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Abstract
In this paper, we discuss the existence and uniqueness of solutions for a class of
integral boundary value problems of nonlinear multi-term fractional differential
equations and propose a new method to obtain their approximate solutions. The
existence results are established by the Banach fixed point theorem, and approximate
solutions are determined by the Daftardar-Gejji and Jafari iterative method (DJIM) and
the Adomian decomposition method (ADM). Finally, we present some examples to
illustrate the existence result and the effectiveness of applied approximate
techniques.
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1 Introduction
In this paper, we consider the integral boundary value problems of nonlinear multi-term
fractional differential equations

⎧
⎨

⎩

Dα
0+y(t) = f (t, y(t), Dβ1

0+y(t), . . . , Dβn
0+y(t)), t ∈ (0, 1),

y(0) = 0, y(1) =
∫ 1

0 g(s, y(s)) ds,
(1)

where 1 < α < 2, 0 < β1 < · · · < βn < 1, α – βn > 1, f : [0, 1] × Rn+1 → R, g : [0, 1] × R →
R are continuous functions, and Dα

0+, Dβ1
0+, . . . , Dβn

0+ are the Riemann–Liouville fractional
derivatives, respectively.

Fractional differential equations have been attractive to many researchers because they
play an important role in describing many phenomena arising in physics, chemistry, biol-
ogy, aerodynamics, control theory, finance, and social sciences [1–6].
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Especially, boundary value problems of fractional differential equations are often re-
garded as valuable mathematical models in the study of various physical, biological, and
chemical processes, such as heat conduction, chemical engineering, thermo-elasticity,
computational fluid dynamics, and bacterial self-regularization, and represent very inter-
esting results [7–18].

They include two-point, three-point, multi-point, and nonlocal integral boundary value
conditions as special cases. Existence and uniqueness results of solutions for such prob-
lems are obtained by using the techniques of nonlinear analysis such as fixed point the-
orems [2, 3, 13, 15, 17–21], fixed-point index theory [16], monotone iterative method
[13, 14], nonlinear alternative of Leray–Schauder type [1, 20].

Bai [19] and Zhang [21], by using some fixed point theorems on cones, investigated the
existence of positive solutions for the Riemann–Liouville fractional differential equation

Dα
0+u(t) + f

(
t, u(t)

)
= 0, 1 < α ≤ 2, 0 < t < 1,

with boundary conditions

u(0) = u(1) = 0,

or

u(0) + u′(0) = u(1) + u′(0) = 0.

Sun and Zhao [16] obtained the existence results of positive solutions for the fractional
integral boundary value problem by means of the monotone iteration method

⎧
⎨

⎩

Dα
0+u(t) + q(t)f (t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u(1) =
∫ 1

0 g(s)u(s) ds,

where f ∈ C([0, 1] × [0,∞), [0,∞)) and g ∈ L1[0, 1] is nonnegative.
In [17], Tariboon et al. studied a new class of three-point boundary value problems of

fractional differential equations with fractional integral boundary conditions

⎧
⎨

⎩

Dα
0+u(t) = f (t, u(t)), 1 < α ≤ 2, 0 < t < T ,

u(η) = 0, Iνu(T) = 0,

where η ∈ (0, T) is a given constant, Dα
0+ is the standard Riemann–Liouville fractional

derivative and ν > 0.
In [14], Liu considered the existence and uniqueness of solutions for a class of nonlinear

fractional differential equations with nonlocal integral boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+u(t) + p(t)f (t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

u′(1) = λIβ
0+u(η),
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where n – 1 < α ≤ n, 0 < η ≤ 1, λ,β > 0, 0 < λΓ (α)·ηα+β–1

Γ (α+β) < 1, and Dα
0+ is the standard

Riemann–Liouville fractional derivative of order α. When n = 4 and p(t) ≡ 1, it has been
studied in [13].

In [22], Padhi et al. considered the existence of positive solutions for fractional differen-
tial equations with nonlinear integral boundary conditions

⎧
⎨

⎩

Dα
0+x(t) + q(t)f (t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n–2)(0) = 0, Dβ
0+x(1) =

∫ 1
0 h(s, x(s)) dA(s),

where n > 2, n – 1 < α ≤ n, β ∈ [1,α – 1] and Dα
0+, Dβ

0+ are the Riemann–Liouville fractional
derivatives.

