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Abstract
A few researchers have studied fractional differential equations on star graphs. They
use star graphs because their method needs a common point which has edges with
other nodes while other nodes have no edges between themselves. It is natural that
we feel that this method is incomplete. Our aim is extending the method on more
generalized graphs. In this work, we investigate the existence of solutions for some
fractional boundary value problems on the ethane graph. In this way, we consider a
graph with labeled vertices by 0 or 1, inspired by a graph representation of the
chemical compound of ethane, and define fractional differential equations on each
edge of this graph. Also, we provide an example to illustrate our last main result.
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1 Introduction
During the recent decades, initial and boundary value problems have been used in investi-
gating natural processes in the world around us. The wide variety of such boundary value
problems has attracted the attention of many researchers to study various phenomena us-
ing mathematical tools and computer simulation software. In other words, some recent
publications show the importance of fractional differential equations in modeling of a va-
riety of applied sciences (see, for example, [1–9]) and numerical computations (see, for
example, [10–15]). One of our aims in this work is extending theoretical field in order to
increase our abilities in finding more effective applications on chemical reactions. If we
can do so, computer software engineers will be able to produce some software in the fu-
ture using which everybody could do chemical experiments without the use of minerals,
and this will help the environment.

The fractional calculus plays an important role in this regard. By using some techniques,
we can solve the mathematical modelings described by the fractional differential equations
and obtain the corresponding solutions and then analyze the qualitative behaviors of a
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solution function under given boundary conditions. Existing works for such problems in
general setting can be seen in the numerous published papers (see, for example, [16–51]).

The graph theory is a relatively new area of mathematics in which we are concerned
with networks of points connected by lines. This structure can be found in many real
constructions in the world around us. In other words, by development and expansion of
some dynamical and industrial systems such as gas transmission lines, water pipelines, the
expansive growth of computer networks, structure of molecules in medicine and biology,
etc., new descriptive models have emerged for studying the related processes designed
by specialists of these fields. Due to the graph structure of these networks, the study of
mathematical models described by ordinary or fractional differential equations on graphs
was considered. In fact, boundary value problems on a graph are defined as a problem
consisting of a system of differential equations on the given graph with certain boundary
conditions on nodes.

The starting point for the theory of differential equations on graphs is related to a work
of Lumer in 1980 [52]. He investigated general evolution equations on ramification spaces
by using local operators defined on such spaces. With a similar structure, Nicaise studied
the propagation of nerve impulses [53]. In 1989, Zavgorodnij considered boundary value
problems for linear differential equations on a geometric graph where solutions of the
problem were coordinated at the interior vertices [54]. He constructed an adjoint bound-
ary value problem and obtained a self-adjointness criterion [54]. In 2008, Gordeziani et al.
discussed the existence and uniqueness of solutions for ordinary differential equations on
graphs [55]. They used the double-sweep method for solving the boundary value problem
and presented a numerical approach.

In most of the mentioned works, differential equations are considered on a graph, and
solutions of them are obtained by computational and numerical approaches. But there are
limited works in fractional boundary value problems on graphs in which the existence of
solutions is proved by some techniques in fixed point theory [56, 57]. The first work in this
regard is related to a paper of Graef et al. [56]. The authors introduced a star graph G =
V (G) ∪ E(G) consisting of three vertices and two edges with V (G) = {v0, v1, v2} and E(G) =
{e1 = −−→v1v0, e2 = −−→v2v0}, where v0 is the junction node and ei = −→viv0 is the edge connecting
nodes vi to v0 with length li = |−→viv0| for i = 1, 2. On each edge ei = −→viv0, a local coordinate
system with origin at vertices v1 and v2 and the coordinate t ∈ (0, li) is considered. Graef
et al. defined a system of nonlinear fractional differential equations on each ei = −→viv0 by

–Dα
0 ui(t) = gi(t)hi

(
t, ui(t)

) (
i = 1, 2, t ∈ (0, li)

)

with boundary value conditions

u1(0) = u2(0) = 0, u1(l1) = u2(l2), Dβ
0 u1(l1) + Dβ

0 u2(l2) = 0,

where α ∈ (1, 2], β ∈ (0,α), gi : [0, li] → R are continuous functions with gi(t) �= 0 on [0, li]
and also hi : [0, li]×R →R are continuous functions. Two fractional operators Dα

0 and Dβ
0

denote Riemann–Liouville fractional derivatives. The Banach contraction principle and
the Schauder fixed point theorem are applied to establish the existence results by authors.

In 2019, Mehandiratta et al. generalized the work of Graef to the case of a star graph
consisting of n + 1 vertices and n edges [57]. Indeed, the authors considered a general star
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graph G with V (G) = {v0, v1, . . . , vn} and E(G) = {e1 = −−→v1v0, e2 = −−→v2v0, . . . , en = −−→vnv0}, where
li = |−→viv0| is the length of each edge ei connecting vertices vi to v0 (i = 1, 2, . . . , n). The
authors investigated the following boundary value problems on each edge of the star graph
G given by

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0 ui(t) = fi(t, ui(t), cDβ

0 ui(t)) (i = 1, 2, . . . , n, t ∈ (0, li)),

ui(0) = 0, ui(li) = uj(lj) (i �= j),
∑n

i=1 u′
i(li) = 0,

(1)

where α ∈ (1, 2], β ∈ (0,α – 1], fi : [0, li] × R × R → R are continuous functions and
cDγ

0 denotes the Caputo fractional derivative of order γ ∈ {α,β}. They used transforma-
tions x = t

li
∈ [0, 1] and z(x) = u(t) = u(lix) for t ∈ [0, li] and proved the relation cDα

0 u(t) =
l–α
i (cDα

0 z(x)). Then, by applying these transformations, the system of fractional boundary
value problems on graph (1) converts into the following system of fractional boundary
value problems on the unit interval [0, 1] given by

cDα
0 zi(x) = lαi hi

(
x, zi(x), l–β

i
cDβ

0 zi(x)
) (

x ∈ [0, 1]
)

with boundary conditions zi(0) = 0, zi(1) = zj(1) for i �= j and
∑n

i=1 l–1
i z′

i(1) = 0, where zi(x) =
ui(lix) and hi(x, u, w) = fi(lix, u, w) for i = 1, 2, . . . , n.

