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Abstract
Recently, Wu (Mathematics 6(11):219, 2018; Mathematics 6(6):90, 2018) introduced
the concept of a near-fixed point and established some results on near fixed points in
a metric interval space and hyperspace. Motivated by these papers, we studied the
near-coincidence point theorem in these spaces via a simulation function. To show
the authenticity of the established results and definitions, we also provide some
examples.
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1 Introduction and preliminaries
In mathematics, fixed point theory plays the role of bridge between pure and applied math-
ematics. Therefore this field has great importance among the branches of pure mathe-
matics and especially in nonlinear analysis. It has many applications to the existence of a
solution of a nonlinear system; see, for example, the recent works [3–9] and many more.
Metric fixed point theory is the celebrated area in fixed point theory based on the Banach
contraction principle (BCP). This principle is given by Banach [10]. After him, this princi-
ple was generalized in different forms. This principle is studied in different structures such
as dislocated quasimetric spaces [11], cone metric spaces [12], generalized metric spaces
[13] and so on. On the other side, the contraction condition is modified in different forms
such as the Kannan contraction condition, Chatterjee contraction condition. For details,
see [14–16]. Sarwar [17] studied fixed point theorems under rational-type contractions in
the setting of complex-valued metric spaces. These results generalized some important
results in the present literature. De la Sen [18] used a new approach of (s – q)-graphic con-
traction in b-metric-like spaces. These results generalize and improve several approaches
in the existing literature by using this new approach for the proof that a Picard sequence
is a Cauchy one.

Recently, Khojasteh [19] introduced the concept of a simulation function ζ : [0, +∞) ×
[0, +∞) −→ R and the concept of Z-contraction, which modifies the contraction condi-
tion in the Banach contraction principle. Using a simulation function, he proved some
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fixed-point results. Then Hiero et al. [20, 21] extended the stated concept of a simulation
function given by Khojasteh and investigated some coincidence point results. Argubi [22]
used this concept to study the results on coincidence and common fixed point in partially
ordered metric space. Alharbi [23] combined the concept of a simulation function with ad-
missible function to generalize some existing results in the related literature. Chanda [24]
surveyed many of the recent works related with simulation functions and Z-contractions
in the existing literature after the publication of Khojasteh et al. Recently, Alsubaie, Alqah-
tani, and Karapinar [25] proved some interesting results on common fixed points in met-
ric spaces via a simulation function. In 2019, Alqathani and Karapinar [26] introduced the
concept of a bilateral contraction, which combines the ideas of Ćirić-type contraction and
Caristi-type contraction with the help of simulation function in complete metric spaces.
Alghamdi [27] studied common fixed point results in the setting of b-metric space via ex-
tended Z-contraction with respect to a ψ-simulation function. His work evaluated and
merged as-scattered-as-possible results in fixed point theory from general framework.
Karapinar and Agarwal [28] introduced the concept of an interpolative Rus–Reich–Ćirić-
type Z-contraction in the setting of a complete metric space.

Recently, Wu [1, 2] raised the idea about near-fixed points in metric interval spaces and
hyperspaces. He studied some results on near-fixed points in metric interval spaces and
hyperspaces. Due to the nonexistence of the inverse of each element, the metric interval
spaces and hyperspaces are not conventional metric spaces and normed spaces, respec-
tively. For more detail of interval spaces, we refer the reader to [29, 30]

Inspired by the works [19, 25–28, 31, 32], we study near-coincidence points in metric
interval spaces and hyperspaces via simulation functions. We also provide some examples.

2 Preliminaries
We state some basic definitions and fundamental results in this framework.

2.1 Interval space
Let I be the collection of all closed bounded intervals [l, u], where l, u ∈ R and l ≤ u; we
consider l ∈R as the element [l, l] ∈ I .

The addition and the scaler multiplication are defined as

[l, u] ⊕ [x, y] = [l + x, u + y],

k[l, u] =

⎧
⎨

⎩

[kl, ku], k ≥ 0,

[ku, kl], k < 0.

Under these two operation, the inverse of any nondegenerate closed interval does not exist
in I , so I cannot form the conventional metric space. Clearly, we can see that the additive
identity in I is [0, 0]. However, for [l, u] ∈ I , the subtraction [l, u]� [l, u] = [l, u]⊕ [–u, –l] =
[l – u, u – l] does not give a zero element. So the element [l, u] has no inverse element (for
more detail, see [1]).

2.2 Null set
The null set is defined as

Ω =
{

[t, u] � [t, u] : [t, u] is an element of I
}



Ullah et al. Advances in Difference Equations        (2020) 2020:291 Page 3 of 19

or

Ω =
{

[–α,α];α ≥ 0
}

.

In the interval spaces, the following observations are remarkable:
• The distributive law in I is not true in general.

(α + β)[t, u] 	= α[t, u] ⊕ β[t, u] for any [t, u] ∈ I and α,β ∈R.

• The distributivity holds for scaler addition if both scalers are positive or both are
negative, that is,

(α + β)[t, u] = α[t, u] ⊕ β[t, u] for any [t, u] ∈ I,α,β > 0, and α,β < 0.

• For any [p, q], [r, s], [t, u] ∈ I , we have

[t, u] � (
[p, q] ⊕ [r, s]

)
= [t, u] � [p, q] � [r, s]

= [t, u] ⊕ (
–[p, q] ⊕ (

–[r, s]
))

.

• We write [t, u] Ω= [r, s] iff there exist ω1,ω2 ∈ Ω such that [t, u] ⊕ ω1 = [r, s] ⊕ ω2.
Clearly, [t, u] = [r, s] implies [t, u] Ω= [r, s] by taking ω1 = ω2 = [0, 0]; however,

generally, the converse is not true. Under the relation Ω=, for any [p, q] ∈ I , the
equivalence class is defined as 〈[p, q]〉 = {[x, y] ∈ I : [p, q] Ω= [x, y]} (for more detail,
see [1]).

