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Abstract
We investigate the existence of solutions for a Caputo–Hadamard fractional
integro-differential equation with boundary value conditions involving the Hadamard
fractional operators via different orders. By using the Krasnoselskii’s fixed point
theorem, the Leray–Schauder nonlinear alternative, and the Banach contraction
principle, we prove our main results. Also, we provide three examples to illustrate our
main results.
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1 Introduction
In recent decades, it has become clear to researchers that studying different types of frac-
tional differential equations is of particular importance. This is a tool to complete our
modeling information.

In fact, some practical instances done in the framework of the concepts and notions of
the fractional calculus show us the power of this branch of mathematics in the modeling
of different natural phenomena. In the meantime, fractional differential equations and in-
clusions of different types play an important role to reach desired practical goals. More
precisely, in recent years, some researches invoked these fractional equations to model
some processes and patterns via newly defined fractional operators (see, for example, [1–
4]). The techniques used in these initial value problems are based on the analytical and
the existence methods. In the following, some researchers designed new fractional models
and investigated them via numerical techniques (see, for example, [5–14]). Therefore, the
fractional calculus has been created a powerful tool for researchers to achieve more exact
findings in other applied sciences. Also for further study, notice that a lot of works about
different types of fractional integro-differential equations have been published (see, for
example, [15–45]), q-difference equations (see, for example, [46–48]), integro-differential
equations involving the Caputo–Fabrizio or the Caputo–Hadamard derivatives (see, for
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example, [49–51]), hybrid equations (see, for example, [52]), approximate solutions of dif-
ferent fractional equations (see, for example, [53, 54]), and modern models (see, for exam-
ple, [55]).

In 2014, Ahmad et al. investigated the existence of solutions for the nonlinear fractional
q-difference equation equipped with four-point nonlocal integral boundary conditions

⎧
⎨

⎩

cDβ
q (cDγ

q + λ)u(t) = f (t, u(t)),

u(0) = aIα–1
q u(η), u(1) = bIα–1

q u(σ ),

where t ∈ [0, 1], q ∈ (0, 1), λ ∈ R, 0 < η,σ < 1 and α > 2; cDϑ
q denotes the Caputo q-

fractional derivative of order ϑ ∈ {β ,γ : β ,γ ∈ (0, 1]}, Iα
q denotes the Riemann–Liouville

q-fractional integral of order α, and f : [0, 1] × R → R is a continuous function [46]. In
2016, Niyom et al. reviewed the problem

⎧
⎨

⎩

(λDα + (1 – λ)Dβ )u(t) = f (t, u(t)),

u(0) = 0, μDγ1 u(T) + (1 – μ)Dγ2 u(T) = γ3,

where T > 0, t ∈ [0, T], 1 < α,β < 2, 0 < γ1, γ2 < α – β , Dφ is the Riemann–Liouville
fractional derivative of order φ ∈ {α,β ,γ1,γ2}, 0 < λ ≤ 1, 0 ≤ μ ≤ 1, γ3 ∈ R, and f ∈
C([0, T]×R,R) [56]. In the same year, Ahmad et al. extended the boundary value problem
presented by Niyom to the sequential fractional integro-differential equation of the form

⎧
⎨

⎩

(cDq + kcDq–1)x(t) = f (t, x(t), cDβx(t),Iγ x(t)),

x(0) = 0, x′(0) = 0,
∑m

i=1 aix(ξi) = λIδx(η),

where t ∈ [0, 1], ξi,η ∈ (0, 1), q ∈ (2, 3], β ,γ ∈ (0, 1), k, δ > 0, λ, ai (i = 1, . . . , m) are real
constants, cD(·) denotes the Caputo derivative of the fractional order (·), and f : [0, 1] ×
R

3 →R is a continuous function [57].
By using main ideas of the aforementioned articles, we investigate the Caputo–

Hadamard fractional integro-differential equation of different orders:

[
κCHD


1+ + (1 – κ)CHD�
1+

]
w(t) = αψ

(
t, w(t)

)
+ βHIμ

1+ϕ
(
t, w(t)

)
, (1)

with mixed Hadamard and Caputo–Hadamard boundary value conditions

⎧
⎨

⎩

w(1) = 0, CHDδ
1+ w(e) = 0,

CHD1+ w(1) = 0, 1
Γ (ϑ)

∫ e
1 (ln e

s )ϑ–1w(s) ds
s = 0,

(2)

where t ∈ [1, e], 
,� ∈ (3, 4], δ ∈ (1, 2], κ ∈ (0, 1], μ,ϑ > 0 with δ + ϑ �= 0 and also α,β ∈
R

+. The notation CHDν
1+ denotes the Caputo–Hadamard fractional derivative of order ν ∈

{
,� } and HIμ is the Hadamard fractional integral of order μ. Moreover, functions ψ ,ϕ :
[1, e] × R → R are continuous. Note that the integro-differential equation (1) contains
the Caputo–Hadamard derivatives of fractional orders 
 and � and a Hadamard integral
of fractional order μ, while the Caputo–Hadamard derivative of order δ and Hadamard
integral of order ϑ are involved in the boundary value conditions (2).
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It should also be noted that boundary value conditions given in this paper are general
and cover many different special cases. This new type of the modeling is an abstract idea
and can include various existing natural processes in the future studies. Therefore, the
main purpose of this manuscript is to focus on the existence results and provide some
necessary conditions for the analytical investigation and so the practical aspects of bound-
ary value problem (1)–(2) is not our main desire here. To reach our main aim, we ap-
ply three different fixed point theorems to establish the existence and uniqueness results.
These analytical results guarantee the convergence of the numerical methods to desired
solution with the least error, and so this can be a reliable criterion for modeling real pro-
cesses.