Motivated by the aforementioned works, our aim is to generalize the above boundary
value problems to a new problem on the ethane graph which is a general graph with respect
to star graphs. More precisely, by considering the ethane graph with labeled vertices by
0 or 1 (see Fig. 6), we investigate the existence of solutions for the nonlinear fractional
boundary value problem

⎧
⎨

⎩

cDϑ
0 ui(t) = hi(t, ui(t), u′

i(t)) (t ∈ [0, 1], i = 1, 2, . . . , 7),

λ1ui(0) + λ2ui(1) = λ3
∫ 1

0 ui(s) ds, λ1u′
i(0) + λ2u′

i(1) = λ3
∫ 1

0 ui(s) ds,
(2)

where ϑ ∈ (1, 2], λ1,λ2,λ3 ∈R, cDϑ
0 denotes the Caputo fractional derivative and functions

hi : [0, 1]×R×R→ R are continuous for i = 1, 2, . . . , 7, where n = 7 is the number of edges
of the graph representation of ethane with |ei| = 1.

The boundary conditions in this problem show that the linear combinations of values of
the unknown functions and their derivatives at two ends of each edge are proportional to
a multiple of the integral of the unknown functions. Also, it is notable that the obtained
solutions for the fractional boundary value problem (2) can be interpreted in different
practical meanings of the organic chemistry. In other words, every solution function ui(t)
on an arbitrary edge ei may indicate an amount of the bond energy, the bond strength, the
bond polarity, etc. This could lead to valuable applications in chemical reactions theory.
Hence, we claim that this abstract idea could be useful for young researchers in their future
work.

This paper is arranged as follows. In Sect. 2, some primitive notions for labeling the
ethane graph by 0 or 1 are explained. Moreover, some necessary relations on the fractional
calculus are recalled. In Sect. 3, the main existence results for the nonlinear fractional
boundary value problem (2) are proved by known fixed point theorems. In the end of the
paper, an example is provided to illustrate the validity of results.
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Figure 1 A sketch of the star graph G with two edges
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Figure 2 A sketch of the star graph G with n edges
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Figure 3 A sketch of the non-star graph G with more than one junction node

2 Preliminaries
In this section, we provide some primitive concepts about the new class of fractional
boundary value problems (2) on the ethane graph. For this, we first state two important
points about the used methods in [56] and [57].

(1) In both articles, the authors assume the graph G as a star graph consisting of one
junction node v0 (Figs. 1 and 2), while in general cases, the graph G may not be in the
form of a star graph and may have a general structure with more than one junction node.
For example, see Fig. 3 where there exist five junction nodes.

(2) In both articles, the authors consider the length of each edge to be the variable values
|ei| = li for i = 1, 2, . . . , n, where n denotes the number of edges for the graph G. Next, they
convert [0, li] into a unit interval [0, 1] by using a change of variable for the normalization
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Figure 4 A sketch of the general graph G with labeled vertices

Figure 5 A sketch of the graph representation of ethane
(C2H6) H

CH H

CH H

H

of the length of all edges, while from the beginning, one can consider the length of all edges
to be fixed value |ei| = 1 without specifying boundary vertices of each edge as the origin.
For this purpose, we propose a new method for labeling vertices. In this case, we can assign
two labels 0 or 1 to each vertex of a graph. In other words, the label of each vertex depends
on the direction of the corresponding edge. When we move along an arbitrary edge, the
label of the starting vertex and the ending vertex are considered values 0 and 1 and vice
versa. Hence, some vertices may have two labels 0 and 1 simultaneously, and the origin of
each edge is not fixed, and it changes whenever the direction of the movement along the
edge is changed. By this rule, we do not need to normalize the length of each edge by using
the specific transformation, and also we are free to determine one of two vertices of the
corresponding edge as the origin. For example, see Fig. 4 illustrating one of the possible
cases for labeling. In this graph, we begin to move along edges from the blue vertex in the
first step.

In this paper, we are going to study some existence results for a system of fractional
differential equations on the ethane graph. We represent the ethane molecule as a graph
with labeled vertices by 0 or 1. As you know, ethane is a chemical compound of hydrogen
(H) and carbon (C) with chemical formula C2H6 (see Fig. 5). Ethane is the simplest hy-
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Figure 6 A sketch of the graph representation of ethane with
labeled vertices by 0 or 1 0
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drocarbon that contains a single carbon-carbon bond. We consider atoms of hydrogens
and carbons as vertices of the graph and also the existing chemical bonds between atoms
are considered as edges of the graph. This molecular graph is not a star graph, and so the
method proposed in articles [56] and [57] for assigning the origin at boundary nodes ex-
cept the junction node v0 will not be useful because this graph has more than one junction
node. Thus we have to use a different method. We can label vertices of the above graph in
the form of labeled vertices by two values 0 or 1 and consider the length of each edge to
be unit value li = 1 (see Fig. 6). For more complicate graphs, one can use doubled indexing
for nodes of graphs.

