
Mustafa et al. Advances in Difference Equations        (2020) 2020:282 
https://doi.org/10.1186/s13662-020-02732-8

R E S E A R C H Open Access

A subdivision-based approach for singularly
perturbed boundary value problem
Ghulam Mustafa1, Syeda Tehmina Ejaz1,2, Dumitru Baleanu3,4,5, Abdul Ghaffar6,7 and
Kottakkaran Sooppy Nisar8*

*Correspondence:
n.sooppy@psau.edu.sa
8Department of Mathematics,
College of Arts and Sciences, Prince
Sattam bin Abdulaziz University,
Wadi Aldawaser, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
A numerical approach for solving second order singularly perturbed boundary value
problems (SPBVPs) is introduced in this paper. This approach is based on the basis
function of a 6-point interpolatory subdivision scheme. The numerical results along
with the convergence, comparison and error estimation of the proposed approach
are also presented.

MSC: Primary 65Nxx; 65L11; 65L10; 65L99; 65L60; secondary 65D07

Keywords: Singularly perturbed; Boundary value problem; Ordinary differential
equation; Interpolating schemes; Subdivision scheme

1 Introduction
The singularly perturbed boundary value problems (SPBVPs) frequently occur in the dif-
ferent areas of physical phenomena. Specifically, these occur in the fields of fluid dynamic,
elasticity, neurobiology, quantum mechanics, oceanography, and reactor diffusion pro-
cess. These problems often have sharp boundary layers. These boundary layers usually
appear as a multiple of the highest derivative. Their small values cause trouble in differ-
ent numerical schemes for the solution of SPBVPs. Therefore, it is important to find the
numerical and analytic solutions of these types of problems. The different second order
SPBVPs have different expressions but we deal with the following:

εZ••(u) = p(u)Z•(u) + q(u)Z(u) + g(u), (1)

Z(a) = α0, Z(b) = α1, a ≤ u ≤ b, (2)

where 0 < ε < 1, while p(u), q(u), g(u) are bounded and real valued functions. g(u), α0, α1

depends on ε. We may refer to Ascher et al. [1] for more details as regards such a type of
SPBVPs.

Here, we first present short review of different methods for the solution of second order
SPBVPs; then we discuss a subdivision-based solution of SPBVPs.

The second order SPBVPs were solved based on cubic spline scheme by Aziz and Khan
[2, 6] in 2005. These problems were also solved by Bawa and Natesan [3] in the same year.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-02732-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-02732-8&domain=pdf
http://orcid.org/0000-0001-5769-4320
mailto:n.sooppy@psau.edu.sa


Mustafa et al. Advances in Difference Equations        (2020) 2020:282 Page 2 of 20

They have used quintic spline based approximating schemes. Kadalbajoo and Aggarwal [5]
and Tirmizi et al. [17] solved self-adjoint SPBVPs by using B-spline collocation and non-
polynomial spline function schemes, respectively. Kumar and Mehra [7] and Pandit and
Kumar [14] solved SPBVPs by a wavelet optimized difference and uniform Haar wavelet
methods, respectively.

The second order SPBVPs were also solved by [9, 12, 13]. They have used finite difference
scheme for the solution.

The linear SPBVPs were solved by [4, 11, 15]. They have used interpolating subdivision
schemes for this purpose. The solution of second order SPBVPs by subdivision techniques
did not reported yet. We develop an algorithm by using a 6-point interpolating subdivision
scheme (6PISS) [8]. We have

⎧
⎨

⎩

Qk+1
2i = Qk

i ,

Qk+1
2i+1 = μ(Qk

i–2 + Qk
i+3) – (3μ + 1

16 )(Qk
i–1 + Qk

i+2) + (2μ + 9
16 )(Qk

i + Qk
i+1),

(3)

where the scheme is C2-continuous for 0 < μ < 0.042. It has support width (–5, 5). It has
fourth order of approximation. It satisfies the 2-scale relation

ρ(u) = ρ(2u) +
[

μ
{
ρ(2u – 1) + ρ(2u + 1)

}
–

(

3μ +
1

16

)
{
ρ(2u – 3) + ρ(2u

+ 3)
}

+
(

2μ +
9

16

)
{
ρ(2u – 5) + ρ(2u + 5)

}
]

, u ∈R, (4)

where

ρ(u) =

⎧
⎨

⎩

1 for u = 0,

0 for u �= 0.
(5)

Here is the layout of the rest of the work. In Sect. 2, we first find the derivatives of ρ(u)
then by using them we develop the collocation algorithm. The convergence of the method
is discussed in Sect. 3. In Sect. 4, we present the numerical solutions of different problems.
The comparison of the solutions obtained by different methods is also offered. Section 5
deals with our conclusion.

2 The numerical algorithm
In this section, we develop an algorithm to deal with second order SPBVPs. First we discuss
the derivatives of 2-scale relations known as basis functions of the subdivision scheme.

