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Abstract
This paper’s goal is to delve into the fractional modeling and bifurcation control for a
predator-prey model with prey dispersal and gestation delay. First, the bifurcation
criteria for the uncontrolled system are obtained by viewing gestation delay as a
bifurcation parameter. It is revealed that gestation delay can induce periodic
oscillations. Then, an extended feedback controller is deeply conceived to suppress
Hopf bifurcation for the underlying system. The results reflect that the stability
behaviors of the uncontrolled system are saliently enhanced by adjusting feedback
gain and feedback delay if other coefficients are fixed. To protrude the correctness
and excellent feature of our works, two simulation examples are eventually carried
out.
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1 Introduction
Lately, fractional calculus has been in the limelight because of its nature of hereditari-
ness and memory [1–3]. By making a comparison between fractional calculus and con-
ventional integer-order one, we can make a discovery that fractional modeling can better
tally with the real world. In point of fact, differential equations on the basis of fractional
calculus have been in the wide-ranging application in the scope of engineering system
[4, 5], financial system [6–8], neural network [9–11], and so on. In fact, the behavior of
animals is also under the influence of their experiences or memory [12, 13]. Therefore,
the impact of memory is reflected once the biological system is equipped with fractional
derivative [14–17]. Furthermore, the biological process is in relation to the entire time
information of the system in the light of the traits of the fractional derivative, whereas
the classic integer-order derivative places a high value on the information at a given time
[18, 19]. Insomuch as fractional-order differential system is in possession of more advan-
tages than integer-order one, the indagation of fractional order prey-predator system has
drawn great attention from many researchers (see [20, 21] and the references therein).

In the real ecosystem, diffusion between two disparate biotopes is widely in existence
and of immense significance in the protection of animals on the brink of extinction. Plen-
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teous outstanding works have probed into the impact of the dispersal process on the dy-
namic behaviors of Lotka–Volterra models [19, 22–24]. Furthermore, time delay is indis-
pensable in the real world. It is well known that discrete delay is related to the evaluation
of the population a certain number of time units ago [25, 26], and the use of a distributed
delay can be viewed as allowing for stochastic effects [27]. Equations with time delay are
also common in other fields, especially in control theory [28]. Another significant cause
for incorporating time delay is to describe the maturation time which is shown in Nichol-
son’s blowflies model [29]. It is uncontroverted that gestation delay is immanent since it
is the duration of τ time units that the predators need to increase their population after
killing prey, and taking time delay into account is essential [30–33] in the predator-prey
model. Nevertheless, the underlying system may undergo Hopf bifurcation or even chaos
if we draw into gestation delay, which may be baneful to biological systems [34, 35].

Fortunately, bifurcation control is a valid tool for the amelioration of the stability of
delayed prey-predator systems [36, 37]. The dominant job in respect of bifurcation control
is to hatch up a controller to modify the bifurcation dynamical behaviors in existence,
therefore procure some expectant dynamical properties for a specific complex system [38].
The delayed feedback control strategy is considered as a useful tool to suppress bifurcation
dynamics on account of its forte that the equilibrium points of the original system are
unchangeable, and there is a large number of excellent results on it [39–44]. In [42], the
bifurcation inception of a delayed prey-predator was efficaciously postponed by designing
a linear delayed feedback control tool. In [43], the authors took account of an extended
delay feedback controller and discovered that chaos is scarcely observed under the large
extended feedback delay. In [44], the authors worked out an extended delayed feedback
scheme for a fractional Lotka–Volterra system and found that the Hopf bifurcation of
an uncontrolled system can be effectively suppressed by tinkering up extended feedback
delay and fractional order. Up to this date, there are few outcomes on bifurcation control
for fractional predator-prey systems with dispersal and gestation delay based on extended
delayed feedback tool.

Propelled by the aforesaid discussions, we shall conduct fractional modeling and theo-
retical analysis for a predator-prey model with dispersal and gestation delay by utilizing an
extended feedback scheme in this paper. The luminescent spot of this paper reads as fol-
lows: (1) The generalization of delayed feedback control strategy is devised to address the
bifurcation control problem in a fractional delayed predator-prey model with dispersal.
(2) The contributions of dispersal rates on the uncontrolled system are discussed. (3) The
joint effects of feedback gain and feedback delay on the controlled system are investigated.
(4) The bifurcation value can be apparently very large if we single out opposite feedback
gain and extended feedback delay.