The rest of the paper is arranged by follows. In the next section, we recall some basic
notions and definitions which are necessary in the sequel. In Sect. 3, our main existence
results are presented by three different analytical techniques such as the Krasnoselskii’s
fixed point theorem, the Leray–Schauder nonlinear alternative, and the Banach contrac-
tion principle. In Sect. 4, we examine the validity of our theoretical findings by providing
three illustrative examples. In Sect. 5, the conclusion is stated.

2 Preliminaries
In this section, we recall some important and basic definitions on the fractional operators.

Definition 1 ([58, 59]) Let 
 ≥ 0. The Hadamard fractional integral of a continuous func-
tion w : (a, b) →R of order 
 is defined by (HI0

a+ w)(t) = w(t) and

(HI


a+ w
)
(t) =

1
Γ (
)

∫ t

a

(

ln
t
s

)(
–1)

w(s)
ds
s

provided that the right-hand side integral exists.

Note that the semigroup property is satisfied by the Hadamard fractional integral as
follows: HI�

a+
HI


a+ w(t) = HI�+


a+ w(t) for 
,� ∈R
+. Also, we have

HI


a+

(

ln
t
a

)�

=
Γ (� + 1)

Γ (
 + � + 1)

(

ln
t
a

)
+�

for 
,� ≥ 0 and t > a [58, 59]. It is clear that HI


a+ 1 = 1
Γ (
+1) (ln t

a )
 for all t > a by putting
� = 0 [59].

Definition 2 ([58, 59]) Let n = [
] + 1 and n – 1 < 
 ≤ n. The Hadamard fractional deriva-
tive of order 
 for a continuous function w : (a, b) → R is defined by

(HD


a+ w
)
(t) =

1
Γ (n – 
)

(

t
dt
t

)n ∫ t

a

(

ln
t
s

)(n–
–1)

w(s)
ds
s

provided that the right-hand side integral exists.

Definition 3 ([51, 58]) Let ACn
θ [a, b] = {w : [a, b] → R : θn–1w(t) ∈ AC[a, b], θ = t d

dt }. The
Caputo–Hadamard fractional derivative of order 
 for an absolutely continuous function
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w ∈ ACn
θ ([a, b],R) is defined by

(CHD


a+ w
)
(t) =

1
Γ (n – 
)

∫ t

a

(

ln
t
s

)(n–
–1)(

t
dt
t

)n

w(s)
ds
s

whenever the right-hand side integral exists.

Assume that w ∈ ACn
θ ([a, b],R) and n – 1 < 
 ≤ n. It has been proved that the solution

of the Caputo–Hadamard fractional differential equation (CHD


a+ w)(t) = 0 is in the form
w(t) =

∑n–1
k=0 ck(ln t

a )k , and we have

HI


a+
CHD


a+ w(t) = w(t) + c0 + c1

(

ln
t
a

)

+ c2

(

ln
t
a

)2

+ · · · + cn–1

(

ln
t
a

)n–1

for all t > a [58, 59]. We need the following results.

Lemma 4 (Krasnoselskii’s, [60]) Let M be a closed, bounded, convex, and nonempty subset
of a Banach space E . Consider two operators Υ1 and Υ2 from M into E such that

(i) Υ1w1 + Υ2w2 ∈ M for all w1, w2 ∈ M,
(ii) Υ1 is compact and continuous,

(iii) Υ2 is a contraction map.
Then there exists z ∈ M such that z = Υ1z + Υ2z.

Lemma 5 ([61]) Let E be a Banach space, C a closed, convex subset of E , U an open subset
of C, and 0 ∈ U . Suppose that Υ : U → C is a continuous and compact map (that is, Υ (U )
is a relatively compact subset of C). Then Υ has a fixed point in U or there is a w ∈ ∂U (the
boundary of U in C) and λ ∈ (0, 1) with w = λΥ (w).

Lemma 6 ([62]) Let E be a Banach space and M a closed subset of E . Suppose that Υ :
M → M is a contraction. Then Υ has a unique fixed point in M.

3 Main results
Here, we are ready to prove our main results. We first characterize the structure of the
solutions of the problem (1)–(2). Consider the Banach space E = {w : w(t) ∈ C([1, e],R)}
with the norm ‖w‖E = supt∈[1,e] |w(t)|. We first provide our key lemma.

Lemma 7 Let φ(t) ∈ E . Then w0 is a solution for the Caputo–Hadamard problem

⎧
⎪⎪⎨

⎪⎪⎩

[κCHD


1+ + (1 – κ)CHD�
1+ ]w(t) = φ(t) (t ∈ [1, e]),

w(1) = 0, CHDδ
1+ w(e) = 0,

CHD1+ w(1) = 0, 1
Γ (ϑ)

∫ e
1 (ln e

s )ϑ–1w(s) ds
s = 0

(3)

if and only if w0 is a solution for the fractional integral equation

w(t) =
(κ – 1)

κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1

w(s)
ds
s

+
1

κΓ (
)

∫ t

1

(

ln
t
s

)
–1

φ(s)
ds
s

+
(1 – κ)[3Γ (4 + ϑ)(ln t)2 + (δ – 3)Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)
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×
∫ e

1

(

ln
e
s

)
–�+ϑ–1

w(s)
ds
s

+
(1 – κ)Γ (4 – δ)[Γ (4 – ϑ)(ln t)3 – 3Γ (3 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1

w(s)
ds
s

+
(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2

6κ(δ + ϑ)Γ (
 + ϑ)