2.3 Metric interval space
A metric interval space is a pair (I, d), where I is the collection of all closed bounded inter-
vals in R with the null set Ω , and d is a mapping from I × I to nonnegative real numbers
that satisfies the following axioms:

(i) d([p, q], [r, s]) = 0 if and only if [p, q] Ω= [r, s] for all [p, q], [r, s] ∈ I ;
(ii) d([p, q], [r, s]) = d([r, s], [p, q]) for all [p, q], [r, s] ∈ I ;

(iii) d([p, q], [r, s]) ≤ d([p, q], [t, u]) + d([t, u], [r, s]) for all [p, q], [r, s], [t, u] ∈ I ;
• If only conditions (ii) and (iii) hold, then the space (I, d) is called a

pseudometric interval space.
If the following condition (iv) is satisfied for d, then d is said to satisfy the null
equalities:

(iv) for any ω1,ω2 ∈ Ω and [l, u], [x, y] ∈ I , the following equalities hold:
(a) d([l, u] ⊕ ω1, [x, y] ⊕ ω2) = d([l, u], [x, y]);
(b) d([l, u] ⊕ ω1, [x, y]) = d([l, u], [x, y]);
(c) d([l, u], [x, y] ⊕ ω2) = d([l, u], [x, y]).
For more detail, see [1].

Example 2.1 Let I be the collection of all closed bounded intervals in R, and let d be the
function from I × I to R

+ given by

d
(
[l, u], [x, y]

)
=

∣
∣(l + u) – (x + y)

∣
∣.

Then (I, d) is a metric interval space with the null equalities satisfied by d (see [1]).
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Definition 2.2 Let g be a self-mapping on a metric interval space (I, d), Then [l, u] ∈ I is
called a near-fixed point of g if g[l, u] Ω= [l, u] (see [1]).

Definition 2.3 The sequence {[ln, un]}+∞
n=1 in the space (I, d) is convergent in I if

lim
n→+∞ d

(
[ln, un], [l, u]

)
= 0 for some [l, u] ∈ I.

If there exists a point [x, y] such that

lim
n→+∞ d

(
[ln, un], [x, y]

)
= 0, then [x, y] ∈ 〈

[l, u]
〉
,

or

lim
n→+∞ d

(
[ln, un], [x, y]

)
= 0 for all [x, y] ∈ 〈

[l, u]
〉
.

(For more details see[1].)

Definition 2.4 ([1]) If the limit of the sequence {[ln, un]}+∞
n=1 is [l, u], then the class 〈[l, u]〉

is said to be the class limit for {[ln, un]}+∞
n=1.

We write

lim
n→+∞[ln, un] =

〈
[l, u]

〉
or [ln, un] → 〈

[l, u]
〉
.

Definition 2.5 ([1]) Consider the sequence {[ln, un]}+∞
n=1 in (I, d) such that for any ε > 0,

there exists a natural number N such that d([ln, un], [lm, um]) < ε for all n, m > N . Then the
sequence is called a Cauchy sequence.

Definition 2.6 ([1]) If every Cauchy sequence is convergent to a point in a subset J of the
matric interval space (I, d), then the subset J is said to be complete.

Definition 2.7 (Hierro et al. [19, 20]) A function S : [0, +∞) × [0, +∞) → R is said to be
a simulation function if the following conditions holds for S:

S1. S(0, 0) = 0;
S2. S(r, s) < s – r for all r, s > 0;
S3. If {rn}, {sn} are two sequences in (0, +∞) such that limn→+∞ rn = limn→+∞ sn > 0 and

rn < sn for all n ∈N, then

lim
n→+∞ sup S(rn, sn) < 0.

By S2 we clearly can say that a simulation function must satisfy

S(l, l) < 0. (2.1)

Some examples of simulation functions are:
i. S(x, y) = φ(y) – ψ(x) for all x, y ∈ [0, +∞), where φ and ψ are continuous function on

[0, +∞) such that ψ(x) = φ(x) iff x = 0 and ψ(x) < x ≤ φ(x) for all x > 0.
Particularly, if we take ψ(y) = λy and φ(x) = x, then S(x, y) = λy – x.
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ii. S(x, y) = y – φ(y) – x for all x, y ∈ [0, +∞), where φ is a continuous function on
[0, +∞) such that φ(x) = 0 iff x = 0 (see [19], Example 2.2).

iii. S(x, y) = yψ(y) – x for all x, y ∈ [0, +∞), where ψ is a mapping such that
limx→r+ ψ(t) < 1 for all r > 0 [20].

iv. S(x, y) = η(y) – x for all x, y ∈ [0, +∞), where η is a function which is upper
semicontinuous, and η(x) < x for all x > 0, and η(0) = 0 [20].

2.4 Hyperspace
Let S(V ) be the collection of all nonempty convex subsets of V , where V is a topological
vector space. The two binary operations of addition and scalar multiplication are defined
as follows:

U ⊕ U∗ =
{

u1 + u2; u1 ∈ U and u2 ∈ U∗},

μU = {μu; u ∈ U}.

The subtraction is defined by

U � U∗ = U ⊕ (
–U∗) =

{
a – b; a ∈ U and b ∈ U∗}.

Clearly, if 0V is the zero element in V , then {0V } is the zero element in S(V ) because
{0V } ⊕ U = U .

Here in S(V ) the inverse does not exist for a nonempty and nonsingleton set, that is, if
Φ 	= U 	= {0V }, then U � U is not the zero element of S(V ), and so it cannot be a conven-
tional vector space (for more detail, see [2]).

2.5 Null set
The null set is defined as Ω = {U � U ; U ∈ S(V )}. This set can be regarded as the zero
element of S(V ) (see [2]).