The structure of this paper is arranged as follows. Some basic definitions with regard
to fractional calculus are procured in Sect. 2. The mathematical model is formulated in
Sect. 3. The predominant results are presented in Sect. 4. The veracity and excellent fea-
ture of the proposed control plot are conformed by the aid of simulations in Sect. 5. Finally,
to generalize our work, a conclusion is given.

2 Basic definition
The basic definitions about fractional-order integral, Caputo derivative, and the equilib-
rium of fractional-order system are shown in this section. This paper is based upon the
Caputo derivative.
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Definition 2.1 ([14]) Define the fractional-order integral for a function f (x)

CI–κ
t0,t f (t) =

1
Γ (κ)

∫ t

t0

(t – ϑ)κ–1f (ϑ) dϑ ,

where κ > 0 is the noninteger order, Γ (s) =
∫ ∞

0 ts–1e–t ds.

Definition 2.2 ([14]) Define the Caputo fractional-order derivative

CDκ
t0,t f (t) =

1
Γ (m – κ)

∫ t

t0

(t – ϑ)m–κ–1f (m)(ϑ) dϑ ,

where m – 1 ≤ κ < m ∈ Z+.
Especially, when 0 < κ ≤ 1, CDκ

t0,t f (t) = 1
Γ (m–κ)

∫ t
t0

(t – ϑ)κ f ′(ϑ) dϑ .

For the sake of simplicity, Dκ f (t) stands for CDκ
0,t f (t) and suppose 0 < κ ≤ 1. Based on

[15], the definition of equilibrium points for the n-dimension fractional-order equations
is presented.

Definition 2.3 For the following system

Dκxi(t) = fi
(
xi(t)

)
, i = 1, 2, . . . , n,

where xi(t) = (x1(t), x2(t), . . . , xn(t)), fi(t) = (f1(t), f2(t), . . . , fn(t)). The equilibria are defined
by fi(x∗

i ) = 0, and the equilibria can be obtained (x∗
1, x∗

2, . . . , x∗
n).

3 Model formulation
Kuang and Takeuchi put forward the following predator-prey model of prey dispersal [22]:

⎧⎪⎪⎨
⎪⎪⎩

Ṗ1(t) = P1(t)(r1 – k1P1(t) – α1N(t)) + ε(P2(t) – P1(t)),

Ṗ2(t) = P2(t)(r2 – k2P2(t) – α2N(t)) + ε(P1(t) – P2(t)),

Ṅ(t) = N(t)(–s – δN(t) + c1P1(t) + c2P2(t)),

(1)

where Pi(t) represents the density of prey in the ith patch at time t, i = 1, 2. N(t) stands for
the density of predator at time t. ε is the dispersal rate. The authors found that if α2 = c2 = 0,
system (1) has a global stable equilibrium if it exists.

Having noted that to explore the information of equilibrium for system (1) is an arduous
task, Zheng and Song consider the following Lotka–Volterra model with gestation delay
and different dispersal rates [30]:

⎧⎪⎪⎨
⎪⎪⎩

Ṗ1(t) = r1P1(t)(1 – P1(t) – N(t)) + D1(P2(t) – P1(t)),

Ṗ2(t) = r2P2(t)(1 – P2(t) – N(t)) + D2(P1(t) – P2(t)),

Ṅ(t) = –r3N(t) + c1P1(t – τ )N(t – τ ) + c2P2(t – τ )N(t – τ ),

(2)

where τ is gestation delay. Zheng and Song discovered that the introduction of gestation
delay makes system (2) undergo Hopf bifurcation under certain conditions.
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The influence of memory is considered by integrating system (2) with the Caputo frac-
tional derivative and ultimately the model can be obtained:

⎧⎪⎪⎨
⎪⎪⎩

Dκ1 P1(t) = r1P1(t)(1 – P1(t) – N(t)) + D1(P2(t) – P1(t)),

Dκ2 P2(t) = r2P2(t)(1 – P2(t) – N(t)) + D2(P1(t) – P2(t)),

Dκ3 N(t) = –r3N(t) + c1P1(t – τ )N(t – τ ) + c2P2(t – τ )N(t – τ ),

(3)

where κi ∈ (0, 1] is fractional order.
To postpone the onset of bifurcation value, an extended delayed feedback controller is

introduced.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dκ1 P1(t) = r1P1(t)(1 – P1(t) – N(t)) + D1(P2(t) – P1(t)),

Dκ2 P2(t) = r2P2(t)(1 – P2(t) – N(t)) + D2(P1(t) – P2(t)),

Dκ3 N(t) = –r3N(t) + c1P1(t – τ )N(t – τ ) + c2P2(t – τ )N(t – τ )

+ k(N(t) – N(t – σ )).

(4)

Remark 1 k < 0 is the feedback gain and σ > 0 is the extended feedback delay. The intro-
duction of such a controller can make sure that the original equilibria are preserved and
the control of feedback strategy will vanish once the steady state is reached and stabiliza-
tion is achieved [39, 41]. In the field of ecological control, with the aim of enhancing the
stability performance, we may harvest or release predator on the basis of past data(the
time unit is σ ) [42, 44].

4 Major results
4.1 Delay-stimulated bifurcation conditions of uncontrolled system (3)
In this subsection, the criteria of Hopf bifurcation with respect to system (3) are explored
by selecting gestation delay as a bifurcation parameter.

By virtue of the ecological balance, we just consider the equilibrium point of three
species coexistence. The positive equilibrium E†(P∗

1 , P∗
2 , N∗) can be obtained, where P∗

1 =
P∗

2 = r3
c1+c2

and N∗ = c1+c2–r3
c1+c2

if c1 + c2 – r3 > 0.
The linear transformation of system (3) is firstly performed in order to acquire the main

results. Taking advantage of the transformation x1(t) = P1(t) – P∗
1 , x2(t) = P2(t) – P∗

2 , y(t) =
N(t) – N∗, then system (3) can be obtained as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dκ1 x1(t) = (–D1 – r1P∗
1)x1(t) + D1x2(t) – r1P∗

1y(t) – r1x2
1(t) – r1x1(t)y(t),

Dκ2 x2(t) = D2x1(t) – (D2 + r2P∗
2)x2(t) – r2P∗

2y(t) – r2x2
2(t) – r2x2(t)y(t),

Dκ3 y(t) = c1N∗x1(t – τ ) + c2N∗x2(t – τ ) – r3[y(t) – y(t – τ )]

+ c1x1(t – τ )y(t – τ ) + c2x2(t – τ )y(t – τ ).

(5)

From system (5), one can get

⎧⎪⎪⎨
⎪⎪⎩

Dκ1 x1 = q11x1(t) + q12x2(t) + q13y(t),

Dκ2 x2 = q21x1(t) + q22x2(t) + q23y(t),

Dκ3 y = q31x1(t – τ ) + q32x2(t – τ ) + q33[y(t) – y(t – τ )],

(6)
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where

q11 = –D1 – r1P∗
1 , q12 = D1, q13 = –r1P∗

1 ,

q21 = D2, q22 = –D2 – r2P∗
2 , q23 = –r2P∗

2 ,

q31 = c1N∗, q32 = c2N∗, q33 = –r3.

The characteristic equation of system (6) can be acquired

∣∣∣∣∣∣∣
sκ1 – q11 –q12 –q13

–q21 sκ2 – q22 –q23

–q31e–sτ –q32e–sτ sκ3 – q33
(
1 – e–sτ )

∣∣∣∣∣∣∣
= 0. (7)

Equation (7) can be rewritten as

�1(s) + �2(s)e–sτ = 0, (8)

where

�1(s) = sκ1+κ2+κ3 – q33sκ1+κ2 – q22sκ1+κ3 – q11sκ2+κ3 + q22q33sκ1 + q11q33sκ2 + q11q22sκ3

– q12q21sκ3 – q11q22q33 + q12q21q33,

�2(s) = q33sκ1+κ2 – (q22q33 + q23q32)sκ1 – (q11q33 + q13q31)sκ2 + q11q22q33 + q11q23q32

+ q13q22q31 – (q12q21q33 + q12q31q23 + q13q21q32).