∫ e

1

(

ln
e
s

)
+ϑ–1

φ(s)
ds
s

+
Γ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1

φ(s)
ds
s

. (4)

Proof Let w0 be a solution for the Caputo–Hadamard problem (3). Then, we have

κCHD


1+ w0(t) + (1 – κ)CHD�
1+ w0(t) = φ(t)

and so CHD


1+ w0(t) = κ–1
κ

CHD�
1+ w0(t) + 1

κ
φ(t). By using the Hadamard fractional integral of

order 
, we obtain

w0(t) =
κ – 1

κ

HI


1+
CHD�

1+ w0(t) +
1
κ

HI


1+φ(t)

+ b0 + b1(ln t) + b2(ln t)2 + b3(ln t)3,

where b0, b1, b2, and b3 are some real constants. Hence,

w0(t) =
κ – 1

κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1

w0(s)
ds
s

+
1

κΓ (
)

∫ t

1

(

ln
t
s

)
–1

φ(s)
ds
s

+ b0 + b1(ln t) + b2(ln t)2 + b3(ln t)3. (5)

Now by using the boundary value conditions and properties of the Hadamard and
Caputo–Hadamard fractional operators, we get

CHD1+ w0(t) =
κ – 1

κΓ (
 – � – 1)

∫ t

1

(

ln
t
s

)
–�–2

w0(s)
ds
s

+
1

κΓ (
 – 1)

∫ t

1

(

ln
t
s

)
–2

φ(s)
ds
s

+ b1 + 2b2(ln t) + 3b3(ln t)2,

CHDδ
1+ w0(t) =

κ – 1
κΓ (
 – � – δ)

∫ t

1

(

ln
t
s

)
–�–δ–1

w0(s)
ds
s

+
1

κΓ (
 – δ)

∫ t

1

(

ln
t
s

)
–δ–1

φ(s)
ds
s

+ b2
2

Γ (3 – δ)
(ln t)2–δ

+ b3
6

Γ (4 – δ)
(ln t)3–δ ,
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and

HIϑ
1+ w0(t) =

κ – 1
κΓ (
 – � + ϑ)

∫ t

1

(

ln
t
s

)
–�+ϑ–1

w0(s)
ds
s

+
1

κΓ (
 + ϑ)

∫ t

1

(

ln
t
s

)
+ϑ–1

φ(s)
ds
s

+ b0
1

Γ (1 + ϑ)
(ln t)ϑ

+ b1
1

Γ (2 + ϑ)
(ln t)1+ϑ

+ b2
2

Γ (3 + ϑ)
(ln t)2+ϑ + b3

6
Γ (4 + ϑ)

(ln t)3+ϑ .

By using two first boundary conditions, we obtain b0 = b1 = 0. By using two other boundary
conditions, we obtain

b2 =
(1 – κ)Γ (4 + ϑ)

2κ(δ + ϑ)Γ (
 – � + ϑ)

∫ e

1

(

ln
e
s

)
–�+ϑ–1

w0(s)
ds
s

+
(κ – 1)Γ (4 – δ)

2κ(δ + ϑ)Γ (
 – � – δ)

∫ e

1

(

ln
e
s

)
–�–δ–1

w0(s)
ds
s

–
Γ (4 + ϑ)

2κ(δ + ϑ)Γ (
 + ϑ)

∫ e

1

(

ln
e
s

)
+ϑ–1

φ(s)
ds
s

+
Γ (4 – δ)

2κ(δ + ϑ)Γ (
 – δ)

∫ e

1

(

ln
e
s

)
–δ–1

φ(s)
ds
s

and

b3 =
(1 – κ)(δ – 3)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (
 – � + ϑ)

∫ e

1

(

ln
e
s

)
–�+ϑ–1

w0(s)
ds
s

+
(1 – κ)Γ (4 – δ)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

∫ e

1

(

ln
e
s

)
–�–δ–1

w0(s)
ds
s

+
(3 – δ)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (
 + ϑ)

∫ e

1

(

ln
e
s

)
+ϑ–1

φ(s)
ds
s

–
Γ (4 – δ)Γ (4 – ϑ)

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

∫ e

1

(

ln
e
s

)
–δ–1

φ(s)
ds
s

.

Now by substituting the values for b0, b1, b2, b3 in equation (5), we see that w0 is a solution
for the integral equation. For the converse part, by using some direct calculations, one can
see that w0 is a solution for the Caputo–Hadamard problem (3) whenever w0 is a solution
for the integral equation (4). This completes the proof. �

Now, consider the operator Υ : E → E defined by

(Υ w)(t) =
(κ – 1)

κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1

w(s)
ds
s

+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1

ψ
(
s, w(s)

)ds
s

+
β

κΓ (
 + μ)
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×
∫ t

1

(

ln
t
s

)
+μ–1

ϕ
(
s, w(s)

)ds
s

+
(1 – κ)[3Γ (4 + ϑ)(ln t)2 + (δ – 3)Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1

w(s)
ds
s

+
(1 – κ)Γ (4 – δ)[Γ (4 – ϑ)(ln t)3 – 3Γ (3 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1

w(s)
ds
s

+
α[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1

ψ
(
s, w(s)

)ds
s

+
β[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1

ϕ
(
s, w(s)

)ds
s

+
αΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1

ψ
(
s, w(s)

)ds
s

+
βΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1

ϕ
(
s, w(s)

)ds
s

, (6)

where w ∈ E and t ∈ [1, e]. Put

K∗
0 :=

|κ – 1|
κΓ (
 – � + 1)

+
(1 – κ)[|3Γ (4 + ϑ)| + |(δ – 3)Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (
 – � + ϑ + 1)

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)| + 3|Γ (3 + ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ + 1)
,

K∗
1 :=

α

κΓ (
 + 1)
+

α[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]
6κ(δ + ϑ)Γ (
 + ϑ + 1)

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ + 1)
,

K∗
2 :=

β

κΓ (
 + μ + 1)
+

β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]
6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)
.

