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Abstract
This paper focuses on a numerical study of the general time-space variable-order
fractional nonlinear problem of thermoelasticity in one dimension using the
weighted average nonstandard finite difference (WANSFD). By replacing the second
order space derivative with a Riesz fractional variable-order derivative and the time
derivative by Caputo fractional variable-order operator in the standard system which
arises in thermoelasticity, we obtain this general system. Using a kind of John von
Neumann technique, we study the stability of the designed schemes. Also, the
truncation error of the introduced schemes is studied. Our numerical treatment is
shown graphically. These results expose that WANSFD approach is suitable and
effective for solving the proposed system; moreover, it is easy to implement.
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1 Introduction
Today scientists in different fields such as plasma waves, fluid mechanics systems and
solid state physics use coupled partial differential equations to describe many phenomena.
A system of nonlinear coupled hyperbolic and parabolic equations is always used in stud-
ies of circled fuel reactor, radiation hydrodynamics, magnetoelasticity, thermoelasticity,
and in biology [1–5]. It is known that studying the behavior of solutions of these systems
is a very important and difficult area of research. A lot of authors [4–6] have been studying
the existence of solutions for such models, as well as their uniqueness and stability.

It is very difficult to obtain the analytic exact solutions of such nonlinear problems and,
unfortunately, only in simple cases one can find these solutions. Therefore, it is very im-
portant to approximate them numerically, which requires great potential from the re-
searchers. The authors of [7] and of the references therein studied a system of coupled
parabolic equations. Some of these studies depended on the finite element technique [8, 9]
and on the finite difference technique [1, 2, 10] for a nonlinear system of coupled hyper-
bolic and parabolic equations. In [11, 12], the authors apply the Adomian decomposition
approach and the variational iteration approach for solving the model. In [3], the authors
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found the solution of a nonlinear system of coupled hyperbolic and parabolic equations
with specified harmonic displacement at the border depending on the Poincaré extension
with a small parameter.

It is well known, since the last few years, that the fractional derivative operators are
more compatible to describe the properties of many real-life problems and more helpful
than those of integer-order to understand such problems [13]. In fact, the next state in
the model with a fractional-order derivative is based on all of its prior states and not only
on its present state as in the case with a derivative of integer order. And therefore, the
derivative of fractional order will be more authentic than that of integer order. Inclusion of
the hereditary properties and memory effect of processes in numerous real-life problems
is considered as one of the most important advantages of the fractional derivative [14].

The fractional differential equations is the best way to describe the fractional mod-
els. These equations are solved by different methods. Some of the introduced numerical
methods are: Adomian decomposition technique [15], finite element technique [16], finite
difference technique [17, 18], homotopy perturbation technique [19], spectral methods
[20, 21], Taylor collocation methods [22], and variational iteration methods [23].

Recently, many physical, mathematical, financial, viscoelasticity, mechanical, and engi-
neering problems have been described by the fractional variable-order pseudodifferen-
tial operators, see [24–32]. Also, the underlying differential operators in many dynamic
processes appear as fractional and are dynamic in a sense that their derivative order is
field-changing, i.e., it may change with space and/or time. Subsequently, a lot of scientists
have been studying the characteristic of the variable-order fractional derivatives. In 1993,
Samko with others [31] introduced this motivating expansion of the standard fractional
derivatives by letting the order of the fractional derivative be not a constant but a function
of an independent variable. After that, many authors have proposed various definitions of
variable-order fractional derivative to fit coveted aims. Lorenzo et al. in [33] introduced
in details the connotation of variable-order derivative and inspected some variable-order
definitions. Coimbra [34] suggested a new definition for the variable-order fractional op-
erator by using the Laplace transform of the Caputo fractional derivative.

The nonstandard finite difference methods (NSFDMs) were suggested by Mickens [35–
37] to improve the discretization of some terms in the studied differential equation. Using
a specific discretization and the denominator function, this approach will be more stable
and more accurate than the standard approach [38, 39], such that the proposed approach
is not difficult to build [40]. The workable implementation of the NSFDMs exists in the
research areas of chemistry, physics, and engineering [41–43]. In particular, the most fas-
cinating usage is in mathematical ecology and mathematical biology [44, 45], where the
advantages of the NSFDMs have been shown markedly. Also, the active keeping property
of the NSFDMs is well behaved in solving systems of fractional-order differential equa-
tions, like the fractional-order neuron model [46],the fractional-order Rössler model [47],
and the Hodgkin–Huxley system with fractional order derivative [48].

In addition, the weighted average finite difference method (WAFDM) [49–51] can de-
pend on the weight factor, and the implicit or explicit method (more stable or easy for
coding, respectively).

In this work, we merge between those two techniques to find numerical approximat-
ing scheme for a time-space variable-order fractional nonlinear system of coupled hyper-
bolic and parabolic differential equations. This scheme has the advantages of these two
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approaches and therefore will has a larger stability region and will be more accurate. The
introduced method is called the weighted average nonstandard finite difference method
(WANSFDM) (see [18, 50], and [52]).

Consider the system of general time-space variable-order fractional nonlinear, coupled,
hyperbolic and parabolic partial differential equations in one-dimension with additional
terms of a heat supply and a force term in the equation of heat conduction and in the
equation of the motion, respectively:

c
0Dμ(x,t)

t u – a1(ux, θ )Rα(x,t)u + b1(ux, θ )Rα(x,t)–1θ = f (x, t), x ∈R,
c
0Dμ(x,t)–1

t θ – d1(ux, θ )Rα(x,t)θ – h1(uxx, θ )Rα(x,t)–1θ + c1(ux, θ )uxt = l(x, t), t > 0,
(1)

with initial conditions:

θ (x, 0) = θ0, u(x, 0) = u0(x), ut(x, 0) = u1(x),

such that θ = θ (x, t) is the difference of the temperature of the body from t0 = 0 and u =
u(x, t) is the displacement of body from balance, c

0Dμ(x,t)
t is the variable-order Caputo time

fractional derivative with 1 < μ(x, t) ≤ 2, Rα(x,t) is the Riesz variable-order fractional space
derivative with 1 < α(x, t) ≤ 2, a1, b1, c1, d1, and h1, are given smooth functions and the
subscripts denote partial derivatives.