2.1 Derivatives of 2-scale relations
The 6PISS is C2-continuous by [8], so its 2-scale relations ρ(u) are also C2-continuous.
First we find the eigenvectors (both left and right) of the subdivision matrix of 6PISS then
we find the derivatives of ρ(u). For simplicity, we choose μ = 0.04 to find eigenvectors. We
use a similar approach to [4, 11] to find the derivatives. The first two derivatives of the
2-scale relation are given in Table 1.
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Table 1 2-scale relation and its derivatives

i

0 ±1 ±2 ±3 ±4

ρ(i) 1 0 0 0 0
ρ•(i) 0 ± 9100

4313 ∓ 19,673
25,878 ± 1600

12,939 ± 128
12,939

ρ••(i) – 14,431
4224

4325
2112 – 1575

2816
25
132

1
33

2.2 The 6PISS based algorithm
Let m be the indexing parameter which might be equal to or greater than the last right
end integral value of the right eigenvector corresponding to the eigenvalue 1

2 of the subdi-
vision matrix for (3). Some useful notations depending on the indexing parameter m are
defined as h = 1/m and υκ1 = κ1/m = ih with κ1 = 0, 1, 2, . . . , m. Finally, we suppose that the
approximate solution of (1) is

D(υ) =
m+4∑

κ1=–4

dκ1ρ

(
υ – υκ1

h

)

, 0 ≤ υ ≤ 1, (6)

where {dκ1} are the unknowns to be determined; then

aD••(υκ ) = p(υκ )D•(υκ ) + q(υκ )D(υκ ) + g(υκ ), κ = 0, 1, 2, . . . , m, (7)

with given boundary conditions at both ends of the interval

D(0) = α0, D(1) = α1.

From (6), we have

D•(υκ ) =
1
h

m+4∑

κ1=–4

dκ1ρ
•
(

υκ – υκ1

h

)

,

D••(υκ ) =
1
h2

m+4∑

κ1=–4

dκ1ρ
••

(
υκ – υκ1

h

)

.

(8)

We get the system of equations by using (6) and (8) in (7),

a
m+4∑

κ1=–4

dκ1ρ
••

(
υκ – υκ1

h

)

– hpκ

m+4∑

κ1=–4

dκ1ρ
•
(

υκ – υκ1

h

)

– h2qκ

m+4∑

κ1=–4

dκ1ρ

(
υκ – υκ1

h

)

= h2gκ ,

where Aκ = p(υκ ), qκ = q(υκ ) and gκ = g(υκ ). This implies

m+4∑

κ1=–4

dκ1

{

aρ••
(

υκ – υκ1

h

)

– hpκρ
•
(

υκ – υκ1

h

)

– h2qκρ

(
υκ – υκ1

h

)}

= h2gκ .
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This further implies

m+4∑

κ1=–4

dκ1

{
aρ••(κ – κ1) – hpκρ

•(κ – κ1) – h2qκρ(κ – κ1)
}

= h2gκ , (9)

where κ = 0, 1, 2, . . . , m and υκ1 = ih or υκ = jh. By using the notation “ρ(κ1) = ρκ1 ”, (9) can
be written as

m+4∑

κ1=–4

dκ1

{
aρ••

κ–κ1 – hpκρ
•
κ–κ1 – h2qκρκ–κ1

}
= h2gκ , κ = 0, 1, 2, . . . , m. (10)

As we observe from Table 1, ρ•
–κ1 = –ρ•

κ1 and ρ••
–κ1 = ρ••

κ1 , for κ = 0, 1, 2, . . . , m, (10) becomes

m+4∑

κ1=–4

dκ1

{
aρ••

κ1–κ + hpκρ
•
κ1–κ – h2qκρκ1–κ

}
= h2gκ . (11)

The above system of equations is summarized in the following proposition.

Proposition 1 The equivalent form of the system (11) is

4∑

κ1=–4

dκ+κ1τ
κ
κ1 = h2gκ , κ = 0, 1, 2, . . . , m, (12)

where

τ κ
κ1 =

⎧
⎨

⎩

aρ••
0 – h2qκ , for κ1 = 0,

aρ••
κ1 – hpκρ

•
κ1 , for κ1 �= 0.

(13)

Proof Substituting κ = 0 in (11), we get

m+4∑

κ1=–4

dκ1

{
aρ••

κ1 + hA0ρ
•
κ1 – h2q0ρκ1

}
= h2g0, κ = 0, 1, 2, . . . , m.

By expanding the above equation, we get

d–4
{

aρ••
–4 + hp0ρ

•
–4 – h2q0ρ–4

}
+ d–3

{
aρ••

–3 + hp0ρ
•
–3 – h2q0ρ–3

}
+ · · ·

+ d0
{

aρ••
0 + hp0ρ

•
0 – h2q0ρ0

}
+ · · · + dm+3

{
aρ••

m+3 + hp0ρ
•
m+3 – h2q0ρm+3

}

+ dm+4
{

aρ••
m+4 + hp0ρ

•
m+4 – h2q0ρm+4

}
= h2g0.

