitzian on X
with Lipschitz constant ‖L‖.

Similarly, for any x, y ∈ X, we have

∣
∣Cx(t) – Cy(t)

∣
∣ =

∣
∣h

(
t, x

(
ϕ1(t)

))
– h

(
t, y

(
ϕ1(t)

))∣
∣

≤ k(t)
∣
∣x

(
ϕ1(t)

)
– y

(
ϕ1(t)

)∣
∣ ≤ ‖k‖‖x – y‖.
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Consequently,

‖Cx – Cy‖ ≤ ‖k‖‖x – y‖.

This shows that C is a Lipschitz mapping on X with the Lipschitz constant ‖k‖.
Step 2. To prove that B is a compact and continuous operator on S into X.
First we show that B is continuous on X. Let {xn} be a sequence in S converging to a point

x ∈ S. Then, by the Lebesgue dominated convergence theorem, let us assume that t ∈ J ,
and since ϕ3(t) is a continuous function and g(t, x(t)) is continuous in x, then g(t, xn(ϕ3(t)))
converges to g(t, x(ϕ3(t))), (see assumption (A2)). Applying the Lebesgue dominated con-
vergence theorem, we get

lim
n→∞ Bxn(t) = lim

n→∞

∫ t

0
(t – s)g(s, xn

(
ϕ3(s)

)
ds

=
∫ t

0
(t – s)g(s, x

(
ϕ3(s)

)
ds

= Bx(t).

Thus, Bxn → Bx as n → ∞ uniformly on R+, and hence B is a continuous operator on S
into S.

Now, we show that B is a compact operator on S. It is enough to show that B(S) is a
uniformly bounded and equicontinuous set in X. To see this, let x ∈ S be arbitrary. Then,
by hypothesis (A2),

∣
∣Bx(t)

∣
∣ ≤

∫ t

0
(t – s)

∣
∣g(s, x

(
ϕ3(s)

)∣
∣ds

≤
∫ t

0
(t – s)p(t)Ψ

(|x|)] ds

≤ ‖p‖Ψ (r)
∫ t

0
(t – s) ds

≤ ‖p‖Ψ (r)
T2

2
= K

for all t ∈ J . Taking supremum over t,

∥
∥Bx(t)

∥
∥ ≤ K

for all x ∈ S. This shows that B is uniformly bounded on S.
Now, we proceed to showing that B(S) is also an equicontinuous set in X. Let t1, t2 ∈ J ,

and x ∈ S (without loss of generality assume that t1 < t2), then we have

(Bx)(t2) – (Bx)(t1)

≤
∫ t2

0
(t2 – s)g

(
s, x

(
ϕ3(s)

))
ds –

∫ t1

0
(t1 – s)g

(
s, x

(
ϕ3(s)

))
ds

≤
∫ t1

0
(t2 – s)g

(
s, x

(
ϕ3(s)

))
ds +

∫ t2

t1

(t2 – s)g
(
s, x

(
ϕ3(s)

))
ds
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–
∫ t1

0
(t1 – s)g

(
s, x

(
ϕ3(s)

))
ds

≤
∫ t1

0

[
(t2 – s) – (t1 – s)

]
g
(
s, x

(
ϕ3(s)

))
ds +

∫ t2

t1

(t2 – s)g
(
s, x

(
ϕ3(s)

))
ds

and

∣
∣(Bx)(t2) – (Bx)(t1)

∣
∣

≤
∫ t1

0
(t2 – t1)

∣
∣g

(
s, x

(
ϕ3(s)

))∣
∣ds +

∫ t2

t1

(t2 – s)
∣
∣g

(
s, x

(
ϕ3(s)

))∣
∣ds

≤
∫ t1

0
(t2 – t1)p(t)Ψ

(|x|)ds +
∫ t2

t1

(t2 – s)p(t)Ψ
(|x|)ds

≤ ‖p‖Ψ (r)
[

T(t2 – t1) +
∫ t2

t1

(t2 – s) ds
]

≤ ‖p‖Ψ (r)
[

T(t2 – t1) +
(t2 – t1)2

2

]