Remark 2.8 ([2])
1 (U ⊕ V ) ⊕ W = U ⊕ (V ⊕ W ).
2 λ(U ⊕ V ) = λU ⊕ λV for λ ∈R.
3 λ1(λ2U) = (λ1λ2)U for λ1λ2 ∈R.
4 If U is a convex subset of V and λ1 and λ2 have the same sign, then

(λ1 + λ2)U = λ1U ⊕ λ2U .

Proposition 2.9 ([2]) For the null set Ω , we have:
i {0V } = 0S(v) belongs to the null set.

ii If ω ∈ Ω , then –ω = ω.
iii μΩ = Ω for μ ∈R where μ 	= 0.
iv If ω1,ω1 ∈ R, then ω1 ⊕ ω2 ∈ Ω .

Definition 2.10 ([2]) For any U , U∗ ∈ S(V ), we write U Ω= U∗ if there exist ω1,ω2 ∈ Ω such
that U ⊕ω1 = U∗ ⊕ω2. The sets U and U∗ are said to be almost identical. Clearly, U = U∗

implies U Ω= U∗

If U , U∗, and W are not a singleton set, then U � U∗ = W implies U Ω= U∗ ⊕ W .
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2.6 Normed hyperspace
Let V be a vector space, and let S(V ) be the collection of all nonempty convex subsets of V .
Then S(V ) is called a normed hyperspace if there exists a length function ‖ · ‖ : S(V ) →R

satisfying the following axioms:
(i) ‖aU‖ = |a|‖U‖ for all U ∈ S(V ) and a ∈ F.

(ii) ‖U ⊕ U∗‖ ≤ ‖U‖ + ‖U∗‖ for all U , U∗ ∈ S(V ).
(iii) ‖U‖ = 0 implies U ∈ Ω .

If condition (iii) is replaced by ‖U‖ = 0 iff U ∈ Ω , then we say that ‖ · ‖ satisfies the null
condition (for more detail, see [2]).

Example 2.11 ([2]) Consider a conventional norm space V with conventional norm ‖ · ‖V .
Let S(V ) be the collection of all nonempty convex subsets of V . Then the norm defined
on S(V ) is given as

‖U‖ = sup
u∈U

‖u‖V .

Proposition 2.12 ([2]) Let (S(V ),‖ · ‖) be a pseudoseminormed hyperspace such that the
null superinequality holds for ‖ · ‖. For any A, C, B1, B2, . . . , Bm ∈ S(V ), we have

‖A � C‖ ≤ ‖A � B1‖ + ‖B1 � B2‖ + · · · + ‖Bj � Bj+1‖ + · · · + ‖Bm � C‖. (2.2)

Proposition 2.13 ([2]) We have:
(i) Let (S(V ),‖ · ‖) be a pseudoseminormed hyperspace such that the null equality holds

for ‖ · ‖. If U , W ∈ S(V ) are such that U Ω= W , then ‖U‖ = ‖W‖.
(ii) Let (S(V ),‖ · ‖) be a pseudonormed hyperspace. If U , W ∈ S(V ) are such that

‖U � W‖ = 0, then U Ω= W .
(iii) Let (S(V ),‖ · ‖) be a pseudonormed hyperspace such that the null superinequality

and null condition holds for ‖ · ‖. If U , W ∈ S(V ) are such that U Ω= W , then
‖U � W‖ = 0.

2.7 Convergent sequence
Let (S(V ),‖ · ‖) be a pseudoseminormed hyperspace (see [2]). A sequence {Un}+∞

n=1 in S(V )
is said to converge to U ∈ S(V ) if

lim
n→+∞‖Un � U‖ = 0.

Proposition 2.14 ([2]) Let (S(V ),‖ · ‖) be a pseudoseminormed hyperspace with the null
set Ω .

(i) If the sequence {Un}+∞
n=1 converges to both U and U∗, then U Ω= U∗.

(ii) Suppose ‖ · ‖ satisfies the null equality. If the sequence {Un}+∞
n=1 in S(V ) converges to

U ∈ S(V ), then for any U∗ ∈ [U], the sequence {Un}+∞
n=1 converges to U∗.

Definition 2.15 ([2]) Let (S(V ),‖·‖) be a pseudoseminormed hyperspace. If the sequence
{Un}+∞

n=1 in S(V ) converges to some U ∈ S(V ), then the equivalence class [U] is called the
class limit of {Un}+∞

n=1. We write this mathematically as

lim
n→+∞ Un = [U] or Un → [U].
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Definition 2.16 ([2]) Let (S(V ),‖ · ‖) be a pseudoseminormed hyperspace. A sequence
{Un}+∞

n=1 in S(V ) is called a Cauchy sequence if for any ε > 0, there exists N ∈N such that

‖Un � Um‖ < ε for m, n > N .

S(V ) is said to be complete if every Cauchy sequence in S(V ) is convergent.

Definition 2.17 ([2]) A normed hyperspace (S(V ),‖ · ‖) is called a Banach hyperspace if
it is complete.

Definition 2.18 ([2]) Let Γ be a self-mapping on (S(V ),‖ · ‖). Then a point U ∈ S(V ) is
called a near-fixed point of Γ if Γ [U] Ω= [U].

3 Results and discussion
Definition 3.1 If G[l, u] Ω= g[l, u] for a point [l, u] ∈ I , then [l, u] is called a near-
coincidence point for G and g .

Example 3.2 Let us consider two mappings G and g from I to itself defined by

G[x, y] = [2x – 2, 2x + 2],

g[x, y] = [x – 1, y + 1] for x, y ∈R and x ≤ y.

Then every point in Ω , that is, [–k, k], where k ∈ R
+, is a near-coincidence point for G

and g . Particularly, if we take [–1, 1], then G[–1, 1] = [–4, 4] and g[–1, 1] = [–3, 3], so that
[–4, 4] Ω= [–3, 3]. Hence by definition [–1, 1] is a near-coincidence point for G and g .