If s = w(cos π
2 + i sin π

2 ), w > 0 is a root of Eq. (8), then

⎧⎨
⎩

B2 cos wτ + Q2 sin wτ = –B1,

Q2 cos wτ – B2 sin wτ = –Q1,
(9)

where Bi, Qi are the real and imaginary parts of �i(s).
Equation (9) connotes that

⎧⎨
⎩

cos wτ = – B1B2+Q1Q2
B2

2+Q2
2

= G1(w),

sin wτ = B2Q1–B1Q2
B2

2+Q2
2

= G2(w).
(10)

It is unambiguous that

G2
1(w) + G2

2(w) = 1. (11)

From cos wτ = G1(w), we have

τ (p) =
1
w

[
arc cos G1(w) + 2pπ

]
, p = 0, 1, 2, . . . . (12)



Li et al. Advances in Difference Equations        (2020) 2020:358 Page 6 of 18

We hypothesize that Eq. (11) has not less than one nonnegative real root. The bifurcation
value can be defined as

τ0 = min
{
τ (p)}, p = 0, 1, 2, . . . , (13)

where τ (p) is defined by (12).
To present primary results, the following assumption is indispensable:
(A1) R1T1+R2T2

T2
1 +T2

2
�= 0, where Ri, Ti, i = 1, 2, are given in Eq. (15), respectively.

Lemma 4.1 Let s(τ ) = Λ(τ ) + iw(τ ) be the root of Eq. (8) near τ = τj satisfying Λ(τj) =
0, w(τj) = w0 and (A1) holds, then the transversality condition is apparent

Re

[
ds
dτ

]∣∣∣∣
(τ=τ0,w=w0)

�= 0.

Proof Differentiating Eq. (8) with regard to τ , an uncomplicated calculation gives that

�
′
1(s)

ds
dτ

+ �
′
2(s)e–sτ ds

dτ
+ �2(s)e–sτ

(
–τ

ds
dτ

– s
)

= 0,

where �
′
i(s) are the derivatives of �i(s) (i = 1, 2). Hence

ds
dτ

=
R(s)
T(s)

, (14)

where

T(s) = (κ1 + κ2 + κ3)sκ1+κ2+κ3–1 – q33(κ1 + κ2)sκ1+κ2–1 – q22(κ1 + κ3)sκ1+κ3–1

– q11(κ2 + κ3)sκ2+κ3–1 + q22q33κ1sκ1–1 + q11q33κ2sκ2–1 + q11q22κ3sκ3–1

– q12q21κ3sκ3–1 +
[
q33(κ1 + κ2)sκ1+κ2–1 – (q22q33 + q23q32)κ1sκ1–1

– (q11q33 + q13q31)κ2sκ2–1]e–sτ –
[
q33sκ1+κ2 – (q22q33 + q23q32)sκ1

– (q11q33 + q13q31)sκ2 + q11q22q33 + q11q23q32 + q13q22q31 – (q12q21q33

+ q12q31q23 + q13q21q32)
]
τe–sτ ,

R(s) =
[
q33sκ1+κ2 – (q22q33 + q23q32)sκ1 – (q11q33 + q13q31)sκ2 + q11q22q33 + q11q23q32

+ q13q22q31 – (q12q21q33 + q12q31q23 + q13q21q32)
]
se–sτ .

By simple computation, it can be derived from Eq. (14) that

Re

[
ds
dτ

]∣∣∣∣
(τ=τ0,w=w0)

=
R1T1 + R2T2

T2
1 + T2

2
�= 0, (15)

where the real and imaginary parts of R(s) are R1, R2, the real and imaginary parts of T(s)
are T1, T2.

Assumption (A1) indicates that the transversality condition is matched. �

To explore the stability of system (3) when τ = 0, the following assumption is essential:
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(A2) c1 + c2 > r3 and Di ≥ ci (i = 1, 2).