Hence, in view of the ethane graph with labeled vertices by 0 or 1 as above, we can
perform our purposes on the existence of solutions for the nonlinear fractional boundary
value problem (2).

Now, we recall some basic notions and properties about the fractional calculus. Let
ϑ > 0. The Riemann–Liouville fractional integral of a function u : [a, b] → R is defined
by

Iϑ
0 u(t) =

∫ t

0

(t – s)ϑ–1

Γ (ϑ)
u(s) ds

provided that the right-hand side integral exists [58, 59]. Let n–1 ≤ ϑ < n. Then n = [ϑ]+1.
The Caputo fractional derivative of a function u ∈ C(n)([a, b],R) is defined by cDϑ

0 u(t) =
∫ t

0
(t–s)n–ϑ–1

Γ (n–ϑ) u(n)(s) ds provided that the integral exists [58, 59]. It has been proved that the
general solution for the homogeneous fractional differential equation cDϑ

0 u(t) = 0 is in the
form u(t) = b∗

0 + b∗
1t + b∗

2t2 + · · · + b∗
n–1tn–1, and we have

Iϑ
0
(cDϑ

0 u(t)
)

= u(t) +
n–1∑

j=0

b∗
j tj = u(t) + b∗

0 + b∗
1t + b∗

2t2 + · · · + b∗
n–1tn–1,

where b∗
0, . . . , b∗

n–1 are some real constants [60]. We need the next results which are known
as Schaefer and Krasnoselskii fixed point theorems, respectively.
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Lemma 1 ([61]) Let X be a Banach space and Υ : X → X be a completely continuous
operator. Then either the set {u ∈ X : u = μΥ u,μ ∈ (0, 1)} is unbounded or the operator Υ

has at least one fixed point in X .

Lemma 2 ([61]) Let E be a closed, bounded, convex, and nonempty subset of a Banach
space X . Let Υ1 and Υ2 be two operators such that Υ1u + Υ2v ∈ E whenever u, v ∈ E , Υ1 is
compact and continuous and Υ2 is a contraction map. Then there exists w ∈ E such that
w = Υ1w + Υ2w.

3 Main results
In this section, we prove our main results on the ethane graph (Fig. 6). In this way, we con-
sider the Banach spaces Xi = {ui : ui, u′

i ∈ C[0, 1]} with the norm ‖ui‖Xi = supt∈[0,1] |ui(t)| +
supt∈[0,1] |u′

i(t)| for i = 1, 2, . . . , 7. Note that the product space X = (X1,X2, . . . ,X7) equipped
with the norm ‖u = (u1, u2, . . . , u7)‖X =

∑7
i=1 ‖ui‖Xi is a Banach space.

Lemma 3 Let ϕ1, . . . ,ϕ7 ∈ C[0, 1]. Then u∗
i is a solution for the boundary value problem

⎧
⎨

⎩

cDϑ
0 ui(t) = ϕi(t) (t ∈ [0, 1]),

λ1ui(0) + λ2ui(1) = λ3
∫ 1

0 ui(s) ds, λ1u′
i(0) + λ2u′

i(1) = λ3
∫ 1

0 ui(s) ds,
(3)

if and only if u∗
i is a solution for the following fractional integral equation satisfying the

boundary conditions:

ui(t) =
∫ t

0

(t – s)ϑ–1

Γ (ϑ)
ϕi(s) ds

+
Λ1 – λ2λ3(λ1 + λ2 – λ3)t

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
ϕi(s) ds

+
Λ2 – λ2(λ1 + λ2 – λ3)2t

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
ϕi(s) ds

+
Λ3 + (λ1 + λ2)λ3(λ1 + λ2 – λ3)t

(λ1 + λ2 – λ3)Λ

∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
ϕi(τ ) dτ ds, (4)

where

Λ = λ2
1 + λ2

2 + 2λ1λ2 –
3
2
λ1λ3 –

1
2
λ2λ3 �= 0,

Λ1 =
3
2
λ2

2λ3 –
1
2
λ2λ

2
3 – λ2

1λ2 – λ3
2 – 2λ1λ

2
2 +

3
2
λ1λ2λ3,

Λ2 = λ1λ
2
2 + λ3

2 –
3
2
λ2

2λ3 –
1
2
λ1λ2λ3 +

1
2
λ2λ

2
3,

Λ3 = λ2
1λ3 + λ1λ2λ3 – λ1λ

2
3.

Proof Let u∗
i be a solution for the fractional problem (3) (i = 1, 2, . . . , 7). Then there exist

constants b(i)
0 , b(i)

1 ∈R such that u∗
i (t) = Iϑ

0 ϕi(t) + b(i)
0 + b(i)

1 t. In other words,

u∗
i (t) =

∫ t

0

(t – s)ϑ–1

Γ (ϑ)
ϕi(s) ds + b(i)

0 + b(i)
1 t. (5)
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Thus, u∗′
i (t) =

∫ t
0

(t–s)ϑ–2

Γ (ϑ–1) ϕi(s) ds + b(i)
1 and so

∫ 1

0
u∗

i (s) ds =
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
ϕi(τ ) dτ ds + b(i)

0 +
1
2

b(i)
1 .

By using the boundary conditions, we obtain

b(i)
0 =

Λ1

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
ϕi(s) ds

+
Λ2

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
ϕi(s) ds

+
Λ3

(λ1 + λ2 – λ3)Λ

∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
ϕi(τ ) dτ ds

and

b(i)
1 = –

λ2λ3

Λ

∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
ϕi(s) ds –

λ2(λ1 + λ2 – λ3)
Λ

×
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
ϕi(s) ds +

(λ1 + λ2)λ3

Λ

∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
ϕi(τ ) dτ ds.