Definition 3.3 Let G and g be mappings from (I, d) to itself. Then G and g are called
compatible mappings if

lim
n→+∞ d

(
Gg[ln, un], gG[ln, un]

)
= 0.

By taking the functions G and g defined before and any sequence, we can easily verify
that these mappings are compatible.

Definition 3.4 Mappings G and g are said to be commuting if Gg[l, u] Ω= gG[l, u] for all
[l, u] ∈ (I, d).

Example 3.5 Let us consider previously defined two mappings G and g : G[x, y] = [2x –
2, 2x + 2] and g[x, y] = [x – 1, y + 1] for x, y ∈ R and x ≤ y. Then for any [x, y] ∈ I , we can
easily show that Gg[x, y] = [2x – 4, 2y + 4] Ω= [2x – 3, 2y + 3] = gG[x, y].

To show that [2x – 4, 2y + 4] Ω= [2x – 3, 2y + 3], we can take ω1 = [0, 0] and ω2 = [–1, 1],
and hence

[2x – 4, 2y + 4] ⊕ [0, 0] = [2x – 3, 2y + 3] ⊕ [–1, 1].

Definition 3.6 A mapping G is called a (Zd, g)-contraction in (I, d) if there is a simulation
function S ∈ Z such that S(d(G[l, u], G[x, y]), d(g[l, u], g[x, y])) ≥ 0 for all [l, u], [x, y] ∈ I ,

such that g[l, u]
Ω	= g[x, y].
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Example 3.7 Let us consider the mappings G and g defined on the metric interval
space I by G[x, y] = [2x – 2, 2x + 2] and g[x, y] = [x – 1, y + 1]. Take the simulation func-
tion as S(t, s) = λs – t where λ ≥ 2. Then G is a (Zd, g)-contraction in (I, d), because
S(d(G[l, u], G[x, y]), d(g[l, u], g[x, y])) ≥ 0 for all [l, u], [x, y] ∈ I .

Definition 3.8 A sequence {[ln, un]} is said to be a Picard (G, g) sequence at point [lo, uo]
for the mapping G and g in the metric interval space (I, d) if g([ln+1, un+1]) Ω= G([ln, un]) for
all n ≥ 0. The space (I, d) is said to satisfy the CLR(G,g) property.

Example 3.9 Consider the previously defined mappings G and g : G[x, y] = [2x – 2, 2x + 2]
and g[x, y] = [x – 1, y + 1] for x, y ∈R and x ≤ y. Then the sequence {[xn, yn]} = {[2n(xo – 1) +
1, 2n(yo +1)–1]} is a Picard sequence at any point [xo, yo], that is, g([ln+1, un+1]) Ω= G([ln, un])
for all n ≥ 0.

Definition 3.10 If g is a mapping over a metric interval space (I, d) with a null set Ω , then
g is injective if g[l, u] Ω= g[l′, u′] ⇒ [l, u] Ω= [l′, u′] for all [l, u], [l′, u′] ∈ I .

Definition 3.11 A point U ∈ S(V ) is said to be a near-coincidence point for F and g if
F[U] Ω= g[U].

Definition 3.12 Let F and g be self-mappings from S(V ) to itself. Then F and g are called
compatible mappings if

lim
n→+∞

∥
∥Fg[Un] – gF[Un]

∥
∥ = 0.

Definition 3.13 Mappings F and g are said to be commuting if Fg[U] Ω= gF[U] for all
U ∈ S(V ).

Definition 3.14 A mapping F is called a (Z‖·‖, g)-contraction in S(V ) if there is a simula-
tion function ξ ∈ Z such that ξ (‖G[U] – G[U∗]‖,‖g[U] – g[U∗]‖) ≥ 0 for all U , U∗ ∈ S(V )

such that g[U]
Ω	= g[U∗].

Definition 3.15 A sequence {An, n ≥ 0} is called a Picard (F , g) sequence in S(V ) on the
point [Ao] for the mappings F and g on the hyperspace S(V ) if g(An+1) Ω= F(An) for all n ≥ 0.
Then the space S(V ) is said to satisfy the CLR(F ,g) property.

Theorem 3.16 Let G be a self-mapping that is a (Zd, g)-contraction over the complete
metric interval space (I, d). Suppose that there exists a Picard sequence for the mappings G
and g at a point [l, u] ∈ I , that is,

g[ln+1, un+1] Ω= G[ln, un] for all n ≥ 0.

Also, assume that the mappings G and g are continuous and compatible. Then there exists
a near-coincidence point for G and g .

Proof Either the near-coincidence point is contained in the sequence {g[ln, un]}, or the
sequence {g[ln, un]} approaches to the required near-coincidence point.
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Suppose that {g[ln, un]} contains no near coincidence point of G and g , that is,

g[ln, un]
Ω	= G[ln, un] Ω= g[ln+1, un+1] for all n ≥ 0.

In such a case,

d
(
g[ln, un], g[ln+1, un+1]

)
> 0 for all n ≥ 0.

We will prove the result in three steps.
Step 1
We will show that

lim
n→+∞ d

(
g[ln, un], g[ln+1, un+1]

)
= 0.

Using condition (2) of a simulation function and condition of a (Zd, g)-contraction, we
have

0 ≤ S
(
d
(
G[ln, un], G[ln+1, un+1]

)
, d

(
g[ln, un], g[ln+1, un+1]

))

= S
(
d
(
g[ln+1, un+1], g[ln+2, un+2]

)
, d

(
g[ln, un], g[ln+1, un+1]

))

< d
(
g[ln, un], g[ln+1, un+1]

)
– d

(
g[ln+1, un+1], g[ln+2, un+2]

)
,

which implies that

0 < d
(
g[ln+1, un+1], g[ln+2, un+2]

)
< d

(
g[ln, un], g[ln+1, un+1]

)
.

