
Zhang and Qian Advances in Difference Equations        (2020) 2020:277 
https://doi.org/10.1186/s13662-020-02737-3

R E S E A R C H Open Access

Convergence analysis on inertial
proportional delayed neural networks
Hong Zhang1 and Chaofan Qian2,3*

*Correspondence:
qiancaofan2019@126.com
2School of Mathematics and
Statistics, Changsha University of
Science and Technology, Changsha,
Hunan 410114, P.R. China
3Hunan Provincial Key Laboratory of
Mathematical Modeling and
Analysis in Engineering, Changsha,
Hunan 410114, P.R. China
Full list of author information is
available at the end of the article

Abstract
This article mainly explores a class of inertial proportional delayed neural networks.
Abstaining reduced order strategy, a novel approach involving differential inequality
technique and Lyapunov function fashion is presented to open out that all solutions
of the considered system with their derivatives are convergent to zero vector, which
refines some previously known research. Moreover, an example and its numerical
simulations are given to display the exactness of the proposed approach.
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1 Introduction
In neural networks dynamics, inertial neural networks can be described as second-order
differential equations, and the inertial term is used as a convenient tool for causing bi-
furcation and chaos [1, 2]. Consequently, dynamic analyses on constant delayed inertial
neural networks have been extensively explored, and plentiful important results have been
gained in [3–11] and the references cited therein. It should be adverted to that all research
approaches involved in the above papers are on the base of the reduced order strategy,
which will produce a large amount of computation and has no practical value. Therefore,
the authors in [12, 13] used non-reduced order strategy to explore the synchronization
and stability in inertial neural networks. As is well known, the neural networks involv-
ing time-varying parameters will have more practical issues [14–16]. In particular, taking
the global Lipschitz activation functions, the authors in [12, 13] applied some novel Lya-
punov functionals instead of the classical reduced order strategy and established a set of
new conditions to illustrate the dynamic behaviors such as synchronization and stability in
non-autonomous inertial neural networks. Yet in some applications, activation functions
without Lipschitz conditions are inevitably encountered. However, there is little research
on the convergence of non-autonomous inertial neural networks without taking the global
Lipschitz requirements in activation functions.

For the last few years, the dynamics in proportional delayed neural networks have at-
tracted widespread concern because of biological and physical applications (see [17–22]).
Particularly, the global convergence of proportional delayed neural networks without in-
ertial terms has been widely studied in [23–30]. Unfortunately, so far, there has been no
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publishing article using non-reduced order strategy to establish the global convergence
analysis on inertial proportional delayed neural networks without global Lipschitz activa-
tion functions.

On account of the above considerations, in this paper, our aim is to utilize the non-
reduced order strategy to deal with the global convergence of the following inertial pro-
portional delayed neural networks:

z′′
i (t) = –āi(t)z′

i(t)

– b̄i(t)zi(t) +
n∑

j=1

c̄ij(t)Fj
(
zj(t)

)
+

n∑

j=1

d̄ij(t)Gj
(
zj(qijt)

)
+ Ji(t), (1.1)

involving initial values

zi(θ ) = ϕi(θ ), z′
i(θ ) = ψi(θ ), τit0 ≤ θ ≤ t0, ϕi,ψi ∈ C

(
[τit0, t0],R

)
, (1.2)

where t ≥ t0 > 0, τi = min1≤j≤n{qij}, c̄ij, d̄ij : R → R, and āi, b̄i : R → (0, +∞) are con-
tinuous and bounded, and i, j ∈ Q = {1, 2, . . . , n}, z′′

i (t) is called an inertial term of (1.1),
z(t) = (z1(t), z2(t), . . . , zn(t)) is the state vector, proportional delay factor qij satisfies the con-
ditions that 0 < qij < 1, Ji(t) is the continuous external input, and the continuous activation
functions Gj and Fj involve two nonnegative constants LF

j and LG
j satisfying

∣∣Fj(θ )
∣∣ ≤ LF

j |θ |, ∣∣Gj(θ )
∣∣ ≤ LG

j |θ | for all θ ∈R, j ∈ Q, (1.3)

which abstain the global Lipschitz conditions.