Since the support width of the 6PISS is (–5, 5) therefore the graphs of ρ•
κ1 and ρ••

κ1 cannot
be zero over the domain [–4, 4] but their graphs away from it will be zero. This simplifies
as

d–4
{

aρ••
–4 + hp0ρ

•
–4 – h2q0ρ–4

}
+ d–3

{
aρ••

–3 + hp0ρ
•
–3 – h2q0ρ–3

}
+ d–2

{
aρ••

–2

+ hp0ρ
•
–2 – h2q0ρ–2

}
+ d–1

{
aρ••

–1 + hp0ρ
•
–1 – h2q0ρ–1

}
+ d0

{
aρ••

0 + hp0ρ
•
0



Mustafa et al. Advances in Difference Equations        (2020) 2020:282 Page 5 of 20

– h2q0ρ0
}

+ d1
{

aρ••
1 + hp0ρ

•
1 – h2q0ρ1

}
+ d2

{
aρ••

2 + hp0ρ
•
2 – h2q0ρ2

}
+ d3

{
aρ••

3

+ hp0ρ
•
3 – h2q0ρ3

}
+ d4

{
aρ••

4 + hp0ρ
•
4 – h2q0ρ4

}
= h2g0.

By substituting the values of ρκ1 and ρ•
0 = 0, we get

d–4
{

aρ••
–4 + hp0ρ

•
–4

}
+ d–3

{
aρ••

–3 + hp0ρ
•
–3

}
+ d–2

{
aρ••

–2 + hp0ρ
•
–2

}

+ d–1
{

aρ••
–1 + hp0ρ

•
–1

}
+ d0

{
aρ••

0 – h2q0ρ0
}

+ d1
{

aρ••
1 + hp0ρ

•
1
}

+ d2
{

aρ••
2 + hp0ρ

•
2
}

+ d3
{

aρ••
3 + hp0ρ

•
3
}

+ d4
{

aρ••
4 + hp0ρ

•
4
}

= h2g0.

If

τ 0
±4 = aρ••

±4 + hp0ρ
•
±4, τ 0

±3 = aρ••
±3 + hp0ρ

•
±3, τ 0

±2 = aρ••
±2 + hp0ρ

•
±2,

τ 0
±1 = aρ••

±1 + hp0ρ
•
±1, τ 0

0 = aρ••
0 – h2q0,

the above equation becomes

4∑

κ1=–4

dκ1τ
0
κ1 = h2g0.

Similarly, for κ = 1, 2, 3, . . . , m, we get

4∑

κ1=–4

dκ1+κτ
κ
κ1 = h2gκ ,

where, for κ1 = –4, –3, . . . , 3, 4 and κ = 1, 2, 3, . . . , m, we have

τ κ
κ1 =

⎧
⎨

⎩

aρ••
0 – h2qκ for κ1 = 0,

aρ••
κ1 – hpκρ

•
κ1 for κ1 �= 0.

The proof has been completed. �

2.2.1 Matrix representation of the linear system
The matrix representation of the linear system (12) is given by

SD = G1, (14)

where

S =
(
ξ r–1

s
)

(m+1)×(m+9), (15)

where r = 1, 2, . . . , m + 2 and s = –4, –3, . . . , m + 3, m + 4 represent row and column, respec-
tively, and

ξ r–1
s =

⎧
⎨

⎩

τ r–1
κ1 , for – 4 ≤ κ1 ≤ 4,

0, otherwise.
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The column matrices D and G1 are given by

D = (d–4, d–3, . . . , dm+3, dm+4)T (16)

and

G1 = h2 × (g0, g1, . . . , gm–1, gm)T . (17)

The system (14) in its present form does not have a unique solution. We need eight extra
equations to get its unique solution. Luckily, two equations can be obtained from (2), i.e.,
D(0) and D(1) and for the remaining six equations, we move to the next section.

2.2.2 End point constraints
If the data points are given then the 6PISS is suitable to fit the data with a fourth order
of approximation. So we use the fourth order polynomials to define the constraints at the
end points. Here we suggest two types of polynomials i.e. the simple cubic polynomial (i.e.
a polynomial of order 4) and cardinal basis function-based cubic polynomial, to get the
constraints.

C-1: Constraints by polynomial of degree three: We use the fourth order polynomial
C1(υ) which interpolates the data (υκ1 , dκ1 ) for 0 ≤ κ1 ≤ 3 to compute the left end points
d–3, d–2, d–1. Precisely, we have

d–κ1 = C1(–υκ1 ), κ1 = 1, 2, 3,

where

C1(υκ1 ) =
4∑

κ=1

(
4
κ

)

(–1)κ+1D(υκ1–κ ).

Since by (6), D(υκ1 ) = dκ1 for κ1 = 1, 2, 3 then, by replacing υκ1 by –υκ1 , we have

C1(–υκ1 ) =
4∑

κ=1

(
4
κ

)

(–1)κ+1d–κ1+κ .