Many articles like [1, 53–55] have widely studied this system (1). When μ(x, t) = 2 and
α(x, t) = 2, in [3, 53] we found specific details of the meaning and application of such this
system in physics. Also, in [50] the authors studied this system in case of time fractional
derivative only. These works depend on the fundamental researches in which the theory
of fractional thermoelasticity was introduced (see [56–58], and [59]).

In reality, the Caputo variable-order fractional derivative operator has many advantages
when used to describe the derivative in initial value differential equations. The most im-
portant feature of variable-order Caputo’s definition is that the conditions of the initial
value for the variable-order fractional differential equations with the variable-order Ca-
puto derivatives will be taken as in the case of differential equations of integer order,
therefore, the time variable-order fractional derivatives are often taken in the Caputo
sense. Also, it is usually to define the space variable-order fractional derivative as the Riesz
variable-order fractional operator. The author in [13] concluded that “the complete theory
of fractional differential equations, especially the theory of boundary value problems for
fractional differential equations, can be developed only with the use of both left and right
derivatives.” So, in this paper all the spatial derivatives are Riesz variable-order fractional
derivatives, which include the right and left variable-order Riemann–Liouville fractional
operators.

The fundamental aim of the present article is to carry out numerical treatment of
the time-space variable-order fractional differential model (1) which arises in fractional
variable-order thermoelasticity using the WANSFD technique. In reality, there are no
studies in the literature using WANSFD technique to solve similar systems with variable-
order fractional derivatives, so our attention to such an approach is motivated.

The article is arranged as follows: In the next section, we remind the elementary facts
of the used methods (NSFDMs) and present many definitions of the derivatives of frac-
tional variable order. In Sect. 3, in three different cases, we propose WANSFD schemes
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for the time-space variable order fractional model (1). We analyze, in Sect. 4, the stability
of the suggested schemes and discuss their truncation error. Section 5 is devoted to some
numerical consequences which are reported to exhibit the accuracy and the efficiency of
the offered technique. Finally, in Sect. 6, we give conclusions of this work.

2 Preliminaries and definitions
2.1 The nonstandard finite difference technique
The NSFDMs were suggested firstly by Mickens [35–37]. These techniques construct an
approximating discrete schemes for partial differential equations (PDEs) or ordinary dif-
ferential equations (ODEs). NSFDMs can preserve the properties of the exact solution of
the studied PDEs or ODEs depending on the following principles [36]:

1. In general, the denominator functions for the discrete derivatives must be expressed
in terms of the step sizes.

2. The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives of the differential equations.

3. The nonlinear terms should be approximated in a nonlocal approximation manner.
4. The schemes must not have solutions which do not coincide with solutions of the

studied differential models.
5. Specific conditions which keep the analytic solutions of the studied differential

equations must also be specific discrete conditions for a scheme of the finite
difference.

In brief, for approximating dy
dt using the Euler approach, we usually depend on y(t+h)–y(t)

h
but here we will use y(t+h)–y(t)

φ(h) instead, where φ(h) is a continuous function of step size h
which satisfies the following conditions:

φ(h) = h + O
(
h2), 0 < φ(h) < 1, h → 0.

Furthermore, if there is a nonlinear term in the studied differential equation, we replace it
in a nonlocal manner as, for example,

xy →

⎧
⎪⎪⎨

⎪⎪⎩

xn–1yn,

xn+1yn,

xnyn+1.

2.2 Fractional variable-order calculus definitions
In the literature, there are a lot of definitions of the operators of fractional variable-order
derivatives (see, e.g., [60–63]). The space-fractional variable-order derivatives are usually
given by the Riesz fractional variable-order derivatives. As for the time-fractional deriva-
tives, they are usually defined in the Grünwald–Letnikov, Riemann–Liouville, or Caputo
sense.

Definition 2.1 ([28]) Let α(t) ∈ R
+. The variable-order Caputo fractional derivative of

order α(t) is defined by

(c
0Dα(t)

t f
)
(t) =

1
Γ (n – α(t))

∫ t

0

f (n)(ξ )
(t – ξ )1–n+α(t) dξ , t > 0, (2)

where f (t) ∈ Cn[0,∞[, n = [α(t)] + 1.
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Definition 2.2 ([28]) The right- and left-sided variable-order Riemann–Liouville opera-
tors of fractional derivatives where t ∈R and α(t) ∈R

+, n = [α(t)] + 1 are

(
tDα(t)

b f
)
(t) =

(–1)n

Γ (n – α(t))

(
d
dt

)n ∫ b

t

f (ξ )
(ξ – t)1+α(t)–n dξ ,

(
aDα(t)

t f
)
(t) =

1
Γ (n – α(t))

(
d
dt

)n ∫ t

a

f (ξ )
(t – ξ )1+α(t)–n dξ .

(3)

Definition 2.3 ([28]) The right- and left-sided variable-order Grünwald–Letnikov frac-
tional derivatives are given by

Dα(x)
b– f (t) = lim

h→0,nτ=b–t
h–α(t)

n∑

j=0

(–1)j
(

α(t)
j

)
f (t + jh), (4)

Dα(x)
a+ f (t) = lim

h→0,nτ=t–a
h–α(t)

n∑

j=0

(–1)j
(

α(t)
j

)
f (t – jh), (5)

where [x] denotes the integer part of x and h is the step size.

Definition 2.4 ([30]) The variable order Riesz fractional derivative is given by

Rα(t)f (t) = –
1

2 cos( πα(t)
2 )

(
aDα(t)

t + tDα(t)
b

)
f (t). (6)

3 Structure of the WANSFD for the proposed system
In the current part of this paper, we introduce WANSFDM for obtaining a discrete scheme
for the system (1). Here, it is valuable to remind that the distinction between “the weighted
average nonstandard finite difference technique” and “the weighted average standard fi-
nite difference technique” is analogous to the distinction between the nonstandard finite
difference technique and the finite difference technique. The problem of finding the nu-
merical solution of the system (1) is in approximating the fractional variable-order Caputo
and Riemann–Liouville variable-order derivatives by WANSFD scheme when σ ∈ [0, 1] is
the weight factor.

Let N , M ∈N and consider

xn = nh, n = 0, 1, 2, . . . , N , tm = m�t, m = 0, 1, 2, . . . , M,

the coordinates of the mesh points, where

�t = T/M, h = (b – a)/N .