(7)

Theorem 8 Suppose that ψ ,ϕ : [1, e] ×R→ R are continuous functions such that
(N1) there is L > 0 so that |ψ(t, w1)–ψ(t, w2)| ≤ L|w1 –w2| for all w1, w2 ∈R and t ∈ [1, e],



Etemad et al. Advances in Difference Equations        (2020) 2020:272 Page 8 of 20

(N2) there exists a real-valued continuous function σ on [1, e] such that |ϕ(t, w)| ≤ σ (t)
for all w ∈R and t ∈ [1, e].

If K∗
0 + LK∗

1 < 1, then the Caputo–Hadamard boundary value problem (1)–(2) has at least
one solution, where K∗

0 and K∗
1 are given by (7).

Proof Let ‖σ‖ := supt∈[1,e] |σ (t)| and O := supt∈[1,e] |ψ(t, 0)|. Consider the operator Υ : E →
E and the set Vr := {w ∈ E : ‖w‖E ≤ r} which is a closed, convex, and bounded nonempty
subset of Banach space E , where r ≥ ‖σ‖K∗

2+OK∗
1

1–(K∗
0+LK∗

1) and K∗
1 and K∗

2 are given by (7). Note that
each fixed point of Υ is a solution for the Caputo–Hadamard problem (1)–(2). Let t ∈ [1, e]
be given. Then, we have

(Υ1w)(t) =
(κ – 1)

κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1

w(s)
ds
s

+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1

ψ
(
s, w(s)

)ds
s

+
(1 – κ)[3Γ (4 + ϑ)(ln t)2 + (δ – 3)Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1

w(s)
ds
s

+
(1 – κ)Γ (4 – δ)[Γ (4 – ϑ)(ln t)3 – 3Γ (3 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1

w(s)
ds
s

+
α[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1

ψ
(
s, w(s)

)ds
s

+
αΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1

ψ
(
s, w(s)

)ds
s

and

(Υ2w)(t) =
β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1

ϕ
(
s, w(s)

)ds
s

+
β[(3 – δ)Γ (4 – ϑ)(ln t)3 – 3Γ (4 + ϑ)(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1

ϕ
(
s, w(s)

)ds
s

+
βΓ (4 – δ)[3Γ (3 + ϑ)(ln t)2 – Γ (4 – ϑ)(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1

ϕ
(
s, w(s)

)ds
s

.
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Thus, we have

∣
∣(Υ1w1)(t) + (Υ2w2)(t)

∣
∣

≤ |κ – 1|
κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1∣
∣w1(s)

∣
∣ds

s

+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1(∣
∣ψ

(
s, w1(s)

)
– ψ(s, 0)

∣
∣ +

∣
∣ψ(s, 0)

∣
∣
)ds

s

+
β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1∣
∣ϕ

(
s, w2(s)

)∣
∣ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1∣
∣w1(s)

∣
∣ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1∣
∣w1(s)

∣
∣ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1(∣
∣ψ

(
s, w1(s)

)
– ψ(s, 0)

∣
∣ +

∣
∣ψ(s, 0)

∣
∣
)ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1∣
∣ϕ

(
s, w2(s)

)∣
∣ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1(∣
∣ψ

(
s, w1(s)

)
– ψ(s, 0)

∣
∣ +

∣
∣ψ(s, 0)

∣
∣
)ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1∣
∣ϕ

(
s, w2(s)

)∣
∣ds

s

≤ |κ – 1|
κΓ (
 – � + 1)

‖w1‖ +
α

κΓ (
 + 1)
(
L‖w1‖ + O

)
+

β

κΓ (
 + μ + 1)
‖σ‖

+
(1 – κ)[|3Γ (4 + ϑ)| + |(δ – 3)Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (
 – � + ϑ + 1)
‖w1‖

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)| + 3|Γ (3 + ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ + 1)
‖w1‖

+
α[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (
 + ϑ + 1)
(
L‖w1‖ + O

)
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+
β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)
‖σ‖

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ + 1)
(
L‖w1‖ + O

)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)
‖σ‖

=
(
K∗

0 + LK∗
1
)‖w1‖ + K∗

2‖σ‖ + K∗
1O

≤ (
K∗

0 + LK∗
1
)
r + K∗

2‖σ‖ + K∗
1O ≤ r

for all w1, w2 ∈ Vr . Hence, ‖Υ1w1 + Υ2w2‖ ≤ r and so Υ1w1 + Υ2w2 ∈ Vr for all w1, w2 ∈ Vr .
Now let {wn}n≥1 be a sequence in Vr with wn → w and t ∈ [1, e]. Then, we have

∣
∣(Υ2wn)(t) – (Υ2w)(t)

∣
∣

≤ β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1∣
∣ϕ

(
s, wn(s)

)
– ϕ

(
s, w(s)

)∣
∣ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1∣
∣ϕ

(
s, wn(s)

)
– ϕ

(
s, w(s)

)∣
∣ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1∣
∣ϕ

(
s, wn(s)

)
– ϕ

(
s, w(s)

)∣
∣ds

s

≤ β

κΓ (
 + μ + 1)
∣
∣ϕ

(
s, wn(s)

)
– ϕ

(
s, w(s)

)∣
∣

+
β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)
∣
∣ϕ

(
s, wn(s)

)
– ϕ

(
s, w(s)

)∣
∣

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)
∣
∣ϕ

(
s, wn(s)

)
– ϕ

(
s, w(s)

)∣
∣.