Now, by substituting the values for b(i)
0 and b(i)

1 in equation (5), one can find that u∗
i is a

solution for integral equation (4). For the converse part, by using some direct calculations,
one can see that u∗

i is a solution for the fractional problem (3) whenever u∗
i is a solution

for integral equation (5). This completes the proof. �

Now, by considering Lemma 3, define the operator Υ : X →X by

Υ (u1, u2, . . . , u7)(t) :=
(
Υ1(u1, u2, . . . , u7)(t), . . . ,Υ7(u1, u2, . . . , u7)(t)

)
, (6)

where

Υi(u1, u2, . . . , u7)(t) =
∫ t

0

(t – s)ϑ–1

Γ (ϑ)
hi

(
s, ui(s), u′

i(s)
)

ds

+
Λ1 – λ2λ3(λ1 + λ2 – λ3)t

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
hi

(
s, ui(s), u′

i(s)
)

ds

+
Λ2 – λ2(λ1 + λ2 – λ3)2t

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
hi

(
s, ui(s), u′

i(s)
)

ds

+
Λ3 + (λ1 + λ2)λ3(λ1 + λ2 – λ3)t

(λ1 + λ2 – λ3)Λ

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
hi

(
τ , ui(τ ), u′

i(τ )
)

dτ ds
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for all t ∈ [0, 1] and ui ∈Xi. Put

K∗
0 :=

1
Γ (ϑ + 1)

+
|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)
,

K∗
1 :=

1
Γ (ϑ)

+
|λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)
+

|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

,

�∗
1 :=

|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)
,

�∗
2 :=

|λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

.

(7)

Theorem 4 Let h1, . . . , h7 : [0, 1] × R × R → R be continuous functions. Assume that
there exist constants Li > 0 such that |hi(t, u1, u2)| ≤ Li for all u1, u2 ∈ R and t ∈ [0, 1]
(i = 1, 2, . . . , 7). Then the fractional boundary value problem (2) has a solution.

Proof By considering definition of the operator Υ , it is clear that the fractional boundary
value problem (2) has a solution if and only if Υ has a fixed point on the product space
X = X1 × · · · ×X7. First, we show that the operator Υ is complete continuous. Since the
functions h1, . . . , h7 are continuous, the operator Υ : X → X is continuous. Let M be a
bounded subset of X and u = (u1, u2, . . . , u7) ∈X . Then we have

∣∣Υiu(t)
∣∣ ≤

∫ t

0

(t – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , ui(τ ), u′

i(τ )
)∣∣dτ ds

≤
∫ t

0

(t – s)ϑ–1

Γ (ϑ)
Li ds +

|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t
|λ1 + λ2 – λ3||Λ|

∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
Li ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
Li ds
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+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
Li dτ ds

≤ Li

[
1

Γ (ϑ + 1)
+

|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)
+

|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

]
= LiK∗

0

for each t ∈ [0, 1], where K∗
0 is given in (7). Also, we have

∣
∣Υ ′

i u(t)
∣
∣ ≤

∫ t

0

(t – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
+|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣
∣hi

(
τ , ui(τ ), u′

i(τ )
)∣∣dτ ds

≤ Li

[
1

Γ (ϑ)
+

|λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)
+

|λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

]
= LiK∗

1

for all t ∈ [0, 1], whereK∗
1 is given in (7). This implies that ‖Υiu(t)‖Xi ≤ Li(K∗

0 +K∗
1). Hence,

‖Υ u(t)‖X =
∑7

i=1 ‖Υiu(t)‖Xi ≤ ∑7
i=1 Li(K∗

0 + K∗
1) < ∞. This shows that the operator Υ is

uniformly bounded. Now, we prove that the operator Υ is equicontinuous. Now, let u =
(u1, u2, . . . , u7) ∈ M and t1, t2 ∈ [0, 1] with t1 < t2. Then we have

∣
∣Υiu(t2) – Υiu(t1)

∣
∣ ≤

∫ t1

0

[(t2 – s)ϑ–1 – (t1 – s)ϑ–1]
Γ (ϑ)

∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
∫ t2

t1

(t2 – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ2||λ3||λ1 + λ2 – λ3|(t2 – t1)

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ2|(λ1 + λ2 – λ3)2(t2 – t1)

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|(t2 – t1)

|λ1 + λ2 – λ3||Λ|
×

∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , ui(τ ), u′

i(τ )
)∣∣dτ ds.

The right-hand side of the inequality converges to zero independently of u ∈ M as t1 → t2.
Similarly, we have

∣∣Υ ′
i u(t2) – Υ ′

i u(t1)
∣∣ ≤

∫ t1

0

[(t2 – s)ϑ–2 – (t1 – s)ϑ–2]
Γ (ϑ – 1)

∣∣hi
(
s, ui(s), u′

i(s)
)∣∣ds

+
∫ t2

t1

(t2 – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds.
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Again, the right-hand side of the inequality converges to zero independently of u ∈ M as
t1 → t2. Hence, ‖Υ u(t2) – Υ u(t1)‖X → 0 as t1 → t2. This shows that Υ is an equicontinu-
ous operator on the product space X . Now by using the Arzela–Ascoli theorem, one can
conclude that Υ is a completely continuous operator. Here, consider the subset

Ω :=
{

(u1, u2, . . . , u7) ∈X : (u1, u2, . . . , u7) = μΥ (u1, u2, . . . , u7),μ ∈ (0, 1)
}

of X . We prove that Ω is a bounded set. Let (u1, u2, . . . , u7) ∈ Ω . Then

(u1, u2, . . . , u7) = μΥ (u1, u2, . . . , u7),

and so ui(t) = μΥi(u1, u2, . . . , u7) for all t ∈ [0, 1] and i = 1, 2, . . . , 7. Thus,

∣∣ui(t)
∣∣ ≤ μ

[∫ t

0

(t – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , ui(τ ), u′

i(τ )
)∣∣dτ ds

]

≤ μLi

[
1

Γ (ϑ + 1)
+

|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)
+

|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

]
= μLiK∗

0

and

∣
∣u′

i(t)
∣
∣ ≤ μ

[∫ t

0

(t – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
+|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , ui(τ ), u′

i(τ )
)∣∣dτ ds

]

≤ μLi

[
1

Γ (ϑ)
+

|λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)
+

|λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

]
= μLiK∗

1.