We will denote, at a grid point (xn, tm) = (nh, m�t), the approximated values of u, θ by
um

n , θm
n , respectively. The nonstandard difference approximation of variable-order Caputo

derivative is introduced in the form:

c
0Dμ(x,t)

t u(x, t)

=
1

Γ (2 – μ(x, t))

∫ t

0

1
(t – τ )(μ(x,t)–1)

∂2u(x, τ )
∂τ 2 dτ
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=
1

Γ (2 – μ(x, t))

m–1∑

0

∫ (j+1)�t

j�t
z(1–μ(x,t)) ∂

2u(x, t – z)
∂z2 dz

=
1

Γ (2 – μ(x, t))

m–1∑

0

u(x, t – (j – 1)�t) – 2u(x, t – j�t) + u(x, t – (j + 1)�t)
(ϕ(�t))2

×
∫ (j+1)�t

j�t
z(1–μ(x,t)) dz

=
(�t)2–μ(x,t)

Γ (3 – μ(x, t))(ϕ(�t))2

×
m–1∑

0

[
u
(
x, t – (j – 1)�t

)
– 2u(x, t – j�t) + u

(
x, t – (j + 1)�t

)]

× [
(j + 1)2–μ(x,t) – j2–μ(x,t)]. (7)

Similarly,

c
0Dμ(x,t)–1

t θ (x, t) =
(�t)2–μ(x,t)

2Γ (3 – μ(x, t))(ϕ(�t))

m–1∑

0

[
θ
(
x, t – (j – 1)�t

)
– θ

(
x, t – (j + 1)�t

)]

× [
(j + 1)2–μ(x,t) – j2–μ(x,t)]. (8)

Also, the approximations of variable-order Riemann–Liouville derivative using shifted
Grünwald–Letnikov variable-order fractional derivative [29] are given as follows:

(
aDα(x,t)

x u(x, t)
)m

n = h–αm
n+1

n+1∑

j=0

gαm
n+1

j um
n+1–j,

(
xDα(x,t)

b u
)
(x, t)m

n = h–αm
n+1

N–n+1∑

j=0

gαm
n–1

j um
n–1+j,

(9)

where

gαm
n

j = (–1)j
(

αm
n
j

)
.

In this paper we study the proposed model in three different cases:
1. a1(x, t) = 1 + 2γ ux + 3δu2

x – β2θ , b1(x, t) = –(β1 + β2ux), c1(x, t) = –a – bux, d1(x, t) =
1 + α∗ux, and h1(x, t) = α∗uxx (as in [1]) such that the constants have specific orders as
follows:

δ = O
(
1 to 10–1), γ = O(1), β1 = O

(
10–3), β2 = O

(
10–3),

α∗ = O(1), a = O
(
10–1), b = O

(
10–1),

therefore system(1) can be written as follows:

c
0Dμ(x,t)

t u –
(
1 + 2γ ux + 3δu2

x – β2θ
)
Rα(x,t)u – (β1 + β2ux)Rα(x,t)–1θ

= f (x, t), x ∈R,
c
0Dμ(x,t)–1

t θ –
(
1 + α∗ux

)
Rα(x,t)θ – α∗uxxRα(x,t)–1θ + (–a – bux)uxt = l(x, t), t > 0,

(10)
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depending on the following difference approximations

(c
0Dμ(x,t)

t u(x, t)
)m

n =
(�t)2–μm

n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
]

× [
(j + 1)2–μm

n – j2–μm
n
]

+ O
((

ϕ(�t)
)2), (11a)

(c
0Dμ(x,t)–1

t θ (x, t)
)m

n =
(�t)2–μm

n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

+ O
((

ϕ(�t)
)2), (11b)

(
Rα(x,t)u(x, t)

)m
n = –

(φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

, (11c)

(
Rα(x,t)–1u(x, t)

)m
n = –

(φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j um
n–1+j

)

, (11d)

(uxt)m
n =

um+1
n+1 – um–1

n+1 – um+1
n–1 + um–1

n–1
4(φ(h)) · ϕ(�t)

+ O
((

ϕ(�t)
)2 +

(
φ(h)

)2), (11e)

(ux)m
n =

um
n+1 – um

n–1
2(φ(h))

+ O
((

φ(h)
)2), (11f)

then system (10) takes the following form:

(�t)2–μm
n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
][

(j + 1)2–μm
n – j2–μm

n
]

+ σ

(
1 + 2γ

um
n+1 – um

n–1
2(φ(h))

+ 3δ

(
um

n+1 – um
n–1

2(φ(h))

)2

– β2θ
m
n

)

× (φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

+ (1 – σ )
(

1 + 2γ
um+1

n+1 – um+1
n–1

2(φ(h))
+ 3δ

(
um+1

n+1 – um+1
n–1

2(φ(h))

)2

– β2θ
m+1
n

)

× (φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm+1
n+1

j um+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j um+1
n–1+j

)

+ σ

(
β1 + β2

um
n+1 – um

n–1
2(φ(h))

)

× (φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

+ (1 – σ )
(

β1 + β2
um

n+1 – um
n–1

2(φ(h))

)

× (φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

– σ f m
n + (1 – σ )f m+1

n = Tm
n ,
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(�t)2–μm
n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

(12)

+ σ

(
1 + α∗ um

n+1 – um
n–1

2(φ(h))

)

× (φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j θm
n–1+j

)

+ (1 – σ )
(

1 + α∗ um+1
n+1 – um+1

n–1
2(φ(h))

)

× (φ(h))–αm+1
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm+1
n+1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j θm+1
n–1+j

)

+ σα∗ um
n+1 – 2um

n + um
n–1

(φ(h))2

× (φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

+ (1 – σ )α∗ um+1
n+1 – 2um+1

n + um+1
n–1

(φ(h))2

× (φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

+
(

–a – b
um

n+1 – um
n–1

2(φ(h))

)
um+1

n+1 – um–1
n+1 – um+1

n–1 + um–1
n–1

4ϕ(�t) · (φ(h))

– σ lm
n + (1 – σ )lm+1

n = Tm
n .