Note that the sequence d(g[ln, un], g[ln+1, un+1]) is a nonnegative decreasing sequence in
R, so it converges to a point l, that is,

l = lim
n→+∞ d

(
g[ln, un], g[ln+1, un+1]

)
.

We will show that l = 0. Assume that l 	= 0, so l > 0.
Using S3 by taking the sequences

rn = d
(
g[ln+1, un+1], g[ln+2, un+2]

)

and

sn =
{

d
(
g[ln, un], g[ln+1, un+1]

)}
,

we clearly have

lim
n→+∞ rn = lim

n→+∞ sn = l > 0 and rn < sn for all n ∈ N .

So by S3 we have limn→+∞ sup(S(rn, sn)) < 0, that is,

lim
n→+∞ sup

(
S
(
d
(
g[ln+1, un+1], g[ln+2, un+2]

)
, d

(
g[ln, un], g[ln+1, un+1]

)))
< 0,
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which is a contradiction because

0 ≤ S
(
d
(
g[ln+1, un+1], g[ln+2, un+2]

)
, d

(
g[ln, un], g[ln+1, un+1]

))
.

So our supposition that l 	= 0 was wrong, and thus l = 0. Therefore we have

lim
n→+∞ d

(
g[ln, un], g[ln+1, un+1]

)
= 0. (3.1)

Step 2
We will show that {g[ln, un]} is a Cauchy sequence in (I, d). On the contrary, suppose that

g[ln, un] is not Cauchy. So there exists εo > 0 such that for all N ∈ N, there exist positive
integers m, n such that

d
(
g[ln, un], g[lm, um]

)
> εo.

We can construct two subsequences by giving successive values g[lnk , unk ] and g[lmk , umk ]
to N such that

no ≤ n(k) < m(k) and d
(
g[lnk , unk ], g[lmk , umk ]

)
> εo for all k ∈N. (3.2)

Let m(k) be the smallest positive integer m ∈ {n(k), n(k) + 1, n(k) + 2, . . .} such that (3.2)
holds. Now it is clear that

d
(
g[lmk–1 , umk–1 ], g[lnk , unk ]

) ≤ εo for all k ∈N, (3.3)

because mk–1 < m(k) and m(k) is the least number for which (3.2) holds.
Also, m(k) > n(k) from (3.2), so m(k) ≥ n(k) + 1 for all k ∈N. Now if m(k) = n(k) + 1, then

from (3.1) and (3.2) we have

d
(
g[lnk+1 , unk+1 ], g[lnk , unk ]

)
> εo for all k ∈ N,

since from (3.1) we have

d
(
g[lnk+1 , unk+1 ], g[lnk , unk ]

)
< εo.

Hence m(k) = n(k) + 1 is not possible by taking into account (3.1) and (3.2), and therefore
we conclude that m(k) ≥ n(k) + 2 for any k ∈N.

It follows that nk+1 < mk < mk+1 for all k ∈N. From (3.2) and (3.3) we have

εo < d
(
g[lmk , umk ], g[lnk , unk ]

)

≤ d
(
g[lmk , umk ], g[lmk–1 , umk–1 ]

)
+ d

(
g[lmk–1 , umk–1 ], g[lnk , unk ]

)

≤ d
(
g[lmk , umk ], g[lmk–1 , umk–1 ]

)
+ εo for all k ∈ N.

Therefore

lim
k→+∞

d
(
g[lmk , umk ], g[lnk , unk ]

)
= εo.
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Also,

lim
k→+∞

d
(
g[lmk+1 , umk+1 ], g[lnk+1 , unk+1 ]

)
= εo.

As G is a (Zd, g)-contraction associated with S, we get

0 ≤ S
(
d
(
G[lmk , umk ], G[lnk , unk ]

)
, d

(
g[lmk , umk ], g[lnk , unk ]

))

= S
(
d
(
g[lmk+1 , umk+1 ], g[lnk+1 , unk+1 ]

)
, d

(
g[lmk , umk ], g[lnk , unk ]

))

< d
(
g[lmk , umk ], g[lnk , unk ]

)
– d

(
g[lmk+1 , umk+1 ], g[lnk+1 , unk+1 ]

)
.

Thus

0 < d
(
g[lmk+1 , umk+1 ], g[lnk+1 , unk+1 ]

)
< d

(
g[lmk , umk ], g[lnk , unk ]

)
.

Let

rn = d
(
g[lmk+1 , umk+1 ], g[lnk+1 , unk+1 ]

)

and

sn = d
(
g[lmk , umk ], g[lnk , unk ]

)
.

Clearly, rn, sn > 0, limn→+∞ rn = limn→+∞ sn = εo, and rn < sn.
So by S3

0 ≤ lim
k→+∞

sup S
(
d
(
g[lmk+1 , umk+1 ], g[lnk+1 , unk+1 ]

)
, d

(
g[lmk , umk ], g[lnk , unk ]

))
< 0,

which is a contradiction, and hence {g[ln, un]} is a Cauchy sequence in (I, d).
Step 3 Now as we have proved that the sequence {g[ln, un]} is Cauchy and (I, d) is com-

plete, this sequence is convergent, so there exists [l, u] ∈ I such that g[ln, un] → [l, u]. The
continuity of G and g implies that gg[ln, un] → g[ln, un] and Gg[ln, un] → G[ln, un].

Moreover, since G and g are compatible mappings and the limits of the sequences
G[ln, un] Ω= g[ln+1, un+1] and g[ln, un] coincide, we have

lim
n→+∞ d

(
Gg[ln, un], gG[ln, un]

)
= 0.