Since ϕ is continuous, ‖Υ2wn – Υ2w‖ → 0, and so the operator Υ2 is continuous on the
open ball Vr . Now, we show that Υ2 is uniformly bounded. Let w ∈ Vr and t ∈ [1, e]. Then,
we get

∣
∣(Υ2w)(t)

∣
∣ ≤ β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1∣
∣ϕ

(
s, w(s)

)∣
∣ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1∣
∣ϕ

(
s, w(s)

)∣
∣ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1∣
∣ϕ

(
s, w(s)

)∣
∣ds

s
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≤ β

κΓ (
 + μ + 1)
‖σ‖ +

β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]
6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)

‖σ‖

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)
‖σ‖

≤ ‖σ‖
[

β

κΓ (
 + μ + 1)
+

β[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]
6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)

]

= K∗
2‖σ‖

which implies that ‖Υ2w‖ ≤ K∗
2‖σ‖. This shows that Υ2 is uniformly bounded. Here, we

prove that Υ2 is equicontinuous. Let t1, t2 ∈ [1, e] with t1 < t2. We show that Υ2 maps
bounded sets into equicontinuous sets. For each w ∈ Vr , we have

∣
∣(Υ2w)(t2) – (Υ2w)(t1)

∣
∣

≤ β

κΓ (
 + μ)

∫ t1

1

[(

ln
t2

s

)
+μ–1

–
(

ln
t1

s

)
+μ–1]∣
∣ϕ

(
s, w(s)

)∣
∣ds

s

+
β

κΓ (
 + μ)

∫ t2

t1

(

ln
t2

s

)
+μ–1∣
∣ϕ

(
s, w(s)

)∣
∣ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|[(ln t2)3 – (ln t1)3] + 3|Γ (4 + ϑ)|[(ln t2)2 – (ln t1)2]]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1∣
∣ϕ

(
s, w(s)

)∣
∣ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|[(ln t2)2 – (ln t1)2] + |Γ (4 – ϑ)|[(ln t2)3 – (ln t1)3]]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1∣
∣ϕ

(
s, w(s)

)∣
∣ds

s

≤ ‖σ‖
(

2β

κΓ (
 + μ + 1)

(

ln
t2

t1

)
+μ

+
β

κΓ (
 + μ + 1)
∣
∣(ln t2)
+μ – (ln t1)
+μ

∣
∣

+
β[|(3 – δ)Γ (4 – ϑ)|[(ln t2)3 – (ln t1)3] + 3|Γ (4 + ϑ)|[(ln t2)2 – (ln t1)2]]

6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|[(ln t2)2 – (ln t1)2] + |Γ (4 – ϑ)|[(ln t2)3 – (ln t1)3]]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)

)

.

Note that the right-hand side is independent of w ∈ Vr and converges to zero as t1 → t2.
This means that Υ2 is equicontinuous. Consequently, the operator Υ2 is relatively compact
on Vr and, by using the Arzela–Ascoli theorem, we conclude that Υ2 is completely con-
tinuous. Hence, Υ2 is compact on the open ball Vr . Now, we show that Υ1 is a contraction.
Let w1, w2 ∈ Vr and t ∈ [1, e]. Then, we have

∣
∣(Υ1w1)(t) – (Υ1w2)(t)

∣
∣

≤ |κ – 1|
κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1∣
∣w1(s) – w2(s)

∣
∣ds

s
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+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1∣
∣ψ

(
s, w1(s)

)
– ψ

(
s, w2(s)

)∣
∣ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1∣
∣w1(s) – w2(s)

∣
∣ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1∣
∣w1(s) – w2(s)

∣
∣ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1∣
∣ψ

(
s, w1(s)

)
– ψ

(
s, w2(s)

)∣
∣ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1∣
∣ψ

(
s, w1(s)

)
– ψ

(
s, w2(s)

)∣
∣ds

s

≤
[ |κ – 1|

κΓ (
 – � + 1)
+

(1 – κ)[|3Γ (4 + ϑ)| + |(δ – 3)Γ (4 – ϑ)|]
6κ(δ + ϑ)Γ (
 – � + ϑ + 1)

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)| + 3|Γ (3 + ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ + 1)
+

Lα

κΓ (
 + 1)

+
Lα[|(3 – δ)Γ (4 – ϑ)| + 3|Γ (4 + ϑ)|]

6κ(δ + ϑ)Γ (
 + ϑ + 1)

+
Lα|Γ (4 – δ)|[3|Γ (3 + ϑ)| + |Γ (4 – ϑ)|]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ + 1)

]

‖w1 – w2‖

=
(
K∗

0 + LK∗
1
)‖w1 – w2‖.

Since K∗
0 + LK∗

1 < 1, Υ1 is a contraction. Note that Υ = Υ1 + Υ2. Now, by using Lemma 4,
the operator Υ has a fixed point which is a solution for the Caputo–Hadamard boundary
value problem (1)–(2). �

Here, we are going to investigate the existence of solutions for the Caputo–Hadamard
problem (1)–(2) by considering different conditions.

Theorem 9 Suppose that ψ ,ϕ : [1, e] ×R→ R are continuous functions such that
(N3) there are continuous nondecreasing functions ξ1, ξ2 : [0,∞) → (0,∞) and two maps

θ1, θ2 ∈ C([0, 1],R+) such that |ψ(t, w)| ≤ θ1(t)ξ1(|w|) and |ϕ(t, w)| ≤ θ2(t)ξ2(|w|) for
all (t, w) ∈ [1, e] ×R,

(N4) K∗
0 < 1 and there is a constant Ξ > 0 such that (1–K∗

0)Ξ
K∗

1‖θ1‖ξ1(Ξ )+K∗
2‖θ2‖ξ2(Ξ ) > 1, where K∗

0 ,
K∗

1 , K∗
2 are defined by (7).