Lemma 4.2 If (A2) meets, E† of uncontrolled system (3) is asymptotically stable when
τ = 0.

Proof If there is no delay and κ1 = κ2 = κ3 = 1, Eq. (8) develops into

s3 + ρ0s2 + ρ1s + ρ2 = 0, (16)

where ρ0 = D1 + D2 + r1P∗
1 + r2P∗

2 > 0, ρ1 = (r1D2 + r2D1)P∗
1 + r1r2P∗

1
2 + (r1c1 + r2c2)P∗

1N∗ > 0
and ρ2 = (c1 + c2)(r1r2P∗

1 + r1D2 + r2D1)P∗
1N∗ > 0. When assumption (A2) holds, the eigen-

values of characteristic Eq. (16) are negative real parts on the principle of Routh–Hurwitz
criterion. Obviously, condition (A2) is just sufficient for conformation of | arg(s) |> κi

π
2 , i =

1, 2, 3 [41, 45]. Therefore, E† of system (3) is asymptotically stable. �

In view of Lemmas 4.1–4.2, the following theorem is derived.

Theorem 4.3 Hypothesize that (A1)–(A2) are met, then
(i) The positive equilibrium E† of uncontrolled system (3) is asymptotically stable if

τ ∈ [0, τ0);
(ii) System (3) undergoes a Hopf bifurcation when τ = τ0.

4.2 Dynamical behaviors of controlled system (4)
In this subsection, the problem of bifurcation control for system (3) is explored by design-
ing an extended delay feedback controller.

System (4) possesses a three-species equilibrium E†(P∗
1 , P∗

2 , N∗). The transformation
v1(t) = P1(t) – P∗

1 , v2(t) = P2(t) – P∗
2, v3(t) = N(t) – N∗ is carried out, then the linear equation

of system (4) is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dκ1 v1 = a11v1(t) + a12v2(t) + a13v3(t),

Dκ2 v2 = a21v1(t) + a22v2(t) + a23v3(t),

Dκ3 v3 = a31v1(t – τ ) + a32v2(t – τ ) + a33[v3(t) – v3(t – τ )]

+ k(v3(t) – v3(t – σ )),

(17)

where

a11 = –D1 – r1P∗
1 , a12 = D1, a13 = –r1P∗

1 ,

a21 = D2, a22 = –D2 – r2P∗
2 , a23 = –r2P∗

2 ,

a31 = c1N∗, a32 = c2N∗, a33 = –r3.

The relevant characteristic equation for system (17) can be shown as follows:

∣∣∣∣∣∣∣
sκ1 – a11 –a12 –a13

–a21 sκ2 – a22 –a23

–a31e–sτ –a32e–sτ sκ3 – a33
(
1 – e–sτ ) – k

(
1 – e–sσ )

∣∣∣∣∣∣∣
= 0. (18)
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That is,

Ξ1(s) + Ξ2(s)e–sτ = 0, (19)

where

Ξ1(s) = sκ1+κ2+κ3 – a33sκ1+κ2 – a22sκ1+κ3 – a11sκ2+κ3 + a22a33sκ1 + a11a33sκ2 + a11a22sκ3

– a12a21sκ3 – a11a22a33 + a12a21a33 + k
(
e–sσ – 1

)

× [
sκ1+κ2 – a22sκ1 – a11sκ2 + a11a22 – a12a21

]
,

Ξ2(s) = a33sκ1+κ2 – (a22a33 + a23a32)sκ1 – (a11a33 + a13a31)sκ2 + a11a22a33 + a11a23a32

+ a13a22a31 – (a12a21a33 + a12a31a23 + a13a21a32).