Consider

d
(
G[l, u], g[l, u]

)
= lim

n→+∞ d
(
Gg[ln, un], gg[ln+1, un+1]

)

= lim
n→+∞ d

(
Gg[ln, un], gG[ln, un]

)

= 0.

This implies that

G[l, u] Ω= g[l, u].

Hence [l, u] is a near-coincidence point of G and g . �
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To illustrate the theorem, we consider the following example.

Example 3.17 Let (I, d) be a complete metric interval space, and let G[x, y] = [2x–2, 2y+2]
and g[x, y] = [x – 1, y + 1] be two self-mappings. Take the sequence {[– 1

n , 1
n ]}n=+∞

n=1 in I and
the simulation function S(t, s) = λs – t with λ ≥ 2. As we have proved before, the mappings
G and g are compatible, and also G is a (Zd, g)-contraction in (I, d). We will just prove that
the sequence {[– 1

n , 1
n ]}n=+∞

n=1 is a Picard sequence. For this, we have to show that

g[xn+1, yn+1] Ω= G[xn, yn],

that is, we have to prove that [– 1
n+1 – 1, 1

n+1 + 1] Ω= [–2 1
n – 2, 2 1

n + 2]. Take ω1 = [– n2+2n+2
n(n+1) ,

n2+2n+2
n(n+1) ] and ω2 = [0, 0]. Then clearly

[

–
1

n + 1
– 1,

1
n + 1

+ 1
]

⊕ ω1 =
[

–2
1
n

– 2, 2
1
n

+ 2
]

⊕ ω2.

Consequently, we have g[xn+1, yn+1] Ω= G[xn, yn]. So the sequence {[– 1
n , 1

n ]}n=+∞
n=1 is a Picard

sequence for G and g . Hence by the theorem the limit of g[xn, yn] = [– 1
n – 1, 1

n + 1], which
is [–1, 1], is a near-coincidence point for G and g .

If G and g are commuting, then we have

Gg[ln, un] Ω= gG[ln, un],

which implies that G and g are compatible, that is,

lim
n→+∞ d

(
Gg[ln, un], gG[ln, un]

)
= lim

n→+∞ d
(
Gg[ln, un], Gg[ln, un]

)
= 0.

So we can state the following corollary.

Corollary 3.18 Let G be a Z-contraction in the complete metric interval space (I, d) and
suppose there exists a Picard sequence for the mappings G and g at the point [l, u] ∈ I , that
is,

g[ln+1, un+1] = G[ln, un] for all n ≥ 0.

Also, assume that the mappings G and g are continuous and commuting. Then there exists
a near-coincidence point for G and g .

Corollary 3.19 Let G and g be the two self-mappings on the complete metric interval space
(I, d) satisfying all the conditions stated in Theorem 3.16. If [l, u] and [w, x] are two near-
coincidence points for G and g , then G[l, u] Ω= g[l, u] Ω= g[w, x] Ω= G[w, x]. Moreover, if one
of the mappings G and g is injective, then there exists a unique class of near-coincidence
points.

Proof Let G and g have two near-coincidence points [l, u] and [w, x]. Then G[l, u] Ω= g[l, u]
and G[w, x] Ω= g[w, x]. We have to show that g[l, u] Ω= g[w, x]. On the contrary, suppose
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g[l, u]
Ω	= g[w, x]. So d(g[l, u], g[w, x]) > 0. Now as G is a (Zd, g)-contraction, we have

0 ≤ S
(
d
(
G[l, u], G[w, x]

)
, d

(
g[l, u], g[w, x]

))

= S
(
d
(
g[l, u], g[w, x]

)
, d

(
g[l, u], g[w, x]

))
,

it implies that

S
(
d
(
g[l, u], g[w, x]

)
, d

(
g[l, u], g[w, x]

))
> 0.

which is contradiction to (2.1). So we have g[l, u] Ω= g[w, x] and hence G[l, u] Ω= g[l, u] Ω=
g[w, x] Ω= G[w, x].

Now for the sake of simplicity we assume that G is injective then we have to show that
the near-coincidence point is unique.

Let [l, u] and [w, x] are the two coincidence point of G and g . Then by above we have
G[l, u] Ω= g[l, u] Ω= g[w, x] Ω= G[w, x] ⇒ G[l, u] Ω= G[w, x] ⇒ [l, u] Ω= [w, x] as G is injective
Therefore we have 〈[l, u]〉 = 〈[w, x]〉. Hence the class of near-coincidence point is unique.�

Corollary 3.20 Let (I, d) be a complete metric interval space and let G and g be self
mappings on (I, d) such that the CLR(G, g) property holds in I and d(G[l, u], G[w, x]) ≤
λd(g[l, u], g[w, x]) for all [l, u], [w, x] ∈ I such that g[l, u]

Ω	= g[w, x] where λ ∈ [0, 1), then G
and g has a near-coincidence point.

Proof We will show that G is a Zd-contraction by taking the simulation function S ∈ Z
defined by S(l, u) = λu – l for all l, u ∈ [0, +∞) and λ ∈ [0, 1).

Since by the given condition we have

d
(
G[l, u], G[w, x]

) ≤ λd
(
g[l, u], g[w, x]

)
for all [l, u], [w, x] ∈ I,

this implies that

0 ≤ λd
(
g[l, u], g[w, x]

)
– d

(
G[l, u], G[w, x]

)

≤ S
(
d
(
G[l, u], G[w, x]

)
, d

(
g[l, u], g[w, x]

))
.

The last inequality shows that G is a Zd-contraction, so by Theorem 3.16 it has a near-
coincidence point in I . �

Corollary 3.21 Let (I, d) be a complete metric interval space, and let G and g be self-
mappings on I that satisfy the following condition:

d
(
G[l, u], G[x, y]

) ≤ d
(
g[l, u], g[x, y]

)
– Φ

(
d
(
g[l, u], g[x, y]

))
for all [l, u], [x, y] ∈ I,

where Φ is a lower semicontinuous function on [0, +∞), and Φ–1(0) = 0. Then G and g has
a near-coincidence point in I .