Then the Caputo–Hadamard problem (1)–(2) has at least one solution.
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Proof We first show that the operator Υ maps bounded sets of E into bounded sets. Let
ε > 0, Bε = {w ∈ E : ‖w‖ ≤ ε} and t ∈ [1, e]. Then, we have

∣
∣(Υ w)(t)

∣
∣ ≤ |κ – 1|

κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1

‖w‖ds
s

+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1

‖θ1‖ξ1
(‖w‖)ds

s

+
β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1

‖θ2‖ξ2
(‖w‖)ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1

‖w‖ds
s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1

‖w‖ds
s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1

‖θ1‖ξ1
(‖w‖)ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1

‖θ2‖ξ2
(‖w‖)ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1

‖θ1‖ξ1
(‖w‖)ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1

‖θ2‖ξ2
(‖w‖)ds

s

≤K∗
0‖w‖ + K∗

1‖θ1‖ξ1
(‖w‖) + K∗

2‖θ2‖ξ2
(‖w‖).

Hence, ‖Υ w‖ ≤ K∗
0ε + K∗

1‖θ1‖ξ1(ε) + K∗
2‖θ2‖ξ1(ε). Now, we prove that Υ maps bounded

sets into equicontinuous sets of E . Let t1, t2 ∈ [1, e] with t1 < t2 and w ∈ Bε . Then, we get

∣
∣(Υ w)(t2) – (Υ w)(t1)

∣
∣

≤ |κ – 1|ε
κΓ (
 – � )

[∫ t1

1

[(

ln
t2

s

)
+�–1

–
(

ln
t1

s

)
+�–1]ds
s

+
∫ t2

t1

(

ln
t2

s

)
+�–1 ds
s

]
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+
α‖θ1‖ξ1(ε)

κΓ (
)

[∫ t1

1

[(

ln
t2

s

)
–1

–
(

ln
t1

s

)
–1]ds
s

+
∫ t2

t1

(

ln
t2

s

)
–1 ds
s

]

+
β‖θ2‖ξ2(ε)
κΓ (
 + μ)

[∫ t1

1

[(

ln
t2

s

)
+μ–1

–
(

ln
t1

s

)
+μ–1]ds
s

+
∫ t2

t1

(

ln
t2

s

)
+μ–1 ds
s

]

+
(1 – κ)[|3Γ (4 + ϑ)|[(ln t2)2 – (ln t1)2] + |(δ – 3)Γ (4 – ϑ)|[(ln t2)3 – (ln t1)3]]ε

6κ(δ + ϑ)Γ (
 – � + ϑ + 1)

+
(
(1 – κ)

∣
∣Γ (4 – δ)

∣
∣
[∣
∣Γ (4 – ϑ)

∣
∣
[
(ln t2)3 – (ln t1)3]

+ 3
∣
∣Γ (3 + ϑ)

∣
∣
[
(ln t2)2 – (ln t1)2]]ε

)

/
(
6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ + 1)

)

+
(
α
[∣
∣(3 – δ)Γ (4 – ϑ)

∣
∣
[
(ln t2)3 – (ln t1)3]

+ 3
∣
∣Γ (4 + ϑ)

∣
∣
[
(ln t2)2 – (ln t1)2]]‖θ1‖ξ1(ε)

)

/
(
6κ(δ + ϑ)Γ (
 + ϑ + 1)

)

+
(
β
[∣
∣(3 – δ)Γ (4 – ϑ)

∣
∣
[
(ln t2)3 – (ln t1)3]

+ 3
∣
∣Γ (4 + ϑ)

∣
∣
[
(ln t2)2 – (ln t1)2]]‖θ2‖ξ2(ε)

)

/
(
6κ(δ + ϑ)Γ (
 + ϑ + μ + 1)

)

+
(
α
∣
∣Γ (4 – δ)

∣
∣
[
3
∣
∣Γ (3 + ϑ)

∣
∣
[
(ln t2)2 – (ln t1)2]

+
∣
∣Γ (4 – ϑ)

∣
∣
[
(ln t2)3 – (ln t1)3]]‖θ1‖ξ1(ε)

)

/
(
6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ + 1)

)

+
(
β
∣
∣Γ (4 – δ)

∣
∣
[
3
∣
∣Γ (3 + ϑ)

∣
∣
[
(ln t2)2 – (ln t1)2]

+
∣
∣Γ (4 – ϑ)

∣
∣
[
(ln t2)3 – (ln t1)3]]‖θ2‖ξ2(ε)

)

/
(
6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ + 1)

)
.

Note that the right-hand side tends to zero independently of w ∈ Bε as t2 → t1. By using
the Arzela–Ascoli theorem, we deduce that Υ : E → E is completely continuous. Here,
we prove that the set of all solutions of the equation w = λ(Υ w) is bounded for each λ ∈
[0, 1]. Let λ ∈ [0, 1], w be such that w = λ(Υ w) and t ∈ [1, e]. Then by using computations
used in the first step, we obtain ‖w‖ ≤K∗

0‖w‖+K∗
1‖θ1‖ξ1(‖w‖) +K∗

2‖θ2‖ξ2(‖w‖). Thus, we
conclude that (1–K∗

0)‖w‖
K∗

1‖θ1‖ξ1(‖w‖)+K∗
2‖θ2‖ξ2(‖w‖) ≤ 1. By using the assumption (N4), we can choose a

number Ξ > 0 such that ‖w‖ �= Ξ and (1–K∗
0)Ξ

K∗
1‖θ1‖ξ1(Ξ )+K∗

2‖θ2‖ξ2(Ξ ) > 1. Consider the set U = {w ∈
E : ‖w‖ < Ξ}. Note that the operator Υ : U → E is continuous and completely continuous
and also we can not find w ∈ ∂U such that w = λ(Υ w) holds for some λ ∈ (0, 1). Now, by
using Lemma 5, the operator Υ has a fixed point in U which is a solution for the Caputo–
Hadamard fractional integro-differential boundary value problem (1)–(2). �

Now by using the Banach contraction principle, we review the Caputo–Hadamard prob-
lem (1)–(2) under some different conditions.