On condition that s = w(cos π
2 + i sin π

2 ) is a root of Eq. (19), w > 0, we have

⎧⎨
⎩

Ω2 cos wτ + Θ2 sin wτ = –Ω1,

Θ2 cos wτ – Ω2 sin wτ = –Θ1,
(20)

where Ωi,Θi are the real and imaginary parts of Ξi(s).
Implementing Eq. (20), an easy calculation gives

⎧⎨
⎩

cos wτ = – Ω1Ω2+Θ1Θ2
Ω2

2 +Θ2
2

= f1(w),

sin wτ = Ω2Θ1–Ω1Θ2
Ω2

2 +Θ2
2

= f2(w).
(21)

According to Eq. (21), it is obvious that

f 2
1 (w) + f 2

2 (w) = 1. (22)

Similarly, we can obtain

τ (j) =
1
w

[
arc cos f1(w) + 2jπ

]
, j = 0, 1, 2, . . . . (23)

Provided that Eq. (22) has not less than one real root, define the bifurcation value

τ ∗
0 = min

{
τ (j)}, j = 0, 1, 2, . . . , (24)

where τ (j) is defined by (23).
In the following, we will make a study of the stability of system (4) if τ = 0. The charac-

teristic equation (19) turns into

Υ1(s) + Υ2(s)e–sσ = 0, (25)

where

Υ1(s) = sκ1+κ2+κ3 – ksκ1+κ2 – a22sκ1+κ3 – a11sκ2+κ3 + (ka22 – a23a32)sκ1 + (ka11
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– a13a31)sκ2 + (a11a22 – a12a21)sκ3 – k(a11a22 – a12a21) + a11a23a32

+ a13a22a31 – a12a23a31 – a13a21a32,

Υ2(s) = k
(
sκ1+κ2 – a22sκ1 – a11sκ2 + a11a22

)
.

Let s = w∗(cos π
2 + i sin π

2 ) be a root of Eq. (25), w∗ > 0. By substituting it into Eq. (25) and
separating the imaginary part and the real part, it leads to

⎧⎨
⎩

E2 cos w∗σ + F2 sin w∗σ = –E1,

F2 cos w∗σ – E2 sin w∗σ = –F1,
(26)

where Ei, Fi are the real and imaginary parts of Υi(s).
From Eq. (26), an easy calculation gives

⎧⎨
⎩

cos w∗σ = – E1E2+F1F2
E2

2+F2
2

= g1(w∗),

sin w∗σ = E2F1–E1F2
E2

2+F2
2

= g2(w∗).
(27)

It is clear that

g2
1
(
w∗) + g2

2
(
w∗) = 1. (28)

Hence, it derives from cos w∗σ = g1(w∗) that

σ (p) =
1

w∗
[
arc cos g1

(
w∗) + 2pπ

]
, p = 0, 1, 2, . . . . (29)

Assume that Eq. (28) has not less than one nonnegative real root. Define the bifurcation
value

σ0 = min
{
σ (p)}, p = 0, 1, 2, . . . , (30)

where σ (p) is defined by (29).
Making an assay of the above outcome and based on the stability results in references

[26, 44, 46], the following lemma can be obtained.

Lemma 4.4 For system (4), if (A2) holds, the following results can be derived:
(1) If τ = σ = 0 or τ = 0 and Eq. (28) has no nonnegative real root, then E† of system (4) is

asymptotically stable;
(2) If τ = 0,σ ∈ [0,σ0), then E† of system (4) is locally stable.

To obtain the main conclusions, it is essential to give the following assumption:
(A3) R1T1+R2T2

T2
1+T2

2
�= 0, where Ri,Ti, i = 1, 2, are defined in Eq. (33), respectively.

Lemma 4.5 If s(τ ) = Γ (τ )+ iw(τ ) is the root of Eq. (19) near τ = τj meeting Γ (τj) = 0, w(τj) =
w0, then the transversality condition holds

Re

[
ds
dτ

]∣∣∣∣
(τ=τ∗

0 ,w=w0)
�= 0.