Hence, we get the following three constraints defined at the left end points:

4∑

κ=0

(
4
κ

)

(–1)κd–κ1+κ = 0, κ1 = 1, 2, 3. (18)

A similar procedure is adopted for the right end i.e. we can define dκ1 = C1(υκ1 ), κ1 =
m + 1, m + 2, m + 3 and

C1(υκ1 ) =
4∑

κ=1

(
4
κ

)

(–1)κ+1dκ1–κ .
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So the following three constraints are defined at the right end:

4∑

κ=0

(
4
κ

)

(–1)κdκ1–κ = 0, κ1 = m + 1, m + 2, m + 3. (19)

C-2: Constraints by cardinal basis functions: The following fourth order polynomial
C2(υ) can be used to find the left points d–3, d–2, d–1:

d–κ1 = C2(–υκ1 ), κ1 = 1, 2, 3,

where

C2(υ) = d0ζ0

(
υ – υ0

h

)

+ d1ζ1

(
υ – υ0

h

)

+ d••
0 ζ ∗

0

(
υ – υ0

h

)

+ d••
1 ζ ∗

1

(
υ – υ0

h

)

, (20)

while the basis functions are given by

ζ0

(
υ – υ0

h

)

= 1 –
(

υ – υ0

h

)

,

ζ1

(
υ – υ0

h

)

=
(

υ – υ0

h

)

,

ζ ∗
0

(
υ – υ0

h

)

= –
1
6

(
υ – υ0

h

)(
υ – υ0

h
– 1

)(
υ – υ0

h
– 2

)

,

ζ ∗
1

(
υ – υ0

h

)

=
1
6

(
υ – υ0

h

)(
υ – υ0

h
– 1

)(
υ – υ0

h
+ 1

)

,

and for t = 0, 1

d••
t = p

(
υt – υ0

h

)

dt + q
(

υt – υ0

h

)

dt + g
(

υt – υ0

h

)

.

A similar procedure is adopted for the right end points dκ1 = C2(–υκ1 ), κ1 = m + 1, m +
2, m + 3, where

C2(υ) = dmζm

(
υ – υm

h

)

+ dm+1ζm+1

(
υ – υ0

h

)

+ d••
m ζ ∗

m

(
υ – υ0

h

)

+ d••
m+1ζ

∗
m+1

(
υ – υ0

h

)

(21)

and

ζm

(
υ – υm

h

)

= 1 –
(

υ – υm

h

)

,

ζm+1

(
υ – υm

h

)

=
(

υ – υm

h

)

,

ζ ∗
m

(
υ – υm

h

)

= –
1
6

(
υ – υm

h

)(
υ – υm

h
– 1

)(
υ – υm

h
– 2

)

,

ζ ∗
m+1

(
υ – υm

h

)

=
1
6

(
υ – υm

h

)(
υ – υm

h
– 1

)(
υ – υm

h
+ 1

)

,
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and for t = m, m + 1

d••
t = p

(
υt – υm

h

)

dt + q
(

υt – υm

h

)

dt + g
(

υt – υm

h

)

.

2.2.3 Stable singularly perturbed system
Finally, we get a stable singularly perturbed system with m + 9 unknowns and m + 9 equa-
tions obtained from (2), (12), (18) and (19) or (20) and (21).

By C-1 constrants: If we use (2), (12), (18) and (19) then the system can expressed as

S1D = G, (22)

where S1 = (ST
L1

,ST ,ST
R1

)T , S is defined by (15). The matrix [SL1 ]4×(m+9) is defined as

SL1 =

⎛

⎜
⎜
⎜
⎝

0 1 –4 6 –4 1 1 0 0 0 · · · 0 0
0 0 1 –4 6 –4 1 0 0 0 · · · 0 0
0 0 0 1 –4 6 –4 1 0 0 · · · 0 0
0 0 0 0 1 0 0 0 0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

,

its first three rows and the fourth row are obtained from (18) and (2), respectively,

SR1 =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0 0 0 0 0 0 1 0 0 0 0
0 0 · · · 0 0 0 1 –4 6 –4 1 0 0 0
0 0 · · · 0 0 0 0 1 –4 6 –4 1 0 0
0 0 · · · 0 0 0 0 0 1 –4 6 –4 1 0

⎞

⎟
⎟
⎟
⎠

,

its first row and the last three rows are obtained from (2) and (19), respectively,

G =
(
0, 0, 0,α0,GT

1 ,α1, 0, 0, 0
)T , (23)

while the matrices D and G1 are defined in (16) and (17), respectively.

By C-2 constraints: If we use (2), (12), (20) and (21) then the system can be expressed as

S2D = G, (24)

where S2 = (ST
L2

,ST ,ST
R2

)T while the first three rows and the last row of [SL2 ]4×(m+9) are
obtained from (20) and (2), respectively. Similarly the first row and the remaining three
rows of [SR2 ]4×(m+9) are obtained from (2) and (21), respectively. Now we have two systems,
i.e., (22) and (24).