The previous substitution gives an error, truncating error, symbolized here by Tm
n . Its es-

timation will be discussed in Sect. 4.2. After dropping this truncating error, we have the
following computable difference scheme:

(�t)2–μm
n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
][

(j + 1)2–μm
n – j2–μm

n
]

+ σ

(
1 + 2γ

um
n+1 – um

n–1
2(φ(h))

+ 3δ

(
um

n+1 – um
n–1

2(φ(h))

)2

– β2θ
m
n

)

× (φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

+ (1 – σ )
(

1 + 2γ
um+1

n+1 – um+1
n–1

2(φ(h))
+ 3δ

(
um+1

n+1 – um+1
n–1

2(φ(h))

)2

– β2θ
m+1
n

)

× (φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm+1
n+1

j um+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j um+1
n–1+j

)

+ σ

(
β1 + β2

um
n+1 – um

n–1
2(φ(h))

)
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× (φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

+ (1 – σ )
(

β1 + β2
um

n+1 – um
n–1

2(φ(h))

)

× (φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

– σ f m
n + (1 – σ )f m+1

n = 0,

(�t)2–μm
n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

(13)

+ σ

(
1 + α∗ um

n+1 – um
n–1

2(φ(h))

)

× (φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j θm
n–1+j

)

+ (1 – σ )
(

1 + α∗ um+1
n+1 – um+1

n–1
2(φ(h))

)

× (φ(h))–αm+1
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm+1
n+1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j θm+1
n–1+j

)

+ σα∗ um
n+1 – 2um

n + um
n–1

(φ(h))2

× (φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

+ (1 – σ )α∗ um+1
n+1 – 2um+1

n + um+1
n–1

(φ(h))2

× (φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

+
(

–a – b
um

n+1 – um
n–1

2(φ(h))

)
um+1

n+1 – um–1
n+1 – um+1

n–1 + um–1
n–1

4ϕ(�t) · (φ(h))

– σ lm
n + (1 – σ )lm+1

n = 0.

2. a1(x, t) = d1(x, t) = 1, b1(x, t) = c1(x, t) = θux, and h1(x, t) = 0 (as in [55]) so model (1)
has the following form:

c
0Dμ(x,t)

t u – Rα(x,t)u + θuxRα(x,t)–1θ = f (x, t),
c
0Dμ(x,t)–1

t θ – Rα(x,t)θ + θuxuxt = l(x, t),
(14)

and then, using the difference approximations (11a)–(11f), system (14) can be written as
follows:

(�t)2–μm
n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
][

(j + 1)2–μm
n – j2–μm

n
]
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+ σ
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

+ (1 – σ )
(φ(h))–αm+1

n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j um+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j um+1
n–1+j

)

– σθm
n

um
n+1 – um

n–1
2(φ(h))

(φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

– (1 – σ )θm
n

um+1
n+1 – um+1

n–1
2(φ(h))

(φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

– σ f m
n + (1 – σ )f m+1

n = Tm
n , (15)

(�t)2–μm
n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

+ σ
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j θm
n–1+j

)

+ (1 – σ )
(φ(h))–αm+1

n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j θm+1
n–1+j

)

+ θm
n

um
n+1 – um

n–1
2(φ(h))

um+1
n+1 – um–1

n+1 – um+1
n–1 + um–1

n–1
4ϕ(�t) · (φ(h))

– σ lm
n + (1 – σ )lm+1

n = Tm
n .

Neglecting the truncation error, then we have

(�t)2–μm
n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
][

(j + 1)2–μm
n – j2–μm

n
]

+ σ
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

+ (1 – σ )
(φ(h))–αm+1

n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j um+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j um+1
n–1+j

)

– σθm
n

um
n+1 – um

n–1
2(φ(h))

(φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

– (1 – σ )θm
n

um+1
n+1 – um+1

n–1
2(φ(h))

(φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

– σ f m
n + (1 – σ )f m+1

n = 0, (16)

(�t)2–μm
n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

+ σ
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j θm
n–1+j

)
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+ (1 – σ )
(φ(h))–αm+1

n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j θm+1
n–1+j

)

+ θm
n

um
n+1 – um

n–1
2(φ(h))

um+1
n+1 – um–1

n+1 – um+1
n–1 + um–1

n–1
4ϕ(�t) · (φ(h))

– σ lm
n + (1 – σ )lm+1

n = 0.

3. a1(x, t) = 2 – θux, b1(x, t) = c1(x, t) = 2 + θux, d1(x, t) = θ , and h1(x, t) = 0 (as in [12]) so
model (1) has the following form:

c
0Dμ(x,t)

t u – (2 – θux)Rα(x,t)u + (2 + θux)Rα(x,t)–1θ = f (x, t), x ∈R,
c
0Dμ(x,t)–1

t θ – θRα(x,t)θ + (2 + θux)uxt = l(x, t), t > 0,
(17)

where, depending on the difference approximations (11a)–(11f), model (17) then takes the
form:

(�t)2–μm
n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
][

(j + 1)2–μm
n – j2–μm

n
]

+ σ

(
2 – θm

n
um

n+1 – um
n–1

2(φ(h))

)
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

+ (1 – σ )
(

2 – θm+1
n

um+1
n+1 – um+1

n–1
2(φ(h))

)

× h–αm+1
n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j um+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j um+1
n–1+j

)

– σ

(
2 + θm

n
um

n+1 – um
n–1

2(φ(h))

)
(φ(h))–αm

n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

– (1 – σ )
(

2 + θm+1
n

um+1
n+1 – um+1

n–1
2(φ(h))

)

× (φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

(18)

– σ f m
n + (1 – σ )f m+1

n = Tm
n ,

(�t)2–μm
n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

+ σθm
n σ

(φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j θm
n–1+j

)

+ (1 – σ )θm+1
n

(φ(h))–αm+1
n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j θm+1
n–1+j

)

+
(

2 + θm
n

um
n+1 – um

n–1
2(φ(h))

)
um+1

n+1 – um–1
n+1 – um+1

n–1 + um–1
n–1

4ϕ(�t) · (φ(h))

– σ lm
n + (1 – σ )lm+1

n = Tm
n .
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Neglecting the truncation error, then we have

(�t)2–μm
n

Γ (3 – μm
n )(ϕ(�t))2

m–1∑

0

[
um–j+1

n – 2um–j
n + um–j–1

n
][

(j + 1)2–μm
n – j2–μm

n
]

+ σ

(
2 – θm

n
um

n+1 – um
n–1

2(φ(h))

)
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j um
n+1–j +

N–n+1∑

j=0

gαm
n–1

j um
n–1+j

)

+ (1 – σ )
(

2 – θm+1
n

um+1
n+1 – um+1

n–1
2(φ(h))