Theorem 10 Suppose that ψ : [1, e] ×R→R is a continuous function satisfying assump-
tion (N1). Assume that the function ϕ : [1, e] ×R→ R satisfies the following condition:
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(N5) there is a positive constant L̃ such that for each |ϕ(t, w1) – ϕ(t, w2)| ≤ L̃|w1 – w2| for
all w1, w2 ∈R and t ∈ [1, e].

If K∗
0 + LK∗

1 + L̃K∗
2 < 1, then the Caputo–Hadamard problem (1)–(2) has a unique solution,

where K∗
0 , K∗

1 , and K∗
2 are given by (7).

Proof Put K∗ = supt∈[1,e] |ψ(t, 0)| < ∞ and N∗ = supt∈[1,e] |ϕ(t, 0)| < ∞. Choose r > 0 such
that r ≥ N∗K∗

2+K∗K∗
1

1–(K∗
0+LK∗

1+L̃K∗
2) . Let Br = {w ∈ E : ‖w‖ ≤ r}. We show that ΥBr ⊂ Br . Let w ∈ Br .

By using assumptions (N1) and (N5), we have

‖Υ w‖ ≤ |κ – 1|
κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1

‖w‖ds
s

+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1(
L‖w‖ + K∗)ds

s

+
β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1(
L̃‖w‖ + N∗)ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1

‖w‖ds
s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1

‖w‖ds
s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1(
L‖w‖ + K∗)ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1(
L̃‖w‖ + N∗)ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1(
L‖w‖ + K∗)ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1(
L̃‖w‖ + N∗)ds

s

≤ (
K∗

0 + LK∗
1 + L̃K∗

2
)
r + K∗

2N∗ + K∗
1K∗ < r.
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Hence, ΥBr ⊂ Br . Let t ∈ [1, e] and w1, w2 ∈R. Then, we have

∥
∥(Υ w1)(t) – (Υ w2)(t)

∥
∥ ≤ |κ – 1|

κΓ (
 – � )

∫ t

1

(

ln
t
s

)
–�–1∣
∣w1(s) – w2(s)

∣
∣ds

s

+
α

κΓ (
)

∫ t

1

(

ln
t
s

)
–1∣
∣ψ

(
s, w1(s)

)
– ψ

(
s, w2(s)

)∣
∣ds

s

+
β

κΓ (
 + μ)

∫ t

1

(

ln
t
s

)
+μ–1∣
∣ϕ

(
s, w1(s)

)
– ϕ

(
s, w2(s)

)∣
∣ds

s

+
(1 – κ)[|3Γ (4 + ϑ)|(ln t)2 + |(δ – 3)Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (
 – � + ϑ)

×
∫ e

1

(

ln
e
s

)
–�+ϑ–1∣
∣w1(s) – w2(s)

∣
∣ds

s

+
(1 – κ)|Γ (4 – δ)|[|Γ (4 – ϑ)|(ln t)3 + 3|Γ (3 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – � – δ)

×
∫ e

1

(

ln
e
s

)
–�–δ–1∣
∣w1(s) – w2(s)

∣
∣ds

s

+
α[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ)

×
∫ e

1

(

ln
e
s

)
+ϑ–1∣
∣ψ

(
s, w1(s)

)
– ψ

(
s, w2(s)

)∣
∣ds

s

+
β[|(3 – δ)Γ (4 – ϑ)|(ln t)3 + 3|Γ (4 + ϑ)|(ln t)2]

6κ(δ + ϑ)Γ (
 + ϑ + μ)

×
∫ e

1

(

ln
e
s

)
+ϑ+μ–1∣
∣ϕ

(
s, w1(s)

)
– ϕ

(
s, w2(s)

)∣
∣ds

s

+
α|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 – δ)

×
∫ e

1

(

ln
e
s

)
–δ–1∣
∣ψ

(
s, w1(s)

)
– ψ

(
s, w2(s)

)∣
∣ds

s

+
β|Γ (4 – δ)|[3|Γ (3 + ϑ)|(ln t)2 + |Γ (4 – ϑ)|(ln t)3]

6κ(δ + ϑ)Γ (3 + ϑ)Γ (
 + μ – δ)

×
∫ e

1

(

ln
e
s

)
+μ–δ–1∣
∣ϕ

(
s, w1(s)

)
– ϕ

(
s, w2(s)

)∣
∣ds

s

≤ (
K∗

0 + LK∗
1 + L̃K∗

2
)‖w1 – w2‖.