2.3 Existence of the solution
The matrices S1 and S2 involved in the systems (22) and (24) are non-singular. Their non-
singularity can be checked by finding their eigenvalues. We notice that for m ≤ 500 the
eigenvalues are nonzero. By [16], these are non-singular. Their singularity is not guaran-
teed for m > 500.



Mustafa et al. Advances in Difference Equations        (2020) 2020:282 Page 9 of 20

3 Error estimation of the algorithm
This section discussed the mathematical results as regards the convergence of the pro-
posed method.

Let the analytic solution of the SPBVPs problem (1) with (2) be denoted as Ze then

εZ••
e (υ) = p(υ)Z•

e (υ) + q(υ)Ze(υ) + g(υ).

It implies for node points, κ = 0, 1, . . . , m,

ay••
e (υκ ) = p(υκ )Z•

e (υκ ) + q(υκ )Ze(υκ ) + g(υκ ). (25)

Let the vector Ze(υ) be defined as

Ze(υ) =
(
Ze(υ0), Ze(υ1), . . . , Ze(υm)

)T .

By Taylor’s series

Z•
e (υκ ) =

1
25,878h

[
–256Ze(υκ – 4h) – 3200Ze(υκ – 3h) + 19,673Ze(υκ – 2h)

– 54,600Ze(υκ – h) + 54,600Ze(υκ + h) – 19,673Ze(υκ + 2h)

+ 3200Ze(υκ + 3h) + 256Ze(υκ + 4h)
]

+ O
(
h4)

and

Z••
e (υκ ) =

1
8448h2

[
256Ze(υκ – 4h) + 1600Ze(υκ – 3h) – 4725Ze(υκ – 2h)

+ 17,300Ze(υκ – h) – 28,862Ze(υκ ) + 17,300Ze(υκ + h) – 4725Ze(υκ + 2h)

+ 1600Ze(υκ + 3h) + 256Ze(υκ + 4h)
]

+ O
(
h4).

Since D(υ) is the approximate solution of (1) which can be obtained from the system (22)
or (24), by (7), for κ = 0, 1, . . . , m, we have

εD••(υκ ) = p(υκ )D•(υκ ) + q(υκ )D(υκ ) + g(υκ ), (26)

where D•(υκ ) and D••(υκ ) are defined as

D•(υκ ) =
1

25,878h
[
–256d(υκ – 4h) – 3200d(υκ – 3h) + 19,673d(υκ – 2h)

– 54,600d(υκ – h) + 54,600d(υκ + h) – 19,673d(υκ + 2h)

+ 3200d(υκ + 3h) + 256d(υκ + 4h)
]

+ O
(
h4)

and

D••(υκ ) =
1

8448h2

[
256d(υκ – 4h) + 1600d(υκ – 3h) – 4725d(υκ – 2h)

+ 17,300d(υκ – h) – 28,862d(υκ ) + 17,300d(υκ + h) – 4725d(υκ + 2h)

+ 1600d(υκ + 3h) + 256d(υκ + 4h)
]

+ O
(
h4).
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Let the error function 
(υ) = Ze(υ) – D(υ) and


 = (
–4,
–3, . . . ,
m+3,
m+4).

Then error vector at the given nodal values is


(υκ ) = Ze(υκ ) – D(υκ ), –4 ≤ κ ≤ m + 4.

This implies


•(υκ ) = Z•
e (υκ ) – D•(υκ ), –4 ≤ κ ≤ m + 4,


••(υκ ) = Z••
e (υκ ) – D••(υκ ), –4 ≤ κ ≤ m + 4.

The following result is obtained after subtracting (26) from (25):

ε
[
Z••

e (υκ ) – D••(υκ )
]

= p(υκ )
[
Z•

e (υκ ) – D•(υκ )
]

+ q(υκ )
[
Ze(υκ ) – D(υκ )

]
.

By applying the definition of error vector the above equation can be written as

ε
••(υκ ) = p(υκ )
•(υκ ) + q(υκ )
(υκ ), 0 ≤ κ ≤ m.

This implies

ε
••(υκ ) – p(υκ )
•(υκ ) – q(υκ )
(υκ ) = 0, 0 ≤ κ ≤ m, (27)

where for 0 ≤ κ ≤ m


•(υκ ) =
1

25,878h
[
–256
(υκ – 4h) – 3200
(υκ – 3h) + 19,673
(υκ – 2h)

– 54,600
(υκ – h) + 54,600
(υκ + h) – 19,673
(υκ + 2h)

+ 3200
(υκ + 3h) + 256
(υκ + 4h)
]

+ O
(
h4),

and for 0 ≤ κ ≤ m


••(υκ ) =
1

8448h2

[
256
(υκ – 4h) + 1600
(υκ – 3h) – 4725
(υκ – 2h)

+ 17,300
(υκ – h) – 28,862
(υκ ) + 17,300
(υκ + h) – 4725
(υκ + 2h)

+ 1600
(υκ + 3h) + 256
(υκ + 4h)
]

+ O
(
h4).