Remark 1.1 Via the step and step approach, one can prove the existence and uniqueness
for every solution of initial value problem (1.1) and (1.2) on [t0, +∞).

The remainder of this paper is organized as follows. We apply Barbalat’s lemma to set
the main result in Sect. 2. The validity of our methods is shown by an application example
in Sect. 3. Finally, Sect. 4 concludes the paper with discussion.

2 Global convergence of inertial proportional delayed neural networks
Lemma 2.1 (see [31, Barbalat’s lemma]) Let g(t) be uniformly continuous on [t0, +∞) and∫ +∞

t0
g(s) ds < +∞, then limt→+∞ g(t) = 0.

Theorem 2.1 Suppose that (1.3) holds, and the following assumptions are satisfied:
(T1) W (t) =

∫ t
t0

w(s) ds is bounded on [t0, +∞), where w(t) = maxi∈Q |Ji(t)|.
(T2) For i, j ∈ Q, ā′

i(t), b̄′
i(t) and (|c̄ij(t)|LF

j + |d̄ij(t)|LG
j )′ are bounded and continuous on

[t0, +∞).
(T3) There are constants αi ≥ 0, βi > 0, andγi ≥ 0 such that

sup
t∈[t0,+∞)

Ai(t) < 0, inf
t∈[t0,+∞)

{
4Ai(t)Bi(t) – C2

i (t)
}

> 0, ∀i ∈ Q, (2.1)
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where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ai(t) = αiγi – āi(t)α2
i + 1

2α2
i
∑n

j=1(|c̄ij(t)|LF
j + |d̄ij(t)|LG

j ),
Bi(t) = –b̄i(t)αiγi + 1

2
∑n

j=1(|c̄ij(t)|LF
j + |d̄ij(t)|LG

j )|αiγi|
+ 1

2
∑n

j=1 α2
j (|c̄ji(t)|LF

i + d̄+
ji LG

i
1

qji
) + 1

2
∑n

j=1(|c̄ji(t)|LF
i + d̄+

jiLG
i

1
qji

)|αjγj|,
Ci(t) = βi + γ 2

i – āi(t)αiγi – b̄i(t)α2
i , d̄+

ij = supt∈R |d̄ij(t)|, i, j ∈ Q.

Moreover, label z(t) = (z1(t), z2(t), . . . , zn(t)) as a solution of the initial value problem of (1.1)
and (1.2). Then

lim
t→+∞ zi(t) = 0, lim

t→+∞ z′
i(t) = 0, i ∈ Q.

Proof From (T1), (T3), one can see that there exist constants σ , δ ∈ (0, +∞) satisfying

–σ = maxi∈Q supt∈[t0,+∞) e–W (t)Ai(t),
–δ = maxi∈Q supt∈[t0,+∞) e–W (t)(Bi(t) – (Ci(t))2

4Ai(t) ).

}
(2.2)

Define

U(t) = e–W (t)

{
1
2

n∑

i=1

βiz2
i (t) +

1
2

n∑

i=1

(
αiz′

i(t) + γizi(t)
)2

+
1
2

n∑

i=1

n∑

j=1

(
α2

i d̄+
ij + |αiγi|d̄+

ij
)
LG

j

∫ t

qijt
z2

j (s)
1
qij

ds +
1
2

n∑

i=1

α2
i

}
.

In view of (T1) and (1.1), we have

U ′(t)

= –w(t)U(t) + e–W (t)

{ n∑

i=1

(
βi + γ 2

i
)
zi(t)z′

i(t) +
n∑

i=1

αi
(
αiz′

i(t) + γizi(t)
)

×
[

–āi(t)z′
i(t) – b̄i(t)zi(t) +

n∑

j=1

c̄ij(t)̃Fj
(
zj(t)

)
+

n∑

j=1

d̄ij(t)G̃j
(
zj(qijt)

)
+ Ji(t)

]