)

× h–αm+1
n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j um+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j um+1
n–1+j

)

– σ

(
2 + θm

n
um

n+1 – um
n–1

2(φ(h))

)
(φ(h))–αm

n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j θm
n–1+j

)

– (1 – σ )
(

2 + θm+1
n

um+1
n+1 – um+1

n–1
2(φ(h))

)

× (φ(h))–αm+1
n+1 –1

2 cos( παm+1
n –1

2 )

( n+1∑

j=0

gαm+1
n+1 –1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j θm+1
n–1+j

)

(19)

– σ f m
n + (1 – σ )f m+1

n = 0,

(�t)2–μm
n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

0

[
θm–j+1

n – θm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

+ σθm
n σ

(φ(h))–αm
n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j θm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j θm
n–1+j

)

+ (1 – σ )θm+1
n

(φ(h))–αm+1
n+1

2 cos( παm+1
n
2 )

( n+1∑

j=0

gαm+1
n+1

j θm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j θm+1
n–1+j

)

+
(

2 + θm
n

um
n+1 – um

n–1
2(φ(h))

)
um+1

n+1 – um–1
n+1 – um+1

n–1 + um–1
n–1

4ϕ(�t) · (φ(h))

– σ lm
n + (1 – σ )lm+1

n = 0.

All of the above schemes (13), (16), and (19) with their particular initial conditions and
boundary conditions form an algebraic system of 2(N + 1)(M + 1) nonlinear equations
with um

n , θm
n (n = 0, 1, 2, . . . , N , m = 0, 1, 2, . . . , M) as unknowns. The algebraic system can

be solved using Newton’s iteration method [64].
The schemes (13), (16), and (19) are explicit for σ = 1, partially implicit for 0 < σ < 1, fully

implicit for σ = 0, and for the special case σ = 1/2 therefore we use the Crank–Nicholson
scheme [51].

4 Analysis of the stability and truncation error
4.1 Stability analysis
To discuss the stability of the proposed schemes, we use the von Neumann-type stability
technique and, because this technique deals only with linear problems, we have to linearize
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these schemes by supposing that the terms a1, b1, c1, d1, h1 are constants and considering
f = l = 0 (free source term) (see [1] and [65] for more details). To start our study analysis,
we write system (1) in another form as follows:

c
0Dμ(x,t)

t u – a1Rα(x,t)u + b1Rα(x,t)–1θ = 0,
c
0Dμ(x,t)–1

t θ – d1Rα(x,t)θ – h1Rα(x,t)–1θ + c1uxt = 0.
(20)

Letting ut = v, then we can express:

c
0Dμ(x,t)–1

t v – a1Rα(x,t)u + b1Rα(x,t)–1θ = 0,

ut = v,
c
0Dμ(x,t)–1

t θ – d1Rα(x,t)θ – h1Rα(x,t)–1θ + c1vx = 0.

(21)

Firstly, we write down system (21) in matrix form as follows:

Y1
c
0Dμ–1

t X + Y2Rα(x,t)X + Y3Rα(x,t)–1X + Y4Xt + Y5Xx + Y6X = 0, (22)

where

X =

⎛

⎜
⎝

u
v
θ

⎞

⎟
⎠ , Y1 =

⎛

⎜
⎝

0 1 0
0 0 0
0 0 1

⎞

⎟
⎠ ,

Y2 =

⎛

⎜
⎝

–a1 0 0
0 0 0
0 0 –d1

⎞

⎟
⎠ , Y3 =

⎛

⎜
⎝

0 0 b1

0 0 0
0 0 –h1

⎞

⎟
⎠ ,

Y4 =

⎛

⎜
⎝

0 0 0
1 0 0
0 0 0

⎞

⎟
⎠ , Y5 =

⎛

⎜
⎝

0 0 0
0 0 0
0 c1 0

⎞

⎟
⎠ , Y6 =

⎛

⎜
⎝

0 0 0
0 –1 0
0 0 0

⎞

⎟
⎠ .

Now, we write system (22) using WANSFDM as follows:

Y1
(�t)2–μm

n

2Γ (3 – μm
n )(ϕ(�t))

m–1∑

j=0

[
Xm–j+1

n – Xm–j–1
n

][
(j + 1)2–μm

n – j2–μm
n
]

– σ Y2
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm
n+1

j Xm
n+1–j +

N–n+1∑

j=0

gαm
n–1

j Xm
n–1+j

)

– (1 – σ )Y2
(φ(h))–αm+1

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

gαm+1
n+1

j Xm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1

j Xm+1
n–1+j

)

– σ Y3
(φ(h))–αm

n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm
n+1–1

j Xm
n+1–j +

N–n+1∑

j=0

gαm
n–1–1

j Xm
n–1+j

)
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– (1 – σ )Y3
(φ(h))–αm+1

n+1 –1

2 cos( παm
n –1
2 )

( n+1∑

j=0

gαm+1
n+1 –1

j Xm+1
n+1–j +

N–n+1∑

j=0

gαm+1
n–1 –1

j Xm+1
n–1+j

)

+ Y4
Xm+1

n – Xm
n

ϕ(�t)

+ σ Y5
Xm

n+1 – Xm
n–1

2φ(h)
+ (1 – σ )Y5

Xm+1
n+1 – Xm+1

n–1
2φ(h)

+ σ Y6Xm
n + (1 – σ )Y6Xm+1

n = 0, (23)

which takes the following form:

Y1
(�t)2–μm

n

2Γ (3 – μm
n )(ϕ(�t))

Xm+1
n – (1 – σ )Y2

(φ(h))–αm+1
n+1

2 cos( παm
n

2 )

( N∑

j=0

ĝαm+1
n+1

n,j Xm+1
j

)

– (1 – σ )Y3
(φ(h))–αm+1

n+1 –1

2 cos( παm
n –1
2 )

( N∑

j=0

ĝαm+1
n+1 –1

n,j Xm+1
j

)

+ Y4
Xm+1

n
ϕ(�t)

+ (1 – σ )Y5
Xm+1

n+1 – Xm+1
n–1

2φ(h)
+ (1 – σ )Y6Xm+1

n

= σ Y2
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( n+1∑

j=0

ĝαm
n+1

n,j Xm
j

)

+ σ Y3
(φ(h))–αm

n+1–1

2 cos( παm
n –1
2 )

( n+1∑

j=0

ĝαm
n+1–1

n,j Xm
j

)

+ Y4
Xm

n
ϕ(�t)

– σ Y5
Xm

n+1 – Xm
n–1

2φ(h)
– σ Y6Xm

n –
m–1∑

j=1

w̄μm
n

j Xm–j
n , (24)

where

w̄j = wj+1 – wj, j = 1, 2, . . . , m – 2, w̄m–1 = –wm–1,

and

wj =
[
(j + 1)2–μ – j2–μ

]
, j = 1, 2, . . . , m – 1.

and

ĝαm
n

n,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gαm
n

n–j+1 if j < n – 1,

gαm
n

0 + gαm
n

2 if j = n – 1,

2gαm
n

1 if j = n,

gαm
n

0 + gαm
n

2 if j = n + 1,

gαm
n

j–n+1 if j > n + 1.