As 0 ≤ υ ≤ 1 and υκ = κh, κ = 0, 1, 2, . . . , m, the values lie outside the interval [0, 1], i.e.,

–4, . . . ,
–1 and 
m+1, . . . ,
m+4 must be equal to zero. These error values can be assumed
to be


κ =

⎧
⎨

⎩

max0≤k≤4{|
k|}O(h4), –4 ≤ κ < 0,

maxm–4≤k≤m{|
k|}O(h4), m < κ ≤ m + 4.
(28)
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If we expand (27) by adopting a similar procedure to Proposition 1 then we obtain

(
S1 + O

(
h4) – O(h)

)

 = 0

and

(
S2 + O

(
h4) – O(h)

)

 = 0.

Or equivalently

(
S1 + O

(
h4) – O(h)

)

 = O

(
h4)‖
‖ = O

(
h4)

and

(
S2 + O

(
h4))
 = O

(
h4)‖
‖ = O

(
h4).

The matrix Sκ1 + O(h4), κ1 = 1, 2, for small h and ε = 0.1 × 10–3, is non-singular so

‖
‖ ≤ (∥
∥S–1

κ1

∥
∥
(
1 – O(h)

)–1)O
(
h4) = O

(
h4), κ1 = 1, 2.

Hence ‖
‖ = O(h4). This discussion can be summarized.

Proposition 2 Let Ze and Dκ , κ = 0, 1, . . . , m be the analytic and approximate solutions of
second order SPBVPs defined in (1), respectively, then ‖
‖ = ‖Ze(υ) – D(υ)‖ ≤O(h4).

Remark The order of error approximation varies if we use different values of ε.

4 Solutions of second order SPBVPs and discussions
In this section, we consider second order SPBVPs and find their numerical solutions by
using different algorithms. Since we have developed two linear systems i.e. (22) and (24)
for approximate solutions of the SPBVPs, both systems have been used for solutions. We
also give a comparison of solutions by computing the maximum absolute errors of the
analytic and approximate solutions.

Example 4.1 This type of problem has also solved by [2, 3, 5, 6, 14],

εZ••(υ) = Z + cos2(πυ) + 2επ2 cos(2πυ), 0 < υ < 1,

where the boundary conditions of the above problem are

Z(0) = 0 = Z(1),

its analytic solution is

Z(υ) =
[Exp( –(1–υ)√

ε
) + Exp( –υ√

ε
)]

[1 + Exp( –1√
ε
)]

– cos2(πυ).
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Table 2 Maximum absolute errors (MAE) for Example 4.1

m = 10 for ε Our C-1 Our C-2

0.1× 10–3 2.3445E–02 1.8459E–02
0.1× 10–4 2.4427E–03 1.9197E–03
0.1× 10–5 2.4525E–04 1.9270E–04
0.1× 10–6 2.4535E–05 1.9278E–05
0.1× 10–7 2.4535E–06 1.9279E–06
0.1× 10–8 2.4536E–07 1.9279E–07
0.1× 10–9 2.4536E–08 1.9279E–08

Table 3 MAE in the solution of SPBVP in Example 4.1

m C-1 C-2

ε = 10–5 ε = 10–8 ε = 10–10 ε = 10–5 ε = 10–8 ε = 10–10

10 2.4427E–03 2.4535E–06 2.4536E–08 1.9197E–03 1.9279E–06 1.9278E–08
100 1.2005E–01 2.3115E–04 2.3126E–06 9.3578E–02 1.8887E–04 1.8895E–06
150 1.5152E–01 5.1955E–04 5.2008E–06 1.1209E–01 4.2458E–04 4.2498E–06
200 1.5950E–01 9.2276E–04 9.2442E–06 1.1327E–01 7.5413E–04 7.5541E–06
250 1.5692E–01 1.4402E–03 1.4443E–05 1.0808E–01 1.1771E–03 1.1802E–05

Table 4 MAE in the solution of SPBVP in Example 4.1

ε = 10–5

m = 10
ε = 10–5

m = 100
ε = 10–8

m = 200
ε = 10–10

m = 250

λ1 and λ2 by [2, 6]
1/18, 4/9 · · · 1.44463E–03 6.22342E–02 6.27380E–02
1/14, 3/7 · · · 1.52823E–02 8.33647E–02 8.39115E–02
1/24, 11/24 · · · 1.00616E–02 4.50702E–02 4.55413E–02
1/30, 14/30 · · · 1.67078E–02 3.52995E–02 3.57527E–02
1/6, 1/3 · · · 1.1971E–01 2.6683E–01 2.6793E–01

Our C-1 2.4427E–03 1.2005E–01 9.2276E–04 1.4443E–05

Our C-2 1.9197E–03 9.3579E–02 7.5413E–04 1.1802E–05

Table 5 MAE in the solution of SPBVP in Example 4.1

Form = 32 and ε = (2–r )2 Bawa et al. [3] Sapna et al. [14] Our C-1 Our C-2

r = 10 5.022E–02 1.23E–02 2.2646E–03 1.8478E–03
r = 20 3.125E–02 1.23E–08 2.1692E–09 1.7695E–09
r = 25 3.125E–02 1.20E–11 2.1200E–12 1.7283E–12