Since we have K∗
0 + LK∗

1 + L̃K∗
2 < 1, Υ is a contraction. By using the Banach contrac-

tion principle, Υ has a unique fixed point which is the unique solution of the Caputo–
Hadamard problem (1)–(2). This completes the proof. �

4 Examples
In this section, we provide three numerical examples to examine the validity of our the-
oretical findings. To do this, we consider constants κ = 0.78, α = 0.69, β = 0.73, 
 = 3.95,
� = 3.87, μ = 1.3, δ = 1.92, and ϑ = 0.001 with δ + ϑ = 1.921 �= 0 for our examples. The
next example illustrates Theorem 8.
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Example 1 Consider the Caputo–Hadamard fractional integro-differential equation

[
0.78CHD3.95

1+ + 0.22CHD3.87
1+

]
w(t) = 0.69

0.01t|w(t)|
7 + |w(t)| + 0.73HI1.3

1+ ln t
(
sin w(t)

)
(8)

with boundary value conditions

⎧
⎨

⎩

w(1) = 0, CHD1.92
1+ w(e) = 0,

CHD1+ w(1) = 0, 1
Γ (0.001)

∫ e
1 (ln e

s )0.001–1w(s) ds
s = 0,

(9)

where t ∈ [1, e]. Define the continuous functions ψ ,ϕ : [1, e] ×R → R by ψ(t, w) = 0.99t|w|
7+|w|

and ϕ(t, w) = ln t(sin w). Note that |ψ(t, w1) – ψ(t, w2)| ≤ L|w1 – w2| holds for all w1, w2 ∈
R, where L = 0.01e > 0. Also, the continuous function σ (t) = ln t on [1, e] is such that
|ϕ(t, w)| ≤ σ (t) = ln t for all w ∈ R. In this case, we have ‖σ‖ = supt∈[1,e] σ (t) = 1. Some
calculations show that K∗

0 = 0.8968 and K∗
1 = 0.3559. Hence, K∗

0 + LK∗
1 = 0.9064 < 1. By

using Theorem 8, the Caputo–Hadamard problem (8)–(9) has a solution.

Next example illustrates Theorem 9.

Example 2 Consider the Caputo–Hadamard fractional integro-differential equation

[
0.78CHD3.95

1+ + 0.22CHD3.87
1+

]
w(t) = 0.69

1
16 + t

(
3
4

+
|w(t)|

2 + |w(t)|
)

+ 0.73HI1.3
1+

1
3 + sin π t

2

(
4
5

+
|w(t)|

3 + |w(t)|
)

(10)

with boundary value conditions

⎧
⎨

⎩

w(1) = 0, CHD1.92
1+ w(e) = 0,

CHD1+ w(1) = 0, 1
Γ (0.001)

∫ e
1 (ln e

s )0.001–1w(s) ds
s = 0,

(11)

where t ∈ [1, e]. Define continuous maps ψ ,ϕ : [1, e] ×R → R by ψ(t, w) = 1
16+t ( 3

4 + |w|
2+|w| )

and ϕ(t, w) = 1
3+sin π t

2
( 4

5 + |w|
3+|w| ). Note that |ψ(t, w(t))| ≤ 1

16+t (1 + ‖w‖) and |ϕ(t, w(t))| ≤
1

3+sin π t
2

(1 + ‖w‖) for all w ∈ R and t ∈ [1, e]. Put θ1(t) = 1
16+t , θ2(t) = 1

3+sin π t
2

, and ξ1(‖w‖) =
ξ2(‖w‖) = 1 + ‖w‖. Then, we have ψ(t, w) ≤ θ1(t)ξ1(|w|) and ϕ(t, w) ≤ θ2(t)ξ2(|w|). Note
that ‖θ1‖ = 1

17 = 0.0588, ‖θ2‖ = 1
4 = 0.25, and ξ1(Ξ ) = ξ2(Ξ ) = 1 + Ξ . Also, K∗

0 = 0.8968 < 1,
K∗

1 = 0.3559, and K∗
2 = 0.2995. By considering assumption (N4), choose Ξ > 12.76. Now

by using Theorem 9, the Caputo–Hadamard problem (10)–(11) has a solution.

Next example illustrates Theorem 10.

Example 3 Consider the Caputo–Hadamard fractional integro-differential equation

[
0.78CHD3.95

1+ + 0.22CHD3.87
1+

]
w(t)

= 0.69
cos t|w(t)|
1 + |w(t)| + 0.73HI1.3

1+
2

5 + t

( | arctan w(t)|
| arctan w(t)| + 1

)

(12)
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with boundary value conditions

⎧
⎨

⎩

w(1) = 0, CHD1.92
1+ w(e) = 0,

CHD1+ w(1) = 0, 1
Γ (0.001)

∫ e
1 (ln e

s )0.001–1w(s) ds
s = 0,

(13)

where t ∈ [1, e]. Define continuous maps ψ ,ϕ : [1, e] × R → R by ψ(t, w) = cos t|w|
1+|w| and

ϕ(t, w) = 2
7+t ( | arctan w(t)|

| arctan w(t)|+1 ). Note that |ψ(t, w1(t)) – ψ(t, w2(t))| ≤ cos t(|w1(t) – w2(t)|) and
|ϕ(t, w1(t)) –ϕ(t, w2(t))| ≤ 2

7+t (|w1(t) – w2(t)|). Put L = | cos(e)| = 0.9117 and L̃ = 0.25. Some
calculations show that K∗

0 + LK∗
1 + L̃K∗

2 = 0.98127 < 1. Now by using Theorem 10, the
Caputo–Hadamard problem (12)–(13) has a unique solution.

5 Conclusions
It is known that we should increase our ability for studying of different types of fractional
integro-differential equations. In this case, we could create modern software in the fu-
ture by using advanced modelings of distinct phenomena. In this way, we should try to
review different types of fractional integro-differential equations. In this work, we study
the existence of solutions for a Caputo–Hadamard fractional integro-differential equation
with boundary value conditions involving the Hadamard fractional operators via different
orders. Also, we provide three examples to illustrate our main results.
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