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Abstract
In this article, several interesting properties of the incomplete I-functions associated
with the Marichev–Saigo–Maeda (MSM) fractional operators are studied and
investigated. It is presented that the order of the incomplete I-functions increases
about the utilization of the above-mentioned operators toward the power multiple of
the incomplete I-functions. Further, the Caputo-type MSM fractional order
differentiation for the incomplete I-functions is studied and investigated. Saigo,
Riemann–Liouville, and Erdélyi–Kober fractional operators are also discussed as
specific cases.
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1 Introduction and preliminaries
Recently, Jangid et al. [11] defined a new family of incomplete I-functions γ Im,n

p,q (z) and
Γ Im,n

p,q (z). Incomplete I-functions are the natural generalization of the I-function defined
by Rathie [27]. They are an expansion of a familiar Fox’s H-function [6] and many other
special functions. Fractional calculus for the variety of special functions is being widely
used in mathematical modeling, statistical distribution, wireless communication, and en-
gineering sciences (see [1, 3–5, 7–10, 12, 14–16, 18, 20–23, 28, 31–34]). The incomplete
I-functions in the form of Mellin–Barnes type contour integrals are defined as

γ Im,n
p,q (z) = γ Im,n

p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (a2,σ2; A2), . . . , (ap,σp; Ap)

(b1,ρ1; B1), . . . , (bq,ρq; Bq)

]

= γ Im,n
p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

]

=
1

2π i

∫
$
φ(s, x)zs ds (1)
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and

Γ Im,n
p,q (z) = Γ Im,n

p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (a2,σ2; A2), . . . , (ap,σp; Ap)

(b1,ρ1; B1), . . . , (bq,ρq; Bq)

]

= Γ Im,n
p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

]

=
1

2π i

∫
$
Φ(s, x)zs ds (2)

for all z �= 0, where

φ(s, x) =
{γ (1 – a1 + σ1s, x)}A1

∏m
j=1{Γ (bj – ρjs)}Bj

∏n
j=2{Γ (1 – aj + σjs)}Aj∏p

j=n+1{Γ (aj – σjs)}Aj
∏q

j=m+1{Γ (1 – bj + ρjs)}Bj
(3)

and

Φ(s, x) =
{Γ (1 – a1 + σ1s, x)}A1

∏m
j=1{Γ (bj – ρjs)}Bj

∏n
j=2{Γ (1 – aj