,

i.e.,

∣
∣(Bx)(t2) – (Bx)(t1)

∣
∣ ≤ ‖p‖Ψ (r)

[

T(t2 – t1) +
(t2 – t1)2

2

]

,

which is independent of x ∈ S. Hence, for ε > 0, there exists δ > 0 such that

|t2 – t1| < δ �⇒ ∣
∣(Bx)(t2) – (Bx)(t1)

∣
∣ < ε

for all t2, t1 ∈ J and for all x ∈ S. This shows that B(S) is an equicontinuous set in X. Now,
the set B(S) is a uniformly bounded and equicontinuous set in X, so it is compact by the
Arzela–Ascoli theorem. As a result, B is a complete continuous operator on S.

Step 3. Hypothesis (c) of Lemma 2.3 is satisfied. Let x ∈ X and y ∈ S be arbitrary elements
such that x = AxBy + Cx. Then we have

∣
∣x(t)

∣
∣ ≤ ∣

∣Ax(t)
∣
∣
∣
∣By(t)

∣
∣ +

∣
∣Cx(t)

∣
∣

≤ ∣
∣f

(
t, x

(
ϕ2(t)

))∣
∣
∫ t

0
(t – s)

∣
∣g

(
s, y

(
ϕ3(s)

))∣
∣ds +

∣
∣h

(
t, x

(
ϕ1(t)

))∣
∣

≤ (∣
∣f

(
t, x

(
ϕ2(t)

))
– f (t, 0)

∣
∣ +

∣
∣f (t, 0)

∣
∣
)
∫ t

0
(t – s)p(t)Ψ

(|y|)ds

+
(∣
∣h

(
t, x

(
ϕ1(t)

))
– h(t, 0)

∣
∣ +

∣
∣h(t, 0)

∣
∣
)

≤ (‖L‖∣∣x(
ϕ2(t)

)∣
∣ + G

)‖p‖Ψ (r)
∫ t

0
(t – s) ds + ‖k‖∣∣x(

ϕ3(t)
)∣
∣ + H

≤ (‖L‖r + G
)‖p‖Ψ (r)

T2

2
+ ‖k‖r + H .

Consequently,

∣
∣x(t)

∣
∣ ≤ (‖L‖r + G

)‖p‖Ψ (r)
T2

2
+ ‖k‖r + H .
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Taking supremum over t,

‖x‖ ≤ (‖L‖r + G
)‖p‖Ψ (r)

T2

2
+ ‖k‖r + H .

Therefore, x ∈ S.
Step 4. Finally we show that δM + ρ < 1, that is, (d) of Lemma 2.3 holds.
Since

M =
∥
∥B(S)

∥
∥

= sup
x∈S

{
sup
t∈J

∣
∣Bx(t)

∣
∣
}

≤ ‖p‖Ψ (r)
T2

2
,

and by (A4), we have

‖L‖M + ‖k‖ < 1

with δ = ‖L‖ and ρ = ‖k‖.
Thus all the conditions of Lemma 2.3 are satisfied, and hence the operator equation

x = AxBx + Cx has a solution in S. In consequence, problem (1.1) has a solution on J . This
completes the proof. �

3.2 Remarks and examples
• If we replace conditions (A2) and (A4) with the following conditions:

(A′
2) g : J ×R →R satisfies the Caratheodory condition, i.e., g is measurable in t for

any x ∈R and continuous in x for almost all t ∈ [0, T].
There exist two positive real functions t → a(t), t → b(t) such that

∣
∣g(t, x)

∣
∣ ≤ a(t) + b(t)|x|, ∀(t, x) ∈ J ×R;

(A′
4) There exists a number r > 0 such that

r ≤ ‖L‖.‖a‖T2 + G‖b‖T2 + ‖k‖
2‖b‖.‖L‖T2 , (3.10)

where G = supt∈J |f (t, 0)| and (‖L‖‖a‖ + G‖b‖)T2 + ‖k‖ < 1,
and Step 3 in the proof can be replaced with the following. Let x ∈ X and y ∈ S be arbitrary
elements such that x = AxBy + Cx. Then we have