Table 6 MAE in the solution of SPBVP in Example 4.1

Form = 32 and ε = 2–r Kadalbajoo et al. [5] Sapna et al. Our C-1 Our C-2

r = 10 5.022E–02 1.80E–03 1.5551E–01 1.0545E–01
r = 20 3.125E–02 1.23E–03 2.2645E–03 1.8478E–03
r = 25 3.125E–02 4.04E–4 7.1071E–05 5.7977E–05

Example 4.2 Consider the boundary value problem [10, 12, 13]

εZ••(υ) – (1 + υ)Z(υ) = 40
[
υ
(
υ2 – 1

)
– 2ε

]
, 0 < υ < 1,
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(a)

(b)

(c)

Figure 1 Comparison concerning Example 4.1: Analytic and approximate solutions with parametric setting:
N = 10 and ε = 10–4, 10–7, 10–10

where the boundary conditions of the above problem are

Z(0) = 0 = Z(1),

its analytic solution is

Z(υ) = 40υ(1 – υ).
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Example 4.3 Take the problem already solved by [7, 9],

εZ••(υ) –
{

1 + υ(1 – υ)
}

Z(υ) = –
[
1 + υ(1 – υ) +

{
2
√

ε – υ2(1 – υ)
}

× e{ (1–υ)√
ε

} +
{

2
√

ε – υ(1 – υ)2}e{– υ√
ε
}],

here 0 ≤ υ ≤ 1 and

Z(0) = Z(1) = 0,

its analytic solution is

Z(υ) = 1 + (υ – 1)e{– υ√
ε
} – xe{– (1–υ)√

ε
}.

4.1 Discussion and comparison
We solve SPBVPs by our algorithm and summarized the results in the following form.

• The facts regarding the solutions of Example 4.1 are shown in Tables 2–6 and in
Figs. 1–3 In Tables 2 and 3, the maximum absolute errors (MAE) are given while in
Tables 4–6 the comparison with the methods of [2, 3, 5, 6, 14] are presented. In Fig. 1
the solutions are presented. In Figs. 2 and 3 results for m and ε are depicted.

• In Tables 7–10 and in Figs. 4–6 results of Example 4.2 are presented. Tables 7 and 10
show the MAE while Tables 9 and 10 present the comparison of MAE with
[10, 12, 13]. This shows our results are better. Figure 4 shows the solutions while
Figs. 5 and 6 show the results for m and ε.

• Tables 11–13 and Figs. 7–9 are related to the solution of Example 4.3. The MAE are
shown in Tables 11 and 12. We compare our result with the results of [7, 9] and found
them to be better. The graphical representation is given in Figs. 8 and 9

• From these results we conclude that the condition C-2 gives better results than the
condition C-1.

• If we keep m fixed, then MAE increases with the increase of ε. It is also observed that
if we keep ε fixed, then MAE decreases with the increase of m.

Figure 2 Comparison concerning Example 4.1: Analytic and approximate solutions with parametric setting:
N = 32 and ε = 2–25
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Figure 3 Comparison concerning Example 4.1: Analytic and approximate solutions with parametric setting:
N = 32 and ε = (2–20)2

Table 7 MAE in the solution of SPBVP in Example 4.2

m = 10 for ε Our C-1 Our C-2

0.1× 10–3 1.4049E–02 2.4080E–02
0.1× 10–4 1.4331E–03 2.4866E–03
0.1× 10–5 1.4360E–04 2.4948E–04
0.1× 10–6 1.4363E–05 2.4957E–05
0.1× 10–7 1.4364E–06 2.4958E–06
0.1× 10–8 1.4364E–07 2.4958E–07
0.1× 10–9 1.4364E–08 2.4958E–08

Table 8 MAE in the solution of SPBVP in Example 4.2

m C-1 C-2

ε = 10–5 ε = 10–8 ε = 10–10 ε = 10–5 ε = 10–8 ε = 10–10

10 1.4331E–03 1.4364E–06 1.4364E–08 2.4866E–03 2.4958E–06 2.4958E–08
100 1.5099E–03 1.5640E–06 1.5644E–08 1.1720E–02 1.7289E–05 1.7298E–07
150 1.5217E–03 1.5687E–06 1.5695E–08 1.3907E–02 2.6851E–05 2.6881E–07
200 1.5262E–03 1.5706E–06 1.5721E–08 1.4855E–02 3.6398E–05 3.6471E–07
250 1.528E–03 1.5714E–06 1.5736E–08 1.5259E–02 4.5919E–05 4.6062E–07