This implies that ‖u‖X =
∑7

i=1 ‖ui‖Xi ≤ μ
∑7

i=1 Li(K∗
0 + K∗

1) < ∞ and so Ω is bounded.
Now, by using Lemmas 1 and 3, the operator Υ has a fixed point in X which is a solution
for the fractional boundary value problem (2). �
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Now, we review the fractional boundary value problem (2) under different conditions.

Theorem 5 Assume that h1, . . . , h7 : [0, 1] × R × R → R are continuous functions, there
exist continuous functions σ1, . . . ,σ7 : [0, 1] →R, δ1, . . . , δ7 : [0, 1] →R

+ and nondecreasing
continuous functions φ1, . . . ,φ7 : [0, 1] → R

+ such that |hi(t, u1, u2)| ≤ δi(t)φi(|u1| + |u2|)
and

∣
∣hi(t, u1, u2) – hi(t, v1, v2)

∣
∣ ≤ σi(t)

(|u1 – v1| + |u2 – v2|
)

for all t ∈ [0, 1], u1, u2, v1.v2 ∈ R and i = 1, . . . , 7. If k := (�∗
1 + �∗

2)
∑7

i=1 ‖σi‖ < 1, then the
fractional boundary value problem (2) has a solution, where ‖σi‖ = supt∈[0,1] |σi(t)| and the
constants �∗

1 and �∗
2 are given in (7).

Proof Put ‖δi‖ = supt∈[0,1] |δi(t)| and choose suitable constants ρi such that

ρi ≥
7∑

i=1

φi
(‖ui‖Xi

)‖δi‖
{
K∗

0 + K∗
1
}

, (8)

where K∗
i s are given in (7). Consider the sets Bρi := {u = (u1, u2, . . . , u7) ∈ X : ‖u‖X ≤ ρi},

where ρi is given in (8). It is clear that Bρi is a closed, bounded, convex, and nonempty
subset of the product Banach space X . Now, define the operators Υ1 and Υ2 on Bρi by

Υ1(u1, u2, . . . , u7)(t) :=
(
Υ

(1)
1 (u1, u2, . . . , u7)(t), . . . ,Υ (7)

1 (u1, u2, . . . , u7)(t)
)
,

Υ2(u1, u2, . . . , u7)(t) :=
(
Υ

(1)
2 (u1, u2, . . . , u7)(t), . . . ,Υ (7)

2 (u1, u2, . . . , u7)(t)
)
,

where (Υ (i)
1 u)(t) =

∫ t
0

(t–s)ϑ–1

Γ (ϑ) hi(s, ui(s), u′
i(s)) ds and

(
Υ

(i)
2 u

)
(t)

=
Λ1 – λ2λ3(λ1 + λ2 – λ3)t

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
hi

(
s, ui(s), u′

i(s)
)

ds

+
Λ2 – λ2(λ1 + λ2 – λ3)2t

(λ1 + λ2 – λ3)Λ

∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
hi

(
s, ui(s), u′

i(s)
)

ds

+
Λ3 + (λ1 + λ2)λ3(λ1 + λ2 – λ3)t

(λ1 + λ2 – λ3)Λ

∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
hi

(
τ , ui(τ ), u′

i(τ )
)

dτ ds

for all t ∈ [0, 1] and u = (u1, u2, . . . , u7) ∈ Bρi . Let φ∗
i = supui∈Xi φi(‖ui‖Xi ). Now, for every

u = (u1, . . . , u7), v = (v1, . . . , v7) ∈ Bρi , we have

∣∣(Υ (i)
1 u + Υ

(i)
2 v

)
(t)

∣∣

≤
∫ t

0

(t – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, vi(s), v′

i(s)
)∣∣ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣
∣hi

(
s, vi(s), v′

i(s)
)∣∣ds
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+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣
∣hi

(
τ , vi(τ ), v′

i(τ )
)∣∣dτ ds

≤
∫ t

0

(t – s)ϑ–1

Γ (ϑ)
δi(s)φi

(∣∣ui(s)
∣
∣ +

∣
∣u′

i(s)
∣
∣)ds

+
|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
δi(s)φi

(∣∣vi(s)
∣∣ +

∣∣v′
i(s)

∣∣)ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
δi(s)φi

(∣∣vi(s)
∣
∣ +

∣
∣v′

i(s)
∣
∣)ds

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
δi(τ )φi

(∣∣vi(τ )
∣
∣ +

∣
∣v′

i(τ )
∣
∣)dτ ds

≤ ‖δi‖φ∗
i

[
1

Γ (ϑ + 1)
+

|Λ1| + |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)
+

|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

]
= ‖δi‖φ∗

i K∗
0,

and

∣∣((Υ (i)
1

)′u +
(
Υ

(i)
2

)′v
)
(t)