In [23], Li et al. used the Schauder fixed point theorem and the Banach contraction
mapping principle to establish the existence and uniqueness of solutions for the following
initial value problem of nonlinear fractional differential equation:

⎧
⎨

⎩

Dα
0+u(t) = f (t, u(t), Dβ1

0+u(t), . . . , DβN
0+ u(t)), 0 < t ≤ 1,

Dα–k
0+ u(0) = 0, k = 1, 2, . . . , n,

where α > β1 > β2 > · · · > βN > 0, n = [α] + 1 for α /∈ N and α = n for α ∈ N, 0 < βj < 1
for any j ∈ {1, 2, . . . , N}, Dα

0+, Dβ1
0+, . . . , DβN

0+ are the standard Riemann–Liouville fractional
derivatives and f : [0, 1] × RN+1 → R.

From the previous results, we can see that very little is known about the existence of
solutions for integral boundary value problems of nonlinear multi-term fractional differ-
ential equations.

On the other hand, although the existence of solutions for nonlinear fractional differ-
ential equations has been studied, it is difficult to obtain their analytic solution, so several
approximate techniques such as the Adomian decomposition method (ADM) [5, 24–28],
the Daftardar-Gejji and Jafari iterative method (DJIM) [25, 28], the variational iteration
method (VIM) [29, 30], the homotopy perturbation method (HPM) [30], and the repro-
ducing kernel method (RKM) [31] have been previously proposed to solve nonlinear frac-
tional differential equations.

The ADM and the DJIM are known as highly accurate numerical techniques to solve
nonlinear fractional differential equations.

Hu et al. [26] made use of the ADM to present the approximate solution of the following
n-term linear fractional differential equation with constant coefficients and showed that
the solution by the ADM was the same as the solution by the Green’s function:

⎧
⎨

⎩

anDβn y(t) + an–1Dβn–1 y(t) + · · · + a1Dβ1 y(t) + a0Dβ0 y(t) = f (t),

y(i)(0) = 0, i = 0, 1, . . . , n,

where ai is a real constant, Dβ0 , Dβ1 , . . . , Dβn are the Riemann–Liouville derivatives, and
n + 1 > βn ≥ n > βn–1 > · · · > β1 > β0.

In [24, 25, 27], the authors obtained approximate solutions for some initial value prob-
lems of nonlinear fractional differential equations by employing the ADM and its modifi-
cations.
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Loghmani et al. [28] studied the approximate solutions for the initial value problems of
nonlinear fractional differential equations by using the ADM and the DJIM and showed
that the ADM and the DJIM were highly accurate numerical techniques to solve them.

In [32], Babolian et al. proposed a method based on the combination of the ADM and
the spectral method to solve nonlinear fractional differential equations and applied it to
some initial value problems.

In the ADM, the most important part is to compute the Adomian polynomials. It is
rather easy to compute Adomian polynomials for initial value problems of fractional dif-
ferential equations, but it is very difficult to do so for fractional differential equations with
boundary conditions, more particularly for the case of nonlinear integral boundary value
problems. However, to the best of our knowledge, there is no work concerned with ap-
proximate methods for solving nonlinear multi-term fractional differential equations with
integral boundary conditions.

Summarizing all the previous results mentioned above motivates us to study problem
(1) to establish the existence and uniqueness of the solutions and obtain the approximate
solutions by using a new technique. The existence results are based on the Banach fixed
point theorem, and approximate solutions that converge to an exact solution rapidly are
obtained by the appropriate recursion schemes of the ADM and the DJIM.

The paper is organized as follows:
In Sect. 2, we recall some definitions and lemmas that will be useful to our main results.

In Sect. 3, we obtain the corresponding integral equation to problem (1) and prove the
existence and uniqueness of solutions for the integral equation by the Banach fixed point
theorem. In Sect. 4, we show the procedures of solving our problem, using the ADM and
the DJIM. In Sect. 5, we present some examples to illustrate the existence results of solu-
tions and the effectiveness of our methods. In Sect. 6, we summarize our main results.