Table 9 MAE in the solution of SPBVP in Example 4.2

Form = 16 and ε Method in [10] Method in [12] Method in [13] Our C-1 Our C-2

0.1× 10–3 0.25E–01 0.26E–01 0.65E–04 0.1408E–01 0.3079E–01
0.1× 10–4 0.21E–01 0.24E–01 0.36E–04 0.1478E–02 0.3374E–02
0.1× 10–5 0.70E–02 0.17E–01 0.33E–04 0.14862E–03 0.3407E–03
0.1× 10–6 0.75E–03 0.69E–02 0.26E–04 0.14870E–04 0.3410E–04
0.1× 10–7 0.74E–04 0.23E–02 0.20E–04 0.14871E–05 0.3411E–05
0.1× 10–8 0.67E–05 0.76E–03 0.11E–04 0.14872E–06 0.3411E–06

Table 10 MAE in the solution of SPBVP in Example 4.2

Form = 32 and ε Method in [10] Method in [12] Method in [13] Our C-1 Our C-2

0.1× 10–3 0.64E–02 0.65E–02 0.59E–04 0.1414E–01 0.3861E–01
0.1× 10–4 0.61E–02 0.64E–02 0.21E–04 0.1497E–02 0.5501E–02
0.1× 10–5 0.41E–02 0.56E–02 0.35E–04 0.1529E–03 0.5756E–03
0.1× 10–6 0.77E–03 0.31E–02 0.39E–04 0.1531E–04 0.5783E–04
0.1× 10–7 0.76E–04 0.12E–02 0.21E–04 0.1532E–05 0.5786E–05
0.1× 10–8 0.67E–05 0.38E–03 0.21E–04 0.1532E–06 0.5786E–06
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(a)

(b)

(c)

Figure 4 Comparison concerning Example 4.2: Analytic and approximate solutions with parametric setting:
N = 10 with ε = 10–4, 10–7, 10–10

5 Conclusions
In this paper, we introduced a numerical algorithm for the solution of second order
SPBVPs. The algorithm was developed by using the 2-scale relation of a well-known in-
terpolating subdivision scheme. This algorithm gives the approximate solution of second
order SPBVPs with a fourth order of approximation. We presented the comparison of max-
imum absolute error of the solutions obtained from subdivision (i.e. our method), spline
[2, 3, 5, 6], finite difference [9, 10, 12, 13] and Haar wavelet [7, 14] algorithms. We con-
cluded that our algorithm gives smaller maximum absolute error.
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Figure 5 Comparison concerning Example 4.2: Analytic and approximate solutions with parametric setting:
N = 16 and ε = 10–8

Figure 6 Comparison concerning Example 4.2: Analytic and approximate solutions with parametric setting:
N = 32 and ε = 10–9

Table 11 MAE in the solution of SPBVP in Example 4.3

m = 10 for ε Our C-1 Our C-2

0.1× 10–3 2.0312E–02 7.4455E–03
0.1× 10–4 2.1110E–03 7.6536E–04
0.1× 10–5 2.1189E–04 7.6679E–05
0.1× 10–6 2.1197E–05 7.6682E–06
0.1× 10–7 2.1198E–06 7.6679E–07
0.1× 10–8 2.1198E–07 7.6678E–08
0.1× 10–9 2.1198E–08 7.6679E–09

Table 12 MAE in the solution of SPBVP in Example 4.3

m C-1 C-2

ε = 10–5 ε = 10–8 ε = 10–10 ε = 10–5 ε = 10–8 ε = 10–10

10 2.1110E–03 2.1198E–06 2.1198E–08 7.6536E–04 7.6679E–07 7.6677E–09
16 5.5268E–03 5.5876E–06 5.5877E–08 2.0082E–03 2.0212E–06 2.0212E–08
32 2.1930E–02 2.2964E–05 2.2965E–07 8.0232E–03 8.3069E–06 8.3069E–08
100 1.1919E–01 2.2869E–04 2.2879E–06 2.3666E–02 8.2735E–05 8.2759E–07
200 1.5931E–01 9.1801E–04 9.1965E–06 3.7244E–02 3.3226E–04 3.3265E–06
250 1.5691E–01 1.4343E–03 1.4384E–05 4.6497E–02 5.1930E–04 5.2028E–06
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Table 13 MAE in the solution of SPBVP in Example 4.3

Form = 16 and ε = 10–r Kumar [7] Lubuma [9] Our C-1 Our C-2

r = 3 0.77E–01 0.28E–01 0.1524E–00 0.2703E–01
r = 5 0.46E–02 0.53E–02 0.5527E–02 0.2008E–02
r = 7 0.46E–04 0.53E–02 0.5587E–04 0.2021E–04
r = 8 0.46E–05 0.53E–02 0.5589E–05 2.0212E–05

(a)

(b)

(c)

Figure 7 Comparison concerning Example 4.3: Analytic and approximate solutions with parametric setting:
N = 10 with ε = 10–4, 10–7, 10–10 shown in (a), (b) and (c), respectively
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Figure 8 Comparison concerning Example 4.3: Analytic and approximate solutions with parametric setting:
N = 16 and ε = 10–5

Figure 9 Comparison concerning Example 4.3: Analytic and approximate solutions with parametric setting:
N = 16 and a = 10–8
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