∣∣

≤
∫ t

0

(t – s)ϑ–2

Γ (ϑ – 1)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

+
|λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣
∣hi

(
s, vi(s), v′

i(s)
)∣∣ds

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣∣hi

(
s, vi(s), v′

i(s)
)∣∣ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , vi(τ ), v′

i(τ )
)∣∣dτ ds

≤
∫ t

0

(t – s)ϑ–2

Γ (ϑ – 1)
δi(s)φi

(∣∣ui(s)
∣
∣ +

∣
∣u′

i(s)
∣
∣)ds

+
|λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
δi(s)φi

(∣∣vi(s)
∣∣ +

∣∣v′
i(s)

∣∣)ds

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
δi(s)φi

(∣∣vi(s)
∣∣ +

∣∣v′
i(s)

∣∣)ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
δi(τ )φi

(∣∣vi(τ )
∣
∣ +

∣
∣v′

i(τ )
∣
∣)dτ ds

≤ ‖δi‖φ∗
i

[
1

Γ (ϑ)
+

|λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 1)

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|Γ (ϑ)

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|Γ (ϑ + 2)

]
= ‖δi‖φ∗

i K∗
1.
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This yields ‖Υ1u + Υ2v‖X =
∑7

i=1 ‖Υ (i)
1 u + Υ

(i)
2 v‖Xi ≤ ∑7

i=1 ‖δi‖φ∗
i (K∗

0 + K∗
1) ≤ ρi, and so

‖Υ1u + Υ2v‖X ≤ ρi and Υ1u + Υ2v ∈ Bρi . On the other hand, it is clear that the continuity
of Υ1 follows from the continuity of functions hi. Now, we show that the operator Υ1 is
uniformly bounded. For this, note that

∣∣(Υ (i)
1 u

)
(t)

∣∣ ≤
∫ t

0

(t – s)ϑ–1

Γ (ϑ)
∣∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

≤ 1
Γ (ϑ + 1)

‖δi‖φi
(∣∣ui(t)

∣
∣ +

∣
∣u′

i(t)
∣
∣),

and |((Υ (i)
1 )′u)(t)| ≤ ∫ t

0
(t–s)ϑ–2

Γ (ϑ–1) |hi(s, ui(s), u′
i(s))|ds ≤ 1

Γ (ϑ)‖δi‖φi(|ui(t)| + |u′
i(t)|) for all u in

Bρi . Thus, ‖Υ1u‖X =
∑7

i=1 ‖Υ (i)
1 u‖Xi ≤ { 1

Γ (ϑ+1) + 1
Γ (ϑ) }

∑7
i=1 ‖δi‖φi(‖ui‖Xi ). This shows that

the operator Υ1 is uniformly bounded on Bρi . Now, we show that the operator Υ1 is com-
pact on Bρi . Let t1, t2 ∈ [0, 1] with t1 < t2. Then we have

∣
∣(Υ (i)

1 u
)
(t2) –

(
Υ

(i)
1 u

)
(t1)

∣
∣

=
∣∣
∣∣

∫ t2

0

(t2 – s)ϑ–1

Γ (ϑ)
hi

(
s, ui(s), u′

i(s)
)

ds

–
∫ t1

0

(t1 – s)ϑ–1

Γ (ϑ)
hi

(
s, ui(s), u′

i(s)
)

ds
∣
∣∣
∣

≤
∣
∣∣
∣

∫ t1

0

[(t2 – s)(ϑ–1) – (t1 – s)(ϑ–1)]
Γ (ϑ)

hi
(
s, ui(s), u′

i(s)
)

ds
∣
∣∣
∣

+
∣
∣∣
∣

∫ t2

t1

(t2 – s)(ϑ–1)

Γ (ϑ)
hi

(
s, ui(s), u′

i(s)
)

ds
∣
∣∣
∣

≤
∫ t1

0

[(t2 – s)(ϑ–1) – (t1 – s)(ϑ–1)]
Γ (ϑ)

∣∣hi
(
s, ui(s), u′

i(s)
)∣∣ds

+
∫ t2

t1

(t2 – s)(ϑ–1)

Γ (ϑ)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

≤
{

tϑ
2 – tϑ

1 – (t2 – t1)ϑ

Γ (ϑ + 1)
+

(t2 – t1)ϑ

Γ (ϑ + 1)

}
‖δi‖φi

(‖ui‖Xi

)
.

Hence, |(Υ (i)
1 u)(t2) – (Υ (i)

1 u)(t1)| → 0 as t1 → t2. Also, we have

∣
∣((Υ (i)

1
)′u

)
(t2) –

((
Υ

(i)
1

)′u
)
(t1)

∣
∣

=
∣∣
∣∣

∫ t2

0

(t2 – s)ϑ–2

Γ (ϑ – 1)
hi

(
s, ui(s), u′

i(s)
)

ds

–
∫ t1

0

(t1 – s)ϑ–2

Γ (ϑ – 1)
hi

(
s, ui(s), u′

i(s)
)

ds
∣
∣∣
∣

≤
∣
∣∣
∣

∫ t1

0

[(t2 – s)(ϑ–2) – (t1 – s)(ϑ–2)]
Γ (ϑ – 1)

hi
(
s, ui(s), u′

i(s)
)

ds
∣
∣∣
∣

+
∣
∣∣
∣

∫ t2

t1

(t2 – s)(ϑ–2)

Γ (ϑ – 1)
hi

(
s, ui(s), u′

i(s)
)

ds
∣
∣∣
∣

≤
∫ t1

0

[(t2 – s)(ϑ–2) – (t1 – s)(ϑ–2)]
Γ (ϑ – 1)

∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds
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+
∫ t2

t1

(t2 – s)(ϑ–2)