Proof By taking the simulation function S ∈ Z defined by

S(l, u) = u – Φ(u) – l for all l, u ∈ [0, +∞).
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We can show that G is a Z-contraction, and hence by Theorem 3.16 G and g have a near-
coincidence point. �

Lemma 3.22 If F is a (Z‖·‖, g)-contraction in the hyperspace S(V ) and U and U∗ are two
near-coincidence points of F and g , then

F(U) Ω= g(U) Ω= g
(
U∗) Ω= F

(
U∗).

Further, if F or g is injective and if they have a near-coincidence point, then it is unique in
the sense of equivalence class.

Proof As U and U∗ are near-coincidence points for F and g , we have

F(U) Ω= g(U) and F
(
U∗) Ω= g

(
U∗).

We have to show that g(U) Ω= g(U∗). On the contrary, suppose g(U)
Ω	= g(U∗). Then ‖g(U) –

g(U∗)‖ ≥ 0. As F is a (Z‖·‖, g)-contraction, we have

0 ≤ ξ
(∥
∥F[U] – F

[
U∗]∥∥,

∥
∥g[U] – g

[
U∗]∥∥)

= ξ
(∥
∥g[U] – g

[
U∗]∥∥,

∥
∥g[U] – g

[
U∗]∥∥)

∵ U and U∗ are the near-coincidence points for F and g.

This implies that ξ (‖g[U] – g[U∗]‖,‖g[U] – g[U∗]‖) ≥ 0, which is a contradiction to (2.1).
So g(U) Ω= g(U∗), and hence

F(U) Ω= g(U) Ω= g
(
U∗) Ω= F

(
U∗).

Further, if F or g is injective and if they have a near-coincidence point, then it is unique
in the sense of equivalence class. Let F be injective, and let U and U∗ be two different
near-coincidence points for F and g . Then

F[U] Ω= g[U] and F
[
U∗] Ω= g

[
U∗],

from which we have

F(U) Ω= g(U) Ω= g
(
U∗) Ω= F

(
U∗).

This implies that F(U) Ω= F(U∗),which in turn implies U Ω= U∗ because F is injective. So
the near-coincidence point is unique in the sense of equivalence class. �

Theorem 3.23 Let (S(V ),‖ · ‖) be a Banach hyperspace such that ‖ · ‖ satisfies the null
equality, and let F be a (Z‖·‖, g)-contraction. Also, assume that the functions F and g are
compatible and continuous and there exists a Picard sequence {An} for F and g . Then F
and g have at least one near-coincidence point.
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Proof If the sequence {g[An]} contains a near-coincidence, then the is nothing to prove.
Suppose {g[An]} contains no near-coincidence point, that is,

g[An]
Ω	= F[An] Ω= g[An+1] for all n ≥ 0.

Hence ‖g[An] � g[An+1]‖ > 0. First, we will prove that limn→+∞ ‖g[An] � g[An+1]‖ = 0.
By ξ2 we have

0 ≤ ξ
(∥
∥F[An] � F[An+1]

∥
∥,

∥
∥g[An] � g[An+1]

∥
∥
)

= ξ
(∥
∥g[An+1] � g[An+2]

∥
∥,

∥
∥g[An] � g[An+1]

∥
∥
)

<
∥
∥g[An] � g[An+1]

∥
∥ –

∥
∥g[An+1] � g[An+2]

∥
∥,

which implies that

0 <
∥
∥g[An+1] � g[An+2]

∥
∥ <

∥
∥g[An] � g[An+1]

∥
∥ for all n ≥ 0.

The sequence {‖g[An] � g[An+1]‖} is a nonincreasing sequence of nonnegative real num-
bers, so it is convergent. Let its limit be p, that is,

lim
n→+∞

∥
∥g[An] � g[An+1]

∥
∥ = 0.

To show that p = 0, let on the contrary suppose that p > 0. As the sequences tn =
{‖g[An+1] � g[An+2]‖} and sn = {‖g[An] � g[An+1]‖} have the same limit and tn < sn for
all n ≥ 0, applying ξ3 to these sequences, we have

lim
n→+∞ Sup ξ (tn, sn) < 0,

which is a contradiction because

ξ
(∥
∥g[An+1] � g[An+2]

∥
∥,

∥
∥g[An] � g[An+1]

∥
∥
) ≥ 0 for all n ≥ 0,

and hence p = 0.
Step 2. Next, we have to show that {g[An]} is a Cauchy sequence. On the contrary, sup-

pose that {g[An]} is not a Cauchy sequence. So there exists ε′ > 0 such that for all N ∈ N,
there exist positive integers m, n such that

∥
∥g[An] � g[Am]

∥
∥ ≥ εo, (3.4)

which leads to two subsequences {g[Ank ]} and {Amk } by taking successive values for N
such that no ≤ nk < mk and

∥
∥g[Ank ] � g[Amk ]

∥
∥ > εo for all k ∈ N . (3.5)

Also, by the convergence of the sequence {g[An]} we have

∥
∥g[An] � g[An+1]

∥
∥ < εo for all n ≥ no. (3.6)
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Let mk be the least among {nk , nk+1, nk+2, . . .} such that (3.4) holds. Then if we take a smaller
value than mk , then we will have

∥
∥g[Amk–1 ] � g[Ank ]

∥
∥ ≤ εo for all k ∈N. (3.7)

Also, we cannot take mk = nk and mk = nk+1 because (3.4) becomes zero for mk = nk , and
for mk = nk+1, we have

∥
∥g[Ank+1 ] � g[Ank ]

∥
∥ ≤ εo for all k ∈ N ,

so mk ≥ nk+2 for all k ∈ N . From Eqs. (3.5) and (3.7) we have

εo <
∥
∥g[Amk ] � g[Ank ]

∥
∥

≤ ∥
∥g[Amk ] � g[Amk–1 ]

∥
∥ +

∥
∥g[Amk–1 ] � g[Ank ]

∥
∥

≤ ∥
∥g[Ank ] � g[Amk ]

∥
∥ + εo ∵ by (3.4).