(25)
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After some simplification we have:

(
–
(
gαm+1

n+1
0 + gαm+1

n+1
2

)
(1 – σ )Y2

(φ(h))–αm+1
n+1

2 cos( παm
n

2 )

–
(
gαm+1

n+1 –1
0 + gαm+1

n+1 –1
2

)
(1 – σ )Y3

(φ(h))–αm+1
n+1 –1

2 cos( παm
n –1
2 )

+ (1 – σ )Y5
1

2φ(h)

)
Xm+1

n+1

+
(

Y1
(�t)2–μm

n

2Γ (3 – μm
n )(ϕ(�t))

– 2gαm+1
n+1

1 (1 – σ )Y2
(φ(h))–αm+1

n+1

2 cos( παm
n

2 )

– 2gαm+1
n+1 –1

1 (1 – σ )Y3
(φ(h))–αm+1

n+1 –1

2 cos( παm
n –1
2 )

+ Y4
1

ϕ(�t)
+ (1 – σ )Y6

)
Xm+1

n

+
(

–
(
gαm+1

n+1
0 + gαm+1

n+1
2

)
(1 – σ )Y2

(φ(h))–αm+1
n+1

2 cos( παm
n

2 )

–
(
gαm+1

n+1 –1
0 + gαm+1

n+1 –1
2

)
(1 – σ )Y3

(φ(h))–αm+1
n+1 –1

2 cos( παm
n –1
2 )

– (1 – σ )Y5
1

2φ(h)

)
Xm+1

n–1

– (1 – σ )Y2
(φ(h))–αm+1

n+1

2 cos( παm
n

2 )

( N∑

j=0,j �={n–1,n,n+1}
ĝαm+1

n+1
n,j Xm+1

j

)

– (1 – σ )Y3
(φ(h))–αm+1

n+1 –1

2 cos( παm
n –1
2 )

( N∑

j=0,j �={n–1,n,n+1}
ĝαm+1

n+1 –1
n,j Xm+1

j

)

=
(

(
gαm

n+1
0 + gαm

n+1
2

)
σ Y2

(φ(h))–αm
n+1

2 cos( παm
n

2 )

+
(
gαm

n+1–1
0 + gαm

n+1–1
2

)
σ Y3

(φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

– σ Y5
1

2φ(h)

)
Xm

n+1

+
(

2gαm+1
n+1

1 σ Y2
(φ(h))–αm+1

n+1

2 cos( παm
n

2 )

+ 2gαm+1
n+1 –1

1 σ Y3
(φ(h))–αm+1

n+1 –1

2 cos( παm
n –1
2 )

+ Y4
1

ϕ(�t)
– σ Y6

)
Xm

n

+
((

gαm
n+1

0 + gαm
n+1

2
)
σ Y2

(φ(h))–αm
n+1

2 cos( παm
n

2 )

+
(
gαm

n+1–1
0 + gαm

n+1–1
2

)
σ Y3

(φ(h))–αm
n+1–1

2 cos( παm
n –1
2 )

– σ Y5
1

2φ(h)

)
Xm

n–1

+ σ Y2
(φ(h))–αm

n+1

2 cos( παm
n

2 )

( N∑

j=0,j �={n–1,n,n+1}
ĝαm

n+1
n,j Xm

j

)

+ σ Y3
(φ(h))–αm

n+1–1

2 cos( παm
n –1
2 )

( N∑

j=0,j �={n–1,n,n+1}
ĝαm

n+1–1
n,j Xm

j

)

–
m–1∑

j=1

w̄μm
n

j Xm–j
n , (26)
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this scheme takes the following composite form:

A1Xm+1
n+1 + A2Xm+1

n + A3Xm+1
n–1 – (1 – σ )

N∑

j=0,j �={n–1,n,n+1}
(A4,j + A5,j)Xm+1

j

= B1Xm
n+1 + B2Xm

n + B3Xm
n–1 + σ

N∑

j=0,j �={n–1,n,n+1}
(B4,j + B5,j)Xm

j

–
m–1∑

j=1

w̄μm
n

j Xm–j
n . (27)

Depending on the von Neumann stability method, we presume

Xm
n = ξmΥ einβh, (28)

such that β ∈ R, i =
√

–1, Υ ∈ R
4×1, and ξ ∈ R

4×4 is an amplification element. Putting
Eq. (28) into Eq. (27), after some manipulation we obtain the following form of the ampli-
fication matrix:

ξ =

[

A1eiβh + A2 + A3e–iβh – (1 – σ )
N∑

j=0,j �={n–1,n,n+1}
(A4,j + A5,j)ei(j–n)βh

]–1

×
[

B1eiβh + B2 + B3e–iβh + σ

N∑

j=0,j �={n–1,n,n+1}
(B4,j + B5,j)ei(j–n)βh +

m–1∑

1

w̄j
μm

n ξ–j

]

. (29)

The scheme will be stable when ‖ξ‖ ≤ 1. As in [50, 51, 66], we consider on the right side
the time-independent ξ = I so:

m–1∑

1

w̄j
μm

n ξ–j =
(
22–μm

n – 1
)

I,

therefore,

ξ =

[

A1eiβh + A2 + A3e–iβh – (1 – σ )
N∑

j=0,j �={n–1,n,n+1}
(A4,j + A5,j)ei(j–n)βh

]–1

×
[

B1eiβh + B2 + B3e–iβh + σ

N∑

j=0,j �={n–1,n,n+1}
(B4,j + B5,j)ei(j–n)βh +

(
22–μm

n – 1
)

I

]

. (30)

Here ξ depends on μm
n , σ , h, and �t, as we see from Eq. (30).