Γ (ϑ – 1)
∣
∣hi

(
s, ui(s), u′

i(s)
)∣∣ds

≤
{

tϑ–1
2 – tϑ–1

1 – (t2 – t1)ϑ–1

Γ (ϑ)
+

(t2 – t1)ϑ–1

Γ (ϑ)

}
‖δi‖φi

(‖ui‖Xi

)
,

and so |((Υ (i)
1 )′u)(t2) – ((Υ (i)

1 )′u)(t1)| → 0 as t1 → t2. Hence, ‖(Υ1u)(t2) – (Υ1u)(t1)‖X tends
to zero as t1 → t2. Thus, Υ1 is equicontinuous, and so Υ1 is a relatively compact operator
on Bρi . Now, by using the Arzela–Ascoli theorem, we conclude that the operator Υ1 is
compact on Bρi . Here, we prove that the operator Υ2 is a contraction. Let u, v ∈ Bρi . Then
we have

∣∣(Υ (i)
2 u

)
(t) –

(
Υ

(i)
2 v

)
(t)

∣∣

≤ |Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t
|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣
∣hi

(
s, ui(s), u′

i(s)
)

– hi
(
s, vi(s), v′

i(s)
)∣∣ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣∣hi

(
s, ui(s), u′

i(s)
)

– hi
(
s, vi(s), v′

i(s)
)∣∣ds

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , ui(τ ), u′

i(τ )
)

– hi
(
τ , vi(τ ), v′

i(τ )
)∣∣dτ ds

≤ |Λ1| + |λ2||λ3||λ1 + λ2 – λ3|t
|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
σi(s)

(∣∣ui(s) – vi(s)
∣∣ +

∣∣u′
i(s) – v′

i(s)
∣∣)ds

+
|Λ2| + |λ2|(λ1 + λ2 – λ3)2t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
σi(s)

(∣∣ui(s) – vi(s)
∣
∣ +

∣
∣u′

i(s) – v′
i(s)

∣
∣)ds

+
|Λ3| + |λ1 + λ2||λ3||λ1 + λ2 – λ3|t

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
σi(τ )

(∣∣ui(τ ) – vi(τ )
∣
∣ +

∣
∣u′

i(τ ) – v′
i(τ )

∣
∣)dτ ds

and

∣∣((Υ (i)
2

)′u
)
(t) –

((
Υ

(i)
2

)′v
)
(t)

∣∣

≤ |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
∣
∣hi

(
s, ui(s), u′

i(s)
)

– hi
(
s, vi(s), v′

i(s)
)∣∣ds
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+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
∣∣hi

(
s, ui(s), u′

i(s)
)

– hi
(
s, vi(s), v′

i(s)
)∣∣ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
∣∣hi

(
τ , ui(τ ), u′

i(τ )
)

– hi
(
τ , vi(τ ), v′

i(τ )
)∣∣dτ ds

≤ |λ2||λ3||λ1 + λ2 – λ3|
|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–1

Γ (ϑ)
σi(s)

(∣∣ui(s) – vi(s)
∣∣ +

∣∣u′
i(s) – v′

i(s)
∣∣)ds

+
|λ2|(λ1 + λ2 – λ3)2

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

(1 – s)ϑ–2

Γ (ϑ – 1)
σi(s)

(∣∣ui(s) – vi(s)
∣∣ +

∣∣u′
i(s) – v′

i(s)
∣∣)ds

+
|λ1 + λ2||λ3||λ1 + λ2 – λ3|

|λ1 + λ2 – λ3||Λ|

×
∫ 1

0

∫ s

0

(s – τ )ϑ–1

Γ (ϑ)
σi(τ )

(∣∣ui(τ ) – vi(τ )
∣∣ +

∣∣u′
i(τ ) – v′

i(τ )
∣∣)dτ ds.

Hence, we obtain

sup
t∈[0,1]

∣∣(Υ (i)
2 u

)
(t) –

(
Υ

(i)
2 v

)
(t)

∣∣ ≤ ‖σi‖�∗
1‖ui – vi‖Xi ,

sup
t∈[0,1]

∣
∣((Υ (i)

2
)′u

)
(t) –

((
Υ

(i)
2

)′v
)
(t)

∣
∣ ≤ ‖σi‖�∗

2‖ui – vi‖Xi .

Thus, we get

‖Υ2u – Υ2v‖X =
7∑

i=1

∥
∥Υ

(i)
2 u – Υ

(i)
2 v

∥
∥
Xi

≤ (
�∗

1 + �∗
2
) 7∑

i=1

‖σi‖‖ui – vi‖Xi ,

and so ‖Υ2u – Υ2v‖X ≤ k‖u – v‖X . Since k < 1, Υ2 is a contraction on Bρi . Now, by using
Lemma 2, we conclude that the operator Υ has a fixed point which is a solution for the
fractional boundary value problem (2). �

Finally, one can easily prove the uniqueness of solutions for the fractional problem (2).

Theorem 6 Let h1, . . . , h7 : [0, 1] ×R×R →R be continuous functions. Assume that there
exist constants Li > 0 such that |hi(t, u1, u2) – hi(t, u′

1, u′
2)| ≤ Li(|u1 – u′

1| + |u2 – u′
2|) for all

u1, u2, u′
1, u′

2 ∈ R and t ∈ [0, 1] (i = 1, 2, . . . , 7). Then the fractional boundary value problem
(2) has a unique solution if

∑7
i=1 Li(K∗

0 + K∗
1) < 1.