+
n∑

i=1

αiγi
(
z′

i(t)
)2 +

1
2

n∑

i=1

n∑

j=1

(
α2

i d̄+
ij + |αiγi|d̄+

ij
)
LG

j

[
z2

j (t)
1
qij

– z2
j (qijt)

]}

≤ e–W (t)

{
–w(t)

1
2

n∑

i=1

[(
αiz′

i(t) + γizi(t)
)2 – 2αi

∣∣αiz′
i(t) + γizi(t)

∣∣ + α2
i
]

+

[ n∑

i=1

(
βi + γ 2

i – āi(t)αiγi – b̄i(t)α2
i
)
zi(t)z′

i(t) +
n∑

i=1

(
αiγi – āi(t)α2

i
)(

z′
i(t)

)2

–
n∑

i=1

b̄i(t)αiγiz2
i (t) +

1
2

n∑

i=1

n∑

j=1

(
α2

i d̄+
ij + |αiγi|d̄+

ij
) 1

qij
LG

j z2
j (t)

–
1
2

n∑

i=1

n∑

j=1

(
α2

i d̄+
ij + |αiγi|d̄+

ij
)
LG

j z2
j
(
qij(t)

)
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+
n∑

i=1

n∑

j=1

(
α2

i
∣∣z′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)∣∣c̄ij(t)

∣∣∣∣Fj
(
zj(t)

)∣∣

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣z′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)∣∣d̄ij(t)

∣∣∣∣Gj
(
zj(qijt)

)∣∣
]}

≤ e–W (t)

{ n∑

i=1

(
βi + γ 2

i – āi(t)αiγi – b̄i(t)α2
i
)
zi(t)z′

i(t) +
n∑

i=1

(
αiγi – āi(t)α2

i
)(

z′
i(t)

)2

+
n∑

i=1

[
–b̄i(t)αiγi +

1
2

n∑

j=1

(
α2

j d̄+
ji + |αjγj|d̄+

ji
) 1

qji
LG

i

]
z2

i (t)

–
1
2

n∑

i=1

n∑

j=1

(
α2

i d̄+
ij + |αiγi|d̄+

ij
)
LG

j z2
j (qijt)

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣z′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)∣∣c̄ij(t)

∣∣∣∣Fj
(
zj(t)

)∣∣

+
n∑

i=1

n∑

j=1

(
α2

i
∣∣z′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)∣∣d̄ij(t)

∣∣∣∣Gj
(
zj(qijt)

)∣∣
}

. (2.3)

From (1.3) and the fact that uv ≤ 1
2 (u2 + v2) (u, v ∈R), one gains

n∑

i=1

n∑

j=1

(
α2

i
∣∣z′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)∣∣c̄ij(t)

∣∣∣∣Fj
(
zj(t)

)∣∣

≤ 1
2

n∑

i=1

n∑

j=1

α2
i
∣∣c̄ij(t)

∣∣LF
j
((

z′
i(t)

)2 + z2
j (t)

)
+

1
2

n∑

i=1

n∑

j=1

|αiγi|
∣∣c̄ij(t)

∣∣LF
j
(
z2

i (t) + z2
j (t)

)

=
1
2

n∑

i=1

n∑

j=1

α2
i
∣∣c̄ij(t)

∣∣LF
j
(
z′

i(t)
)2

+
1
2

n∑

i=1

n∑

j=1

(|αiγi|
∣∣c̄ij(t)

∣∣LF
j + α2

j
∣∣c̄ji(t)

∣∣LF
i + |αjγj|

∣∣c̄ji(t)
∣∣LF

i
)
z2

i (t)

and

n∑

i=1

n∑

j=1

(
α2

i
∣∣z′

i(t)
∣∣ + |αiγi|

∣∣zi(t)
∣∣)∣∣d̄ij(t)

∣∣∣∣Gj
(
zj(qijt)

)∣∣

≤ 1
2

n∑

i=1

n∑

j=1

α2
i
∣∣d̄ij(t)

∣∣LG
j
((

z′
i(t)

)2 + z2
j (qijt)

)

+
1
2

n∑

i=1

n∑

j=1

|αiγi|
∣∣d̄ij(t)