As limn→+∞ ‖g[Ank ] � g[Amk ]‖ = 0, by the inequalities we have

lim
n→+∞

∥
∥g[Amk ] � g[Ank ]

∥
∥ = εo.

Similarly,

lim
n→+∞

∥
∥g[Amk+1 ] � g[Ank+1 ]

∥
∥ = εo.

Now as F is a (Z‖·‖, g)-contraction, we have

0 ≤ ξ
(∥
∥G[Amk ] � G[Ank ]

∥
∥,

∥
∥g[Amk ] – g[Ank ]

∥
∥
)

= ξ
(∥
∥g[Amk+1 ] � g[Ank+1 ]

∥
∥,

∥
∥g[Amk ] – g[Ank ]

∥
∥
)

<
∥
∥g[Amk ] – g[Ank ]

∥
∥ –

∥
∥G[Amk ] � G[Ank ]

∥
∥,

which implies that

0 <
∥
∥g[Amk+1 ] � g[Ank+! ]

∥
∥ <

∥
∥g[Amk ] � g[Ank ]

∥
∥ for all k ≥ n.

Now from the last inequality consider the two sequences tk = {‖g[Amk+1 ] � g[Ank+1 ]‖} and
sk = ‖g[Amk ] � g[Ank ]‖. As tk and sk have the same limit and tk < sn, by applying ξ3 we have

lim
n→+∞ Sup ξ (tk , sk) < 0,

which is a contradiction because ξ (tk , sk) > 0. Hence {g[An]} is a Cauchy sequence.
Step 3. In this step, we will show that the limit point of {g[An]} is a near-coincidence

point for F and g . As the space (S(V ),‖ · ‖) is complete, the sequence converges to some
limit, say A. As F and g are continuous and compatible and A is the limit of {g[An]}, we
have:

lim
n→+∞ g[An] = A,
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lim
n→+∞ gg[An] = g[A], and

lim
n→+∞ Fg[An] = F[A].

Consider

∥
∥G[A] � g[A]

∥
∥ = lim

n→+∞
∥
∥Fg[An] � gg[An+1]

∥
∥

= lim
n→+∞

∥
∥Fg[An] � gF[An+1]

∥
∥ = 0 ∵ F and g are compatible.

Hence ‖F[A] � g[A]‖ = 0, which implies F[A] Ω= g[A]. So we have proved that A is a near-
coincidence point of F and g . �

As commuting of F and g implies compatibility, we have the following corollary.

Corollary 3.24 Let (S(V ),‖ · ‖) be a Banach hyperspace such that ‖ · ‖ satisfies the null
equality, and let F be a (Z‖·‖, g)-contraction. Also, assume that the functions F and g are
commuting and continuous and there exists a Picard sequence {An} for F and g . Then F
and g have at least one near-coincidence point.

Corollary 3.25 Let (S(V ),‖ · ‖) be a Banach hyperspace such that ‖ · ‖ satisfies the null
equality, and let F and g be self-mappings on S(V ) such that there exists a Picard sequence
for F and g in S(V ) and

∥
∥F[U] � F

[
U∗]∥∥ ≤ λ

∥
∥g[U] � g

[
U∗]∥∥ for all U , U∗ ∈ S(V ), where λ ∈ [0, 1),

such that g[U]
Ω	= g[U∗]. Then F and g have a near-coincidence point.

Proof We will show that F is a Z-contraction by taking the simulation function S ∈ Z
defined by S(u, v) = λv – u for all l, u ∈ [0, +∞) and λ ∈ [0, 1).

According to the given condition, we have

∥
∥F[U] � F

[
U∗]∥∥ ≤ λ

∥
∥g[U] � g

[
U∗]∥∥ for all U , U∗ ∈ S(V ), where λ ∈ [0, 1),

which implies that

0 ≤ λ
∥
∥g[U] � g

[
U∗]∥∥ –

∥
∥F[U] � F

[
U∗]∥∥

≤ S
(∥
∥F[U] � F

[
U∗]∥∥,

∥
∥g[U] � g

[
U∗]∥∥)

.

The last inequality shows that F is a Zd-contraction, so by Theorem 3.23 it has a near-
coincidence point in S(V ). �

Corollary 3.26 Let (S(V ),‖ · ‖) be a Banach hyperspace such that ‖ · ‖ satisfies the null
equality, and let F and g be self-mappings on S(V ) that satisfy the following condition:

∥
∥F[U] � F

[
U∗]∥∥ ≤ ∥

∥g[U] � g
[
U∗]∥∥ – Φ

∥
∥g[U] � g

[
U∗]∥∥ for all U , U∗ ∈ S(V ),
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where Φ is a lower semicontinuous function on [0, +∞), and Φ–1(0) = 0. Then G and g have
a near-coincidence point in S(V ).

Proof By taking the simulation function S ∈ Z defined by

S(l, u) = u – Φ(u) – l for all l, u ∈ [0, +∞).

We can show that F is a Z-contraction, and hence by Theorem 3.16 F and g have a near-
coincidence point. �

4 Conclusion
Nowadays, the researchers in the subject area are working to produce more effective and
generalized fixed point results. Recently, Wu [1, 2] introduced the concept of a near-fixed
point and established some results on near-fixed points in metric interval spaces and hy-
perspaces. Motivated by these papers, we studied the near-coincidence point theorem in
these spaces via a simulation function. To illustrate the established results and definitions,
we included some examples.
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