Now, we present an example to illustrate our last main result.
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Example 1 Consider the system of fractional differential equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cD1.08
0 u1(t) = t|u1(t)|

10(1+|u1(t)|) + 0.1t| arcsin u′
1(t)|,

cD1.08
0 u2(t) = t

2000 | arctan u2(t)| + t| arcsin u′
2(t)|

2000+2000| arcsin u′
2(t)| ,

cD1.08
0 u3(t) = 0.01t| sin u3(t)| + 0.01t |u′

3(t)|3
2+|u′

3(t)|3

(9)

with integral boundary value conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.7u1(0) + 0.12u1(1) = 0.1
∫ 1

0 u1(s) ds,

0.7u′
1(0) + 0.12u′

1(1) = 0.1
∫ 1

0 u1(s) ds,

0.7u2(0) + 0.12u2(1) = 0.1
∫ 1

0 u2(s) ds,

0.7u′
2(0) + 0.12u′

2(1) = 0.1
∫ 1

0 u2(s) ds,

0.7u3(0) + 0.12u3(1) = 0.1
∫ 1

0 u3(s) ds,

0.7u′
3(0) + 0.12u′

3(1) = 0.1
∫ 1

0 u3(s) ds,

(10)

where ϑ = 1.08, λ1 = 0.7, λ2 = 0.12, λ3 = 0.1, n = 3 and cD1.08
0 denotes the Caputo fractional

derivative of order ϑ = 1.08. Define continuous functions h1, h2, h3 : [0, 1] × R × R → R

by

⎧
⎪⎪⎨

⎪⎪⎩

h1(t, u(t), v(t)) = t|u(t)|
10(1+|u(t)|) + 0.1t| arcsin v(t)|,

h2(t, u(t), v(t)) = t
2000 | arctan u(t)| + t| arcsin v(t)|

2000+2000| arcsin v(t)| ,

h3(t, u(t), v(t)) = 0.01t| sin u(t)| + 0.01t |v(t)|3
2+|v(t)|3 .

Let u1, u2, v1, v2 ∈R. Then we have

∣∣h1
(
t, u1(t), v1(t)

)
– h1

(
t, u2(t), v2(t)

)∣∣

≤ t
10

(∣∣u1(t) – u2(t)
∣∣ +

∣∣arcsin v1(t) – arcsin v2(t)
∣∣)

≤ t
10

(∣∣u1(t) – u2(t)
∣
∣ +

∣
∣v1(t) – v2(t)

∣
∣),

∣
∣h2

(
t, u1(t), v1(t)

)
– h2

(
t, u2(t), v2(t)

)∣∣

≤ t
2000

(∣∣arctan u1(t) – arctan u2(t)
∣
∣ +

∣
∣arcsin v1(t) – arcsin v2(t)

∣
∣)

≤ t
2000

(∣∣u1(t) – u2(t)
∣∣ +

∣∣v1(t) – v2(t)
∣∣),

and

∣∣h3
(
t, u1(t), v1(t)

)
– h3

(
t, u2(t), v2(t)

)∣∣

≤ t
100

(∣∣sin u1(t) – sin u2(t)
∣∣ +

∣∣v1(t) – v2(t)
∣∣)

≤ t
100

(∣∣u1(t) – u2(t)
∣∣ +

∣∣v1(t) – v2(t)
∣∣).
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Hence, σ1(t) = t
10 , σ2(t) = t

2000 , and σ3(t) = t
100 where ‖σ1‖ = 1

10 , ‖σ2‖ = 1
2000 , and ‖σ3‖ =

1
100 . Define the continuous and nondecreasing functions φi : R+ → R by φ1(u) = φ2(u) =
φ3(u) = u for all u ∈R

+. Then we get

∣
∣h1

(
t, u(t), u′(t)

)∣∣ ≤ t
10

(|u| +
∣
∣arcsin u′∣∣)

≤ t
10

(|u| +
∣∣u′∣∣) =

t
10

φ1
(|u| +

∣∣u′∣∣),

∣∣h2
(
t, u(t), u′(t)

)∣∣ ≤ t
2000

(| arctan u| +
∣∣arcsin u′∣∣)

≤ t
2000

(|u| +
∣
∣u′∣∣) =

t
2000

φ2
(|u| +

∣
∣u′∣∣),

∣
∣h3

(
t, u(t), u′(t)

)∣∣ ≤ t
100

(| sin u| +
∣
∣u′∣∣)

≤ t
100

(|u| +
∣∣u′∣∣) =

t
100

φ3
(|u| +

∣∣u′∣∣),

where continuous functions δi : [0, 1] →R are defined by δ1(t) = t
10 , δ2(t) = t

2000 , and δ3(t) =
t

100 . According to the obtained values, we get �∗
1 � 0.4808, �∗

2 � 0.2486, and so �∗
1 +�∗

1 �
0.7294. Hence, k := (�∗

1 + �∗
2)

∑3
i=1 ‖σi‖ = (�∗

1 + �∗
2)(‖σ1‖ + ‖σ2‖ + ‖σ3‖) � 0.08059 < 1.

Now, by using Theorem 5, we conclude that the fractional boundary value problems (9)–
(10) have a solution.

4 Conclusion
With the development and expansion of some dynamical and industrial systems such as
gas transmission lines, water pipelines, the expansive growth of computer networks, struc-
ture of molecules in medicine and biology, etc., new descriptive models have emerged for
studying the related processes designed by specialists of these fields. Due to the graph rep-
resentation of these networks, the study of mathematical models described by ordinary or
fractional differential equations on special graphs was considered. In this paper, our aim
was to extend the idea on more generalized graphs. In this way, we investigated the exis-
tence of solutions for some fractional boundary value problems on the ethane graph. We
presented two distinct results by considering different conditions on the problems. Also,
we provided an example to illustrate our last main result.
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