∣∣LG
j
(
z2

i (t) + z2
j (qijt)

)

=
1
2

n∑

i=1

n∑

j=1

α2
i
∣∣d̄ij(t)

∣∣LG
j
(
z′

i(t)
)2 +

1
2

n∑

i=1

n∑

j=1

|αiγi|
∣∣d̄ij(t)

∣∣LG
j z2

i (t)

+
1
2

n∑

i=1

n∑

j=1

(
α2

i
∣∣d̄ij(t)

∣∣LG
j + |αiγi|

∣∣d̄ij(t)
∣∣LG

j
)
z2

j (qijt),
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which, together with (T3), (2.2), and (2.3), yield

U ′(t) ≤ e–W (t)

{ n∑

i=1

(
βi + γ 2

i – āi(t)αiγi – b̄i(t)α2
i
)
zi(t)z′

i(t)

+
n∑

i=1

[
αiγi – āi(t)α2

i +
1
2
α2

i

n∑

j=1

(∣∣c̄ij(t)
∣∣LF

j +
∣∣d̄ij(t)

∣∣LG
j
)
]
(
z′

i(t)
)2

+
n∑

i=1

[
–b̄i(t)αiγi +

1
2

n∑

j=1

(∣∣c̄ij(t)
∣∣LF

j +
∣∣d̄ij(t)

∣∣LG
j
)|αiγi|

+
1
2

n∑

j=1

α2
j

(∣∣c̄ji(t)
∣∣LF

i + d̄+
ji L

G
i

1
qji

)

+
1
2

n∑

j=1

(∣∣c̄ji(t)
∣∣LF

i + d̄+
ji L

G
i

1
qji

)
|αjγj|

]
z2

i (t)

}

= e–W (t)

{ n∑

i=1

(
Ai(t)

(
z′

i(t)
)2 + Bi(t)z2

i (t) + Ci(t)zi(t)z′
i(t)

)
}

= e–W (t)

{ n∑

i=1

Ai(t)
(

z′
i(t) +

Ci(t)
2Ai(t)

zi(t)
)2

+
n∑

i=1

(
Bi(t) –

(Ci(t))2

4Ai(t)

)
z2

i (t)

}

≤ –σ

n∑

i=1

(
z′

i(t) +
Ci(t)

2Ai(t)
zi(t)

)2

– δ

n∑

i=1

z2
i (t)

≤ 0, ∀t ∈ [t0, +∞). (2.4)

Consequently, U(t) ≤ U(t0) holds on t ∈ [t0, +∞), and

1
2

n∑

i=1

βiz2
i (t) +

1
2

n∑

i=1

(
αiz′

i(t) + γizi(t)
)2 ≤ U(t0), t ∈ [t0, +∞).

Note that

αi
∣∣z′

i(t)
∣∣ ≤ ∣∣αiz′

i(t) + γizi(t)
∣∣ +

∣∣γizi(t)
∣∣,

one can obtain the uniform boundedness of z′
i(t) and zi(t) on [t0, +∞), where i ∈ Q. This

entails the uniform boundedness of z′′
i (t) for all t ∈ [t0, +∞) and i ∈ Q. Clearly, on [t0, +∞),

it follows from (T2) that
∑n

i=1(z′
i(t) + Ci(t)

2Ai(t) zi(t))2 and
∑n

i=1 z2
i (t) are uniformly continuous

for all i ∈ Q.
Furthermore, (2.4) leads to

n∑

i=1

(
z′

i(t) +
Ci(t)

2Ai(t)
zi(t)

)2

≤ –
1
σ

U ′(t),
n∑

i=1

z2
i (t) ≤ –

1
δ

U ′(t), ∀t ≥ t0,

and

lim
t→+∞

∫ t

t0

n∑

i=1

(
z′

i(s) +
Ci(s)

2Ai(s)
zi(s)

)2

ds ≤ U(t0)
σ

, lim
t→+∞

∫ t

t0

n∑

i=1

z2
i (s) ds ≤ U(t0)