Li et al. Advances in Difference Equations        (2020) 2020:358 Page 10 of 18

Proof Differentiating Eq. (19) with regard to τ , a simple calculation gives that

Ξ ′
1(s)

ds
dτ

+ Ξ ′
2(s)e–sτ ds

dτ
+ Ξ2(s)e–sτ

(
–τ

ds
dτ

– s
)

= 0,

where Ξ ′
i (s) are the derivatives of Ξi(s) (i = 1, 2). Hence

ds
dτ

=
R(s)
T(s)

. (31)

By careful computation, Eq. (31) implies that

Re

[
ds
dτ

]∣∣∣∣
(τ=τ∗

0 ,w=w0)
=
R1T1 + R2T2

T2
1 + T2

2
�= 0, (32)

where

R1 = w(ReΞ2 sin wτ – ImΞ2 cos wτ ),

R2 = w(ReΞ2 cos wτ + ImΞ2 sin wτ ),

T1 = ReΞ ′
1 + ReΞ ′

2 cos wτ + ImΞ ′
2 sin wτ + τ (ReΞ2 cos wτ + ImΞ2 sin wτ ),

T2 = ImΞ ′
1 + ImΞ ′

2 cos wτ – ReΞ ′
2 sin wτ + τ (ImΞ2 cos wτ – ReΞ2 sin wτ ).

(33)

Ostensibly, assumption (A3) indicates that the transversality condition is matched. �

In terms of the previous analysis, the following theorem can be obtained.

Theorem 4.6 On the assumption that (A2), (A3) hold, for controlled model (4), the fol-
lowing results can be derived:

(1) If τ = σ = 0, then E† of controlled system (4) is asymptotically stable.
(2) If σ meets the conditions of Theorem 4.4, then controlled model (4) exhibits a Hopf

bifurcation when τ = τ ∗
0 .

Remark 2 Compared with [19, 21], we construct the model with incommensurate frac-
tional order since the memory related to various states can be not the same [47].

Remark 3 If k = 0 and σ = 0, system (4) degenerates into the uncontrolled one (3). The
controller designed in this paper has an excellent feature as distinguished from the con-
ventional delayed feedback controller in [41, 42], since the choice of feedback delay is agile.

Remark 4 In contrast to results in [33], we assume that the dispersal coefficients are dif-
ferent and the joint effects of dispersal rates on the bifurcation value are discussed by
simulations.

Remark 5 The extended delayed feedback strategy was firstly put forward to postpone the
inception of the delayed Lotka–Volterra system by changing fractional-order and feedback
delay [44]. Nevertheless, the effects of feedback gain on the bifurcation value were not
discussed. In this paper, the joint influence of feedback gain and extended feedback delay
on the bifurcation point is under consideration.



Li et al. Advances in Difference Equations        (2020) 2020:358 Page 11 of 18

Figure 1 E† of system (34) is stable by choosing τ = 2.0 < τ0 = 2.5302

5 Numerical simulations
Two numerical cases are implemented to validate the exactitude of our work in this sec-
tion.

5.1 Simulation 1
Time delay is chosen to investigate the stability and bifurcation of (3). We suppose that
r1 = 0.7, r2 = 0.9, c1 = 0.6, c2 = 0.4, r3 = 0.2, D1 = 0.7, D2 = 0.8, then system (3) can be written
as

⎧⎪⎪⎨
⎪⎪⎩

Dκ1 P1(t) = 0.7P1(t)(1 – P1(t) – N(t)) + 0.7(P2(t) – P1(t)),

Dκ2 P2(t) = 0.9P2(t)(1 – P2(t) – N(t)) + 0.8(P1(t) – P2(t)),

Dκ3 N(t) = –0.2N(t) + 0.6P1(t – τ )N(t – τ ) + 0.4P2(t – τ )N(t – τ ).

(34)

When κ1 = 1,κ2 = 1,κ3 = 1, it is not hard to find that the positive equilibrium point
E†(P∗

1 , P∗
2 , N∗) = (0.2, 0.2, 0.8). The critical wI

0 = 0.2794 and the bifurcation value τ I
0 =

2.1571 can be calculated. When κ1 = 0.97,κ2 = 0.98,κ3 = 0.99, we can get w0 = 0.2670, τ0 =
2.5675, which indicates that the stability zone is expanded. We can obtain that E† is
asymptotically stable when τ = 2 < τ0, which is shown in Fig. 1, while E† is unstable when
τ = 2.7 > τ0, as is displayed in Fig. 2, initial point: E0(P1(0), P2(0), N(0)) = (0.17, 0.53, 0.49)
according to Theorem 4.3. Next, we will explore the impact of dispersal rates D1, D2 on the
bifurcation value τ0. We first assume that D1 = 0.7 or D2 = 0.8 is fixed and let another vary,
which is demonstrated in Fig. 3. Furthermore, the joint effects of dispersal rates D1, D2

are discussed, which is shown in Fig. 4. The results state clearly that if D2 is big and D1 is
small, τ0 is big.
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Figure 2 E† of system (34) is unstable by choosing τ = 2.7 > τ0 = 2.5302