Scheme (27) will be stable as soon as the following relation is satisfied:

∥∥∥
∥∥

[

A1eiβh + A2 + A3e–iβh – (1 – σ )
N∑

j=0,j �={n–1,n,n+1}
(A4,j + A5,j)ei(j–n)βh

]–1

×
[

B1eiβh + B2 + B3e–iβh + σ

N∑

j=0,j �={n–1,n,n+1}
(B4,j + B5,j)ei(j–n)βh +

(
22–μm

n – 1
)

I

]∥∥
∥∥
∥

≤ 1. (31)
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4.2 Truncation error
Depending on definition of truncation error (15), (18), and (12), and from relations (11a)–
(11f), we have

Tm
n = O

((
φ(h)

)2 +
(
ϕ(�t)

)2),

but φ(h) = h + O(h)2 and ϕ(�t) = �t + O(�t)2, so

Tm
n = O

(
h2 + (�t)2).

Remark 4.1 It is well known that the Lax–Richtmyer equivalence theorem says: for con-
sistent numerical approximations, stability and convergence are equivalent in the integer
order differential equations. Yuste and Murillo in 2012 generalized this theorem to the
fractional derivative case. They proved in [67, Sect. 4] that for a whole class of the frac-
tional difference algorithms the consistency and stability of the difference scheme implies
its convergence. Therefore our scheme is convergent under condition (31).

5 Numerical simulations
In the present section, three test examples are introduced to show the application of the
used technique to solve the proposed nonlinear coupled model of a time-space fractional
variable-order hyperbolic and parabolic equations. To check the accuracy of the proposed
scheme, we estimate the L∞-error (when μ(x, t) = α(x, t) = 2, the derivatives of integer
order) using formulas

E1 = max
∣
∣uexact(xn, tm) – uapprox(xn, tm)

∣
∣, E2 = max

∣
∣θexact(xn, tm) – θapprox(xn, tm)

∣
∣

for all n, m. Let ϕ(�t) = 1 – e–�t and φ(h) = sinh(�x).

Example 1 ([1]) We deal with the system (10) for:

f (x, t) = e–x cos t + (β1 – 1)e–x(1 – cos t)

+ 2γ e–2x(1 – cos t)2 – 3δe–3x(1 – cos t)3, (32)

l(x, t) = (1 + a)e–x sin t –
(
1 + be–x sin t

)
e–x(1 – cos t) + 2α∗e–2x(1 – cos t)2,

and the exact solutions when μ(x, t) = α(x, t) = 2 (derivatives of integer order) are

u(x, t) = e–x(1 – cos t) = θ (x, t), 0 ≤ x ≤ 1.

The boundary conditions are

u(0, t) = 1 – cos t, u(1, t) =
1 – cos t

e
, θ (0, t) = 1 – cos t, θ (1, t) =

1 – cos t
e

,

and the initial conditions are

u(x, 0) = 0, ut(x, 0) = 0, θ (x, 0) = 0,

and a = 0.1, b = 0.1, α∗ = 1, β1 = 0.5, β2 = 0.5, γ = 1, δ = 0.8.



Assiri Advances in Difference Equations        (2020) 2020:288 Page 18 of 27

Table 1 Comparison of E1 and E2, the maximum absolute errors, for different values of N, M in
Example 1, when 0 < t ≤ 1

N M E1 E2

σ = 1 σ = 0.5 σ = 0 σ = 1 σ = 0.5 σ = 0

10 10 3.5478e–01 1.1329e–02 4.4571e–03 4.3610e–01 5.8361e–02 2.2423e–02
25 25 4.1842e+00 4.6783e–03 1.9563e–03 divergent 4.3784e–03 5.6345e–03
40 40 9.8712e+00 7.7532e–04 8.3712e–04 divergent 1.3741e–03 1.1524e–03
50 50 divergent 1.0763e–04 4.5137e–04 divergent 7.4723e–04 7.7859e–04

Table 2 Comparison of E1 and E2, the maximum absolute errors, for different values of N, M in
Example 1, when 0 < t ≤ 5

N M E1 E2

σ = 1 σ = 0.5 σ = 0 σ = 1 σ = 0.5 σ = 0

40 40 divergent 3.4226e–01 2.1399e–01 divergent 8.0341e–01 1.8633e–01
60 60 divergent 6.8113e–02 8.3989e–02 divergent 5.65394e–02 2.9847e–02
60 80 divergent 9.9546e–03 1.0302e–02 divergent 7.4853e–03 1.0301e–02

Figure 1 Comparison of the approximate solutions utilizing the introduced method in Example 1 for various
values of μ, α

From Table 1 we see that E1 and E2 are reduced when N and M grow with σ = 0, 0.5
and 0 < t ≤ 1 and deduce that the approximations obtained by the explicit NSFDM do not
converge because the condition of stability is not satisfied in this case.

Also, when 0 < t ≤ 5, we deduce the same conclusion from Table 2.
In Fig. 1 we see the approximation of u which was achieved by the introduced WANSFD

scheme for various values of α, μ where σ = 0.5 and 0 < t ≤ 1.
In Fig. 2 we see the approximation of u which was achieved by the introduced WANSFD

scheme for various values of α, μ where σ = 0.5 and 0 < t ≤ 5.
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Figure 2 Comparison of the approximate solutions utilizing the introduced method in Example 1 for various
values of μ, α

Figure 3 Comparison of the numerical solutions using the introduced method in Example 1 for different
values of μ, α
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In Fig. 3 we see the approximation of θ which was achieved by the introduced WANSFD
scheme for various values of α, μ where σ = 0.5.

Example 2 ([55]) We treat system (14) for

f (x, t) = 2e–t sin x – e–3t cos2 x sin x, l(x, t) = –e–3t cos3 x,

and the analytic exact solutions for μ = 2, α = 2 (integer order derivative) are given
by

u(x, t) = e–t sin x, θ (x, t) = e–t cos x, 0 ≤ x ≤ π .

The boundary conditions are

u(0, t) = 0, u(π , t) = 0, θ (0, t) = e–t , θ (π , t) = –e–t ,

and the initial conditions are

u(x, 0) = sin x, ut(x, 0) = – sin x, θ (x, 0) = cos x.