δ
.
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This and Lemma 2.1 suggest that

lim
t→+∞ zi(t) = 0, lim

t→+∞

(
z′

i(t) +
Ci(t)

2Ai(t)
zi(t)

)
= 0, lim

t→+∞ z′
i(t) = 0, i ∈ Q,

which finishes the proof of Theorem 2.1. �

Remark 2.1 Most recently, taking the global Lipschitz activation functions, the authors
in [12, 13] applied the non-reduced order strategy to reveal the convergence on the state
vectors of inertial constant delayed neural networks. Unfortunately, the authors in [12, 13]
have not given any opinion on the convergence of the inertial proportional delayed neu-
ral networks without choosing global Lipschitz activation functions. In this present pa-
per, without taking the global Lipschitz activation functions, the convergence for all solu-
tions and their derivatives in inertial proportional delayed neural networks are established.
Therefore, compared with the methods in references [12] and [13], our method has fewer
conditions and a simpler proof.

3 An illustrative numerical example
In this section, an example is given to reveal analytical results obtained in the previous
sections graphically.

Example 3.1 Consider model (1.1) with the following proportional delays and time-
varying coefficients:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′′
1(t) = –4.81esin2 tz′

1(t) – (8.21 + sin2 t)z1(t) + 1.21(sin2 t)F1(z1(t))
+ 1.51(cos2 t)F2(z2(t)) – 0.81(sin2 t)G1(z1(0.5t))
+ 1.91(cos2 t)G2(z2(0.5t)) + 40t

1+t4 ,
z′′

2(t) = –5.71ecos2 tz′
2(t) – (10.91 + sin2 t)z2(t) – 0.91(sin2 t)F1(z1(t))

– 1.71(cos2 t)F2(z2(t)) – 2.51(sin2 t)G1(z1(0.5t))
+ 2.11(cos2 t)G2(z2(0.5t)) + 60t

1+t5 ,

(3.1)

where t ≥ t0 = 1, F1(u) = G1(u) = 0.25(|u + 1| – |u – 1|), F2(u) = G2(u) = 0.5u sin u.
Choose αi = γi = 1, β1 = 3.8, β2 = 5.3, LF

i = LG
i = 0.5, i = 1, 2, one can show that (T1), (T2),

(T3), and (1.3) are satisfied in system (3.1). Hence, from Theorem 2.1, we can obtain that all
state vectors of (3.1) and their derivatives converge to zero vector. The simulation results
are given in Fig. 1 and Fig. 2.

Remark 3.1 As far as the authors know, no one has used the non-reduced order strategy
to study the global convergence of inertial proportional delay neural networks without the
global Lipschitz activation functions. Moreober, the results in [35–89] have not touched
on the global convergence of inertial proportional delay neural networks. It should be
noted that the global Lipschitz assumption about the activation function is not applicable
to system (3.1), and we can easily discover that all achievements in [3–13] and [32–89]
cannot be directly used to establish the global convergence of (3.1).
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Figure 1 Numerical solutions z(t) on system (3.1). Numerical solutions z(t) to example (3.1) with initial values:
(ϕ1(s),ϕ2(s),ψ1(s),ψ2(s)) ≡ (2, –4, 0, 0), (3, –2, 0, 0), (–3, 4, 0, 0), t0 = 1

Figure 2 Numerical solutions z′(t) on system (3.1). Numerical solutions z′(t) to example (3.1) with initial
values: (ϕ1(s),ϕ2(s),ψ1(s),ψ2(s)) ≡ (2, –4, 0, 0), (3, –2, 0, 0), (–3, 4, 0, 0), t0 = 1

4 Conclusions
In this paper, the global convergence of a class of inertial proportional delayed neural net-
works without the global Lipschitz activation functions is explored without involving the
reduced order strategy. Some sufficient assertions have been obtained by using novel Lya-
punov function and differential inequality. It is worth noting that the conditions adopted
in this manuscript are easy to be checked with simple inequality strategy, which provides
a possible approach for the investigation of dynamic behavior on other delayed neural
networks with inertial terms and without the global Lipschitz activation functions.
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