∣
∣x(t)

∣
∣ ≤ ∣

∣Ax(t)
∣
∣
∣
∣By(t)

∣
∣ +

∣
∣Cx(t)

∣
∣

≤ ∣
∣f

(
t, x

(
ϕ2(t)

))∣
∣
∫ t

0
(t – s)

∣
∣g

(
s, y

(
ϕ3(s)

))∣
∣ds +

∣
∣h

(
t, x

(
ϕ1(t)

))∣
∣

≤ (∣
∣f

(
t, x

(
ϕ2(t)

))
– f (t, 0)

∣
∣ +

∣
∣f (t, 0)

∣
∣
)
∫ t

0
(t – s)(a(t) + b(t)

∣
∣x

(
ϕ3(s)

∣
∣
)

ds

+
(∣
∣h

(
t, x

(
ϕ1(t)

))
– h(t, 0)

∣
∣ +

∣
∣h(t, 0)

∣
∣
)
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≤ (‖L‖∣∣x(
ϕ2(t)

)∣
∣ + G

)(‖a‖ + ‖b‖r
)
∫ t

0
(t – s) ds + ‖k‖∣∣x(

ϕ3(t)
)∣
∣ + H

≤ (‖L‖r + G
)(‖a‖ + ‖b‖r

)T2

2
+ ‖k‖r + H .

Consequently,

∣
∣x(t)

∣
∣ ≤ (‖L‖r + G

)(‖a‖ + ‖b‖r
)
T2 + ‖k‖r + H .

Taking supremum over t,

‖x‖ ≤ (‖L‖r + G
)(‖a‖ + ‖b‖r

)
T2 + ‖k‖r + H .

From this estimate we show that the operator A maps the set S into itself with

r =
‖L‖.‖a‖T2 + G‖b‖T2 + ‖k‖

2‖b‖.‖L‖T2 .

• Our results can be obtained using the technique of measures of noncompactness in
the Banach algebras (under assumptions (A1) – (A4)) and a fixed point theorem for
the product of two operators verifying a Dhage type condition as follows in [2].

Example Consider the second-order functional differential equation

⎧
⎪⎨

⎪⎩

d2

dt2 (
x(t)– cosπ t+2t2

1+5t2 |x(t)|
( |x(t)|+1
|x(t)|+2 ) 7–et

2
√

25–t2 + 2–t
10

) = (t–1)2+3
35(13–t2) (7|x(t)| + 15), t ∈ J = [0, 1],

x(0) = h(0, x(0)) and x′(0) = dh
dt |t=0,

(3.11)

where

f
(
t, x(t)

)
=

( |x(t)| + 1
|x(t)| + 2

)
7 – et

2
√

25 – t2
+

2 – t
10

,

∣
∣f

(
t, x(t)

)
– f

(
t, y(t)

)∣
∣ ≤

(
7 – et

2
√

25 – t2

)

|x – y|,

h
(
t, x(t)

)
=

cosπ t + 2t2

1 + 5t2

∣
∣x(t)

∣
∣,

∣
∣h

(
t, x(t)

)
– h

(
t, y(t)

)∣
∣ ≤

(
1 + 2t2

1 + 5t2

)

|x – y|,

and

g
(
t, x(t)

)
=

(t – 1)2 + 3
35(13 – t2)

(
7
∣
∣x(t)

∣
∣ + 15

)
=

(
(t – 1)2 + 3

13 – t2

)( |x|
5

+
3
7

)

.

Take p(t) = (t–1)2+3
13–t2 and Ψ (x) = |x|

5 + 3
7 .

We can easily verify that x(0) = h(0, x(0)), x′(0) = dh
dt |t=0.

‖k‖ = 1/2, ‖p‖ = 4/13, ‖L‖ = 7/10, and G = 1.
For condition ‖L‖‖p‖Ψ (r) T2

2 + k < 1 is satisfied, r should be chosen r < 21.07.
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