2 Preliminaries
In this section, we present some definitions and lemmas that will be useful for our main
results.

Definition 2.1 ([6]) The Riemann–Liouville fractional integral of order α > 0 of a function
f : (0,∞) → R is given by

(
Iα

0+f
)
(t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 ([6]) The Riemann–Liouville fractional derivative of order α of a contin-
uous function f : (0,∞) → R is given by

Dα
a+f (t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

a

f (s)
(t – s)α–n+1 ds,

where α > 0, n = [α] + 1 and [α] denotes the integral part of α.

Lemma 2.1 ([12]) The following hold:
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(i) Let y ∈ L1(0, 1) and ν > σ > 0, then

Iν
0+Iσ

0+y(t) = Iν+σ
0+ y(t), Dσ

0+Iν
0+y(t) = Iν–σ

0+ y(t), Dν
0+Iν

0+y(t) = y(t).

(ii) Let α > 0 and σ > 0, then

Dα
0+tσ–1 =

⎧
⎨

⎩

0, σ – α ∈ {0} ∪ Z–,
Γ (σ )

Γ (σ–α) tσ–α–1, otherwise.
(2)

Lemma 2.2 ([12]) Let α > 0 and Dα
0+u ∈ C(0, T) ∩ L(0, T), then

Iα
0+Dα

0+u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, . . . , n, and n = [α] + 1.

3 Existence and uniqueness results
In this section, we establish the existence and uniqueness of solutions of problem (1) by
using the Banach fixed point theorem.

Definition 3.1 A function y(t) is called a solution of problem (1) if it satisfies (1) and
Dα

0+y(t) ∈ C[0, 1], y(t) ∈ C[0, 1].

Theorem 3.1 A function y(t) is a solution of (1) if and only if x(t) := Dβn
0+y(t) is a solution

of the integral equation

x(t) = Iα–βn
0+ f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)
+

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1

]

tα–βn–1. (3)

Remark A continuous function x(t) is called a solution of the integral equation (3) if it
satisfies Eq. (3).

Proof Firstly, let y(t) ∈ C[0, 1] be a solution of (1), then x(t) := Dβn
0+y(t) ∈ C[0, 1]. Taking the

Riemann–Liouville fractional integral of order βn on both sides of x(t) = Dβn
0+y(t) gives

Iβn
0+ x(t) = Iβn

0+ Dβn
0+y(t) = y(t) –

(I1–βn
0+ y)(0)
Γ (βn)

tβn–1.

Since (I1–βn
0+ y)(0) = 0, we obtain y(t) = Iβn

0+ x(t).
In view of Lemma 2.1, we get

Dβn
0+y(t) = Dβn

0+Iβn
0+ x(t) = x(t),

Dβn–1
0+ y(t) = Dβn–1

0+ Iβn
0+ x(t) = Iβn–βn–1

0+ x(t),

. . . ,

Dβ1
0+y(t) = Iβn–β1

0+ x(t).
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By the definition of Riemann–Liouville fractional derivative, we have

Dα
0+y(t) = D2

0+I2–α
0+ y(t) = D2

0+I2–α
0+ Iβn

0+ x(t) = D2
0+I2–α+βn

0+ x(t) = Dα–βn
0+ x(t).

Then the equation of (1) can be written as

Dα–βn
0+ x(t) = f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)
, t ∈ [0, 1]. (4)

Setting β0 := 0, μ := α – βn, μi := βn – βi (i = 0, 1, . . . , n), Eq. (4) can be rewritten as

Dμ
0+x(t) = f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)
, t ∈ [0, 1]. (5)

And since x(t) ∈ C[0, 1], Iβn
0+ x(t) = 1

Γ (βn)
∫ t

0
x(s)

(t–s)1–βn ds, we can arbitrarily provide the initial
value of x(t) such that y(0) = Iβn

0+ x(t)|t=0 = 0. Assume that x(0) = 0.
Applying the Riemann–Liouville fractional integral Iμ

0+ to both sides of Eq. (5), we get

Iμ
0+Dμ

0+x(t) = Iμ
0+f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)
. (6)

From μ > 1 and Lemma 2.2, we get

Iμ
0+Dμ

0+x(t) = x(t) + c1tμ–1 + c2tμ–2,

then Eq. (6) is rewritten as

x(t) = Iμ
0+f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)
– c1tμ–1 – c2tμ–2. (7)

Since x(0) = 0 and μ – 1 > 0, we obtain that c2 = 0 in Eq. (6).
That is, Eq. (7) can be rewritten as

x(t) = Iμ
0+f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)
– c1tμ–1. (8)

By the boundary condition y(1) = Iβn
0+ x(t)|t=1 =

∫ 1
0 g(s, Iβn

0+ x(s)) ds and Lemma 2.1, we get

y(1) = Iβn
0+ x(t)

∣
∣
t=1 = Iβn+μ

0+ f
(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)∣
∣
t=1 – Iβn

0+ c1tμ–1∣∣
t=1

= Iβn+μ
0+ f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)∣
∣
t=1 – c1

Γ (μ)
Γ (μ + βn)

tμ+βn–1
∣
∣
∣
∣
t=1

=
∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds,

and since μ + βn – 1 = α – βn + βn – 1 = α – 1 > 0, we have

∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds = Iβn+μ
0+ f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)∣
∣
t=1 – c1

Γ (μ)
Γ (μ + βn)

= Iβn+μ
0+ f

(
t, Iμ0

0+ x(t), Iμ1
0+ x(t), . . . , x(t)

)∣
∣
t=1 – c1

Γ (μ)
Γ (α)

= Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1 – c1

Γ (α – βn)
Γ (α)

.
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Therefore, we get

c1 =
Γ (α)

Γ (α – βn)

[

Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1 –

∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds
]

, (9)

and substituting the values of c1 in Eq. (8), we obtain the following equation:

x(t) = Iα–βn
0+ f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)
+

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1

]

tα–βn–1.

That is, x(t) = Dβn
0+y(t) ∈ C[0, 1] is the solution of Eq. (3).

Conversely, let x(t) = Dβn
0+y(t) ∈ C[0, 1] be the solution of Eq. (3), then by Lemma 2.1 we

obtain

y(t) = Iβn
0+ x(t),

Dβn–1
0+ y(t) = Dβn–1

0+ Iβn
0+ x(t) = Iβn–βn–1

0+ x(t),

. . . ,

Dβ1
0+y(t) = Iβn–β1

0+ x(t).

Applying the Riemann–Liouville fractional integral Iβn
0+ to both sides of Eq. (3), it can be

written as

Iβn
0+ x(t) = Iα

0+f
(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)
+

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1

]

Iβn
0+ tα–βn–1. (10)

Taking Riemann–Liouville fractional derivative Dα
0+ to both sides of Eq. (10), we have

Dα
0+y(t) = Dα

0+Iα
0+f

(
t, y(t), Dβ1

0+y(t), . . . , Dβn
0+y(t)

)
+

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, y(t), Dβ1

0+y(t), . . . , Dβn
0+y(t)

)∣
∣
t=1

]

Dα
0+Iβn

0+ tα–βn–1

= f
(
t, y(t), Dβ1

0+y(t), . . . , Dβn
0+y(t)

)
+

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, y(t), Dβ1

0+y(t), . . . , Dβn
0+y(t)

)∣
∣
t=1

]

Dα
0+tα–1

= f
(
t, y(t), Dβ1

0+y(t), . . . , Dβn
0+y(t)

)
.
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On the other hand, by Eq. (3) we have

x(0) = Iα–βn
0+ f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=0 +

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1

]

tα–βn–1
∣
∣
∣
∣
t=0

= 0.

Now let us check that the boundary conditions of (1) are satisfied.
Since y(t) = Iβn

0+ x(t), we get y(0) = Iβn
0+ x(t)|t=0 = 0. Substituting t = 1 into Eq. (10) yields

y(1) = Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1 +

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1

]

Iβn
0+ tα–βn–1

∣
∣
∣
∣
t=1

.

By using Iβn
0+ tα–βn–1 = Γ (α–βn)

Γ (α–βn+βn) tα–βn+βn–1 = Γ (α–βn)
Γ (α) tα–1, we get

y(1) = Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1 +

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f (t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

∣
∣
t=1

]
Γ (α – βn)

Γ (α)
tα–1

∣
∣
∣
∣
t=1

=
∫ 1

0
g
(
s, y(s)

)
ds.

Therefore, y(t) is the solution of (1). �

Let us consider the Banach space X = C[0, 1] endowed with the norm

‖u‖ = max
0≤t≤1

∣
∣u(t)

∣
∣.

Define an operator T : X → X by

(Tx)(t) := Iα–βn
0+ f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)
+

Γ (α)
Γ (α – βn)

[∫ 1

0
g
(
s, Iβn

0+ x(s)
)

ds

– Iα
0+f

(
t, Iβn

0+ x(t), Iβn–β1
0+ x(t), . . . , x(t)

)∣
∣
t=1

]

tα–βn–1. (11)

Then Eq. (3) is equivalent to the operator equation

x = Tx, x ∈ X. (12)

Obviously, T is continuous on X.
For the existence results of solutions, we need the following assumptions:
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(H1) There exist constants li > 0, i = 0, 1, . . . , n, such that

∀t ∈ [0, 1],∀(y0, . . . , yn), (Y0, . . . , Yn) ∈ Rn+1,

∣
∣f (t, y0, y1, . . . , yn) – f (t, Y0, Y1, . . . , Yn)

∣
∣ ≤

n∑

i=0

li|yi – Yi|.

(H2) There exists a constant λ > 0 such that

∀x, y ∈ R,
∣
∣g(t, x) – g(t, y)

∣
∣ ≤ λ|x – y|.

(H3) Let ω := Γ (α)
Γ (α–βn)

λ
Γ (βn+1) +

∑n
i=0( li

Γ (α–βi+1) + Γ (α)
Γ (α–βn)

li
Γ (α–βi+1+βn) ), then 0 < ω < 1.

Theorem 3.2 Assume that hypotheses (H1)–(H3) are satisfied. Then problem (1) has a
unique solution.

Proof By Theorem 3.1, the existence of solutions to problem (1) refers to the existence of
solutions of Eq. (12). So it is sufficient to prove that Eq. (12) has a unique fixed point.

Let β0 := 0, μi := βn – βi, i = 0, 1, . . . , n, and μ := α – βn, then by (H1), for any x1, x2 ∈ X,
we have

∣
∣f

(
t, Iμ0

0+ x1(t), . . . , x1(t)
)

– f
(
t, Iμ0

0+ x2(t), . . . , x2(t)
)∣
∣

≤
n∑

i=0

li ·
∣
∣Iμi

0+x1(t) – Iμi
0+x2(t)

∣
∣. (13)

Applying the Riemann–Liouville fractional integral Iμ
0+ to both sides of inequality (13),

we get

Iμ
0+

∣
∣f

(
t, Iμ0

0+ x1(t), . . . , x1(t)
)

– f
(
t, Iμ0

0+ x2(t), . . . , x2(t)
)∣
∣

≤ Iμ
0+

n∑

i=0

li ·
∣
∣Iμi

0+x1(t) – Iμi
0+x2(t)

∣
∣

≤
n∑

i=0

li · Iμ+μi
0+

∣
∣x1(t) – x2(t)

∣
∣

≤ ‖x1 – x2‖
n∑

i=0

li

Γ (μ + μi + 1)
.

On the other hand, by (H2) we have

∣
∣
∣
∣
Γ (α)
Γ (μ)

[∫ 1

0
g
(
s, Iβn

0+ x1(s)
)

ds – Iβn+μ
0+ f

(
t, Iμ0

0+ x1(t), Iμ1
0+ x1(t), . . . , x1(t)

)∣
∣
t=1

]

· tμ–1

–
Γ (α)
Γ (μ)

[∫ 1

0
g
(
s, Iβn

0+ x2(s)
)

ds – Iβn+μ
0+ f

(
t, Iμ0

0+ x2(t), Iμ1
0+ x2(t), . . . , x2(t)

)∣
∣
t=1

]

· tμ–1
∣
∣
∣
∣
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≤ Γ (α)
Γ (μ)

[

λ

∫ 1

0

∣
∣Iβn

0+ x1(s) – Iβn
0+ x2(s)

∣
∣ds + Iβn+μ

0+

n∑

i=0

li · Iμi
0

∣
∣x1(t) – x2(t)

∣
∣
∣
∣
t=1

]

≤ Γ (α)
Γ (μ)

[
λ

Γ (βn + 1)
+

n∑

i=0

li

Γ (βn + μ + μi + 1)

]

‖x1 – x2‖.

Therefore, we obtain

∣
∣T

(
x1(t)

)
– T

(
x2(t)

)∣
∣

≤
[ n∑

i=0

li

Γ (μ + μi + 1)
+

Γ (α)
Γ (μ)

(
λ

Γ (βn + 1)
+

n∑

i=0

li

Γ (βn + μ + μi + 1)

)]

‖x1 – x2‖

=

[
Γ (α)

Γ (α – βn)
λ

Γ (βn + 1)
+

n∑

i=0

(
li

Γ (α – βi + 1)
+

Γ (α)
Γ (α – βn)

li

Γ (α – βi + βn + 1)

)]

× ‖x1 – x2‖.

By (H3), this yields

∥
∥T(x1) – T(x2)

∥
∥ ≤ ω‖x1 – x2‖, 0 < ω < 1.

Therefore, by the Banach fixed point theorem, the operator T : X → X has a unique
fixed point. The proof is completed. �

4 A new approximate method by the ADM and the DJIM
In this section, we discuss how to apply the ADM and the DJIM to our problem. We present
appropriate recursion schemes for the approximate solution of Eq. (3) and consider its
convergence. Our method is motivated by [24, 25, 28].

Assume that the right-hand side of Eq. (12) is decomposed as follows:

(Tx)(t) = L
(
x(t)

)
+ N

(
x(t)

)
+ G(t),

where L is a linear operator to be inverted, G is a known function, N represents the non-
linear terms.

So, Eq. (3) can be written as

x(t) = L
(
x(t)

)
+ N

(
x(t)

)
+ G(t). (14)

Also suppose that the solution of Eq. (14) is expressed by the form of series as follows:

x(t) =
∞∑

n=0

xn(t). (15)

Then Eq. (14) can be rewritten as

∞∑

n=0

xn(t) = L

( ∞∑

n=0

xn(t)

)

+ N

( ∞∑

n=0

xn(t)

)

+ G(t). (16)
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Transforming the right-hand side of Eq. (16), we obtain that

L

( ∞∑

n=0

xn(t)

)

+ N

( ∞∑

n=0

xn(t)

)

+ G(t)

= G(t) + L
(
x0(t)

)
+ N

(
x0(t)

)
+

[
L
(
x0(t) + x1(t)

)
+ N

(
x0(t) + x1(t)

)]

–
[
L
(
x0(t)

)
+ N

(
x0(t)

)]
+

[
L
(
x0(t) + x1(t) + x2(t)

)
+ N

(
x0(t) + x1(t) + x2(t)

)]

–
[
L
(
x0(t) + x1(t)

)
+ N

(
x0(t) + x1(t)

)]
+ · · · +

[

L

( n–1∑

k=0

xk(t)

)

+ N

( n–1∑

k=0

xk(t)

)]

–

[

L

( n–2∑

k=0

xk(t)

)

+ N

( n–2∑

k=0

xk(t)

)]

+ · · · .

(17)

From (17) and the linearity of L, we obtain the following iterative schemes:

x0(t) = G(t),

x1(t) = L
(
x0(t)

)
+ N

(
x0(t)

)
,

x2(t) = L
(
x1(t)

)
+ N

(
x0(t) + x1(t)

)
– N

(
x0(t)

)
,

. . . ,

xn(t) = L
(
xn–1(t)

)
+ N

( n–1∑

j=0

xj(t)

)

– N

( n–2∑

j=0

xj(t)

)

,

. . . .

(18)

Therefore, we can put the n-term approximation solution of Eq. (3) as

Un(t) =
n∑

j=0

xj(t). (19)

From (19), we have that xn(t) = Un(t) – Un–1(t). Then (18) can be rewritten as

Un(t) = Un–1(t) + L
(
Un–1(t) – Un–2(t)

)
+ N

(
Un–1(t)

)
– N

(
Un–2(t)

)
. (20)

If ‖L(x) – L(y)‖ ≤ k1‖x – y‖, ‖N(x) – N(y)‖ ≤ k2‖x – y‖, 0 < k1, k2 < 1, and k1 + k2 < 1,
then in terms of the Banach fixed point theorem, (14) has a unique solution U∗(t). Since
for n ≥ 1,

‖Un – Un–1‖ ≤ k1‖Un–1 – Un–2‖ + k2‖Un–1 – Un–2‖
= (k1 + k2)‖Un–1 – Un–2‖
≤ (k1 + k2)2‖Un–2 – Un–3‖
≤ · · · ≤ (k1 + k2)n–1‖U1 – U0‖, (21)

the sequence {Un} absolutely and uniformly converges to exact solution U∗(t).
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In Eq. (16), the ADM decomposes nonlinear term N(
∑∞

n=0 xn(t)) into the following se-
ries:

N

( ∞∑

n=0

xn

)

=
∞∑

n=0

An(x0, . . . , xn), (22)

where An(x0, . . . , xn) is obtained by the definitional formula

An =
1
n!

∂n

∂λn

[

N

( ∞∑

k=0

xkλ
k

)]

λ=0

, n = 0, 1, 2, . . . . (23)

Then Eq. (16) can be written as

∞∑

n=0

xn(t) = L

( ∞∑

n=0

xn(t)

)

+
∞∑

n=0

An + G(t). (24)

Expressing the right-hand side of (24) as

L

( ∞∑

n=0

xn(t)

)

+
∞∑

n=0

An + G(t)

= G(t) + L
(
x0(t)

)
+ A0 + L

(
x1(t)

)

+ A1 + L
(
x2(t)

)
+ A2 + · · · + L

(
xn–1(t)

)
+ An–1 + · · · , (25)

we get the following recursion schemes:

x0(t) = G(t),

x1(t) = L
(
x0(t)

)
+ A0,

x2(t) = L
(
x1(t)

)
+ A1,

x3(t) = L
(
x2(t)

)
+ A2,

. . . ,

xn(t) = L
(
xn–1(t)

)
+ An–1,

. . . .

(26)

Expressing the N-term approximation solution of Eq. (3) as UN (t) =
∑N

n=0 xn(t), the exact
solution of (3) is obtained by

x(t) = lim
N→∞ UN (t).

Therefore, the exact solution of (1) is obtained by y(t) = Iβn
0+ x(t).

5 Examples
Here, we give two examples to illustrate our main results. We will check only the validity
of the existence and uniqueness results of the given problem in Example 1, while only
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the approximate method for solving the problem will be illustrated in Example 2. As can
be seen in Sect. 4, it is obvious that hypotheses (H1–H3) have not been used to obtain
the approximate solution to problem (1). Therefore, the functions f , g in Example 2 will
be chosen to compare our approximate solutions with the exact one instead of satisfying
these hypotheses.

Example 1 Consider the following boundary value problem:

⎧
⎨

⎩

D1.7
0+ y(t) = 1

10(1+|y(t)|) (t2 + y(t) + sin(D0.3
0+ y(t)) + sin(D0.5

0+ y(t))),

y(0) = 0, y(1) = 1
8
∫ 1

0 sin2 y(s) ds.
(27)

Putting α = 1.7, β1 = 0.3, β2 = 0.5, l0 = l1 = l2 = 0.1, λ = 0.25, β0 = 0, we have

ω =
Γ (α)

Γ (α – β2)
· λ

Γ (β2 + 1)
+

2∑

i=0

(
li

Γ (α – βi + 1)
+

Γ (α)
Γ (α – β2)

· li

Γ (α – βi + 1 + β2)

)

∼= 0.674 < 1.

Hence, by Theorem 3.2, problem (27) has a unique solution.

Example 2 In order to demonstrate the effectiveness of our approximate methods, we
consider the following nonlinear fractional differential equation with nonlinear integral
boundary condition:

⎧
⎨

⎩

D1.7
0+ y(t) = D0.5

0+ y(t) + y2(t) + g(t), t ∈ (0, 1),

y(0) = 0, y(1) = 6
13

∫ 1
0 (y2(s) + 2) ds,

(28)

where g(t) = Γ (3.5)
Γ (1.8) t0.8 – Γ (3.5)

2 t2 – t5.
The corresponding integral equation to problem (28) can be written as

x(t) = I1.2
0+

[
x(t) +

(
I0.5

0+ x(t)
)2 + g(t)

]
+

Γ (1.7)
Γ (1.2)

[
6

13

∫ 1

0

(
I0.5

0+ x(t)
)2 dt +

12
13

– I1.7
0+

[
x(t) +

(
I0.5

0 x(t)
)2 + g(t)

]∣
∣
t=1

]

. (29)

The right-hand side of Eq. (29) is decomposed as follows:

L
(
x(t)

)
= I1.2

0+ x(t) –
Γ (1.7)
Γ (1.2)

[
I1.7

0+ x(t)
]∣
∣
t=1, (30)

N
(
x(t)

)
= I1.2

0+
[(

I0.5
0+ x(t)

)2] +
Γ (1.7)
Γ (1.2)

[
6

13

∫ 1

0

(
I0.5

0+ x(t)
)2 dt

– I1.7
0+

[(
I0.5

0+ x(t)
)2]∣∣

t=1

]

, (31)

G(t) = I1.2
0+ g(t) +

Γ (1.7)
Γ (1.2)

12
13

–
Γ (1.7)
Γ (1.2)

· [I1.7
0+ g(t)

]∣
∣
t=1. (32)
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Then we can write (29) as

x(t) = L
(
x(t)

)
+ N

(
x(t)

)
+ G(t). (33)

Solution by the DJIM
According to DJIM (18), we have

x0(t) = G(t),

x1(t) = L
(
x0(t)

)
+ N

(
x0(t)

)
,

x2(t) = L
(
x1(t)

)
+ N

(
x0(t) + x1(t)

)
– N

(
x0(t)

)
,

. . . .

(34)

The two-term approximate solution of Eq. (29) is obtained by U2(t) = x0(t) + x1(t) + x2(t),
so the two-term approximate solution of (28) is obtained by y2(t) = I0.5

0+ U2(t).

Solution by the ADM
Putting

L1
(
x(t)

)
:= I1.2

0+ x(t),

L2
(
x(t)

)
:=

Γ (1.7)
Γ (1.2)

6
13

∫ 1

0
x(t) dt,

L3
(
x(t)

)
:= –

Γ (1.7)
Γ (1.2)

I1.7
0+

[(
I0.5

0+ x(t)
)2]∣∣

t=1,

(35)

then in (31), N(x(t)) can be rewritten as

N
(
x(t)

)
= L1

((
I0.5

0+ x(t)
)2) + L2

((
I0.5

0+ x(t)
)2) + L3

((
I0.5

0+ x(t)
)2). (36)

According to ADM (26), we have

x0(t) = G(t),

x1(t) = L0
(
x0(t)

)
+ L1(A0) + L2(A0) + L3(A0),

x2(t) = L0
(
x1(t)

)
+ L1(A1) + L2(A1) + L3(A1),

. . . ,

(37)

where An is expressed as

A0 =
(
I0.5

0+ x0(t)
)2,

A1 = 2
(
I0.5

0+ x0(t)
)(

I0.5
0+ x1(t)

)
,

A2 =
(
I0.5

0+ x1(t)
)2 + 2

(
I0.5

0+ x1(t)
)(

I0.5
0 x2(t)

)
,

A3 = 2
[(

I0.5
0+ x1(t)

)(
I0.5

0+ x2(t)
)

+
(
I0.5

0+ x0(t)
)(

I0.5
0+ x3(t)

)]
,

. . . .

(38)
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Figure 1 Comparison of solutions. Exact solution (green), DJIM-solution (blue) and ADM-solution (red)

The two-term approximate solution of integral equation is obtained also by U2(t) =
x0(t) + x1(t) + x2(t), so the two-term approximate solution of (29) is obtained by y2(t) =
I0.5

0+ U2(t).
The curves of the exact solution y = t2.5 and the two-term approximate solutions by the

DJIM and the ADM for our problem (29) have been plotted in Fig. 1.

6 Conclusion
In this paper, we considered the existence of solutions for a multi-term fractional differen-
tial equation with nonlinear integral boundary conditions and obtained its approximate
solution by the appropriate recursion schemes of the ADM and the DJIM. The numerical
results show that the ADM and the DJIM yield a very effective and accurate approach to
the approximate solution of nonlinear integral boundary problems of fractional differen-
tial equations, and therefore, can be widely applied in many boundary value problems of
fractional differential equations.
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