Figure 3 The impact of dispersal rate D1 or D2 on τ0

5.2 Simulation 2
To suppress the Hopf bifurcation of uncontrolled system (34), an extended feedback con-
troller is introduced. Assume that k ∈ [–1, –0.1] and σ ∈ (0, 5], then the system is given
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Figure 4 The joint effects of dispersal rates D1,D2 on τ0

Figure 5 E† of system (35) is stable when τ = 8, k = –0.7,σ = 4

by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D0.97P1(t) = 0.7P1(t)(1 – P1(t) – N(t)) + 0.7(P2(t) – P1(t)),

D0.98P2(t) = 0.9P2(t)(1 – P2(t) – N(t)) + 0.8(P1(t) – P2(t)),

D0.99N(t) = –0.2N(t) + 0.6P1(t – τ )N(t – τ ) + 0.4P2(t – τ )N(t – τ )

+ k(N(t) – N(t – σ )).

(35)
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Figure 6 The influence of feedback gain k on τ ∗
0

Figure 7 The impact of feedback delay σ on τ ∗
0

It is obvious that system (34) is unstable if τ = 8. To postpone the bifurcation onset of
system (34), we choose k = –0.7,σ = 4 and obtain w0 = 0.1077 and τ ∗

0 = 11.8375, which
means that stability performance of system (34) is ameliorated, which is shown in Fig. 5.
Next, we made efforts to probe into the impact of σ and k on the bifurcation value. We first
assume that k = –0.7 or σ = 4 is established, and let another change, which is demonstrated
in Figs. 6–7. Moreover, the joint effects of feedback gain k and feedback delay σ are studied,
which is shown in Fig. 8. By careful computation, we find that when k decreases or σ

increases, Hopf bifurcation engenders behind of time. Figures 9–10 validate the rightness
of the theory.
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Figure 8 The joint effects of σ , k on τ ∗
0

Figure 9 The contribution of feedback gain k on system (35)

6 Conclusion
Fractional modeling and Hopf bifurcation control for a predator-prey system with prey
dispersal have been studied at length in this paper. Delay-stirred bifurcation conditions
are procured for the uncontrolled system. The contributions of dispersal coefficients on
the bifurcation value for the uncontrolled system are also discussed. Then the problem of
bifurcation control has been investigated in detail by devising an extended delay feedback
controller. The results state clearly that feedback gain and feedback delay exert a promi-
nent influence on the bifurcation value, which implies that the stability performance of the
uncontrolled system can be saliently meliorated by carefully picking feedback gain and
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Figure 10 The effects of feedback delay σ on system (35)

feedback delay if other coefficients are selected. As one generalization of conventional
feedback control, the controller conceived in this paper gets the advantage over tradi-
tional ones since the alternative of feedback delay is agile. Finally, the results achieved in
this paper have been well checked through simulations. From the perspective of biology,
gestation delay can induce population oscillations of predator and prey, which means that
the population of species may be at an unreasonable level. With respect to the control of a
biological system, the extended delay feedback controller indicates that we release or cap-
ture predator based on past data(the time unit is σ ). When the density of predator in the
past is higher than that in the present, we reduce the growth rate of predator; conversely,
we increase the growth rate of predator. Our results show that by increasing harvest or
release intensity(smaller feedback gain k) and monitoring time(larger feedback delay σ )
of predator, the population of predators and prey will tend to a constant state of peaceful
coexistence, and they can survive together in the same environment. Our future work will
show solicitude for the following two aspects: (1) The dispersal delay will be introduced.
(2) Taking into control cost accounts, the optimization problem for delayed fractional or-
der predator-prey model will be considered and the optimal feedback gain and feedback
delay will be explored.
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