From Table 3 we see that E1 and E2 are reduced when N and M grow when σ = 0, 0.5,
0 < t ≤ 1 and deduce that the numerical approximation utilizing the explicit NSFDM is
not convergent because the condition of stability is not satisfied in this case.

In Fig. 4 we see the approximation of u which was achieved by the introduced WANSFD
scheme for various values of μ, α where σ = 0.5.

In Fig. 5 we see the approximation of θ which was achieved by the introduced WANSFD
scheme for various values of μ, α where σ = 0.5.

Figure 6 illustrates the behavior of the approximations of u obtained by the WANSFD
technique when (σ = 0.5) at t = 0.5, for various values of μ and α = 2.

Figure 7 illustrates the behavior of the numerical approximations of u obtained by the
WANSFD technique when (σ = 0.5) at x = 0.7, for various values of α and μ = 2.

Figure 8 illustrates the behavior of the numerical approximations of θ obtained by the
WANSFD method when (σ = 0.5) at t = 0.5, for various values of μ and α = 2.

Figure 9 illustrates the behavior of the numerical approximations of θ obtained by the
WANSFD method when (σ = 0.5) at x = 0.7, for various values of α and μ = 2.

Table 3 Comparison of E1 and E2, the maximum absolute errors, for different values of N, M in
Example 2

N M E1 E2

σ = 1 σ = 0.5 σ = 0 σ = 1 σ = 0.5 σ = 0

10 10 5.2998e–00 4.5278e–02 2.0864e–02 6.2518e–01 2.0721e–02 2.0668e–02
25 25 divergent 6.4189e–03 8.9760e–03 divergent 9.6235e–03 8.9655e–03
40 40 divergent 3.7251e–03 2.5102e–03 divergent 5.1112e–03 3.8879e–03
50 50 divergent 1.0267e–03 9.5183e–04 divergent 8.9926e–04 7.1533e–04
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Figure 4 Comparison of the approximate solutions utilizing the introduced method in Example 2 for
different values of μ, α

Figure 5 Comparison of the numerical solutions using the introduced method in Example 2 for different
values of μ, α
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Figure 6 Behavior of the solutions using the
introduced schemes in Example 2 for various values
of μ when N =M = 10 at t = 0.5

Figure 7 Behavior of the solutions using the
introduced schemes in Example 2 for various values
of μ when N =M = 16 at x = 0.7

Figure 8 Behavior of the solutions using the
introduced schemes in Example 2 for various values
of μ when N =M = 16 at t = 0.5

Figure 9 Behavior of the solutions using the
introduced schemes in Example 2 for different
values of μ when N =M = 16 at x = 0.7
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Example 3 ([12]) Let us consider system (17) where

f (x, t) =
2

1 + x2 –
2(1 + t2)(3x2 – 1)

(1 + x2)3

(
2 +

2x(1 + t2)
(1 + x2)2

1 + t
1 + x2

)

+
2x(1 + t)
(1 + x2)2

(
2 –

2x(1 + t2)
(1 + x2)2

1 + t
1 + x2

)
,

l(x, t) =
1

1 + x2 –
4xt

(1 + x2)2

(
2 +

2x(1 + t2)
(1 + x2)2

1 + t
1 + x2

)

–
2(3x2 – 1)(1 + t)

(1 + x2)2
1 + t

1 + x2 ,

(33)

also the analytic exact solutions for μ = 2, α = 2 (integer order derivative) are

u(x, t) =
1 + t2

1 + x2 , θ (x, t) =
1 + t

1 + x2 , 0 ≤ x ≤ 1.

The boundary conditions are

u(0, t) = 1 + t2, u(1, t) =
1 + t2

2
, θ (0, t) = 1 + t, θ (π , t) =

1 + t
2

,

and the initial conditions are

u(x, 0) =
1

1 + x2 , ut(x, 0) = 0, θ (x, 0) =
1

1 + x2 .

From Table 4 we see that E1 and E2 are reduced when N and M grow for σ = 0, 0.5,
0 < t ≤ 1 and deduce that the numerical approximation depending on the explicit NSFDM
is not convergent because the condition of stability is not satisfied in this case.

In Fig. 10 we see the approximation of u which was achieved by the introduced WANSFD
scheme for various values of α, μ and σ = 0.5.

In Fig. 11 we see the approximation of θ which was achieved by the introduced WANSFD
scheme for various values of α, μ and σ = 0.5.

Figure 12 illustrates the behavior of the numerical approximations of u obtained by the
WANSFD technique when (σ = 0.5) at x = 0.3, for various values of α and μ = 2.

Figure 13 illustrates the behavior of the numerical approximations of θ obtained by the
WANSFD method when (σ = 0.5) at x = 0.3, for different values of α and μ = 2.

Table 4 Comparison of E1 and E2, the maximum absolute errors, for different values of N, M in
Example 3

N M M1 M2

σ = 1 σ = 0.5 σ = 0 σ = 1 σ = 0.5 σ = 0

6 5 4.5332e+00 8.5664e–02 7.7553e–02 9.8871e–01 3.4288e–02 5.1149e–02
12 10 divergent 3.4421e–02 1.1233e–02 divergent 1.0542e–02 1.01783e–02
24 20 divergent 6.7833e–03 6.4355e–02 divergent 9.3441e–03 8.9178e–03
36 30 divergent 1.0499e–03 7.0998e–03 divergent 5.7334e–03 5.1807e–03
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Figure 10 Comparison of the numerical solutions using the introduced method in Example 3 for various
values of μ, α

Figure 11 Comparison of the numerical solutions using the introduced method in Example 3 for various
values of μ, α
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Figure 12 Behavior of the solutions using the
introduced schemes in Example 3 for various values
of μ when N =M = 16 at x = 0.3

Figure 13 Behavior of the solutions using the
introduced schemes in Example 3 for various values
of μ when N =M = 16 at x = 0.3

6 Summary and conclusions
In the paper, we introduced numerical simulations for nonlinear systems of time-space
variable-order fractional, coupled hyperbolic and parabolic partial differential equations
in one dimension utilizing WANSFDM. Analyzing stability of the proposed scheme is
presented by a kind of John von Neumann method, also the relation which determines
the truncation error is given. Some test examples are also presented. We compare the
numerical results obtained by the used technique with the analytic exact solutions of the
proposed model in the case of the standard derivative (integer order). We introduce many
figures to show the behaviors of the solutions when μ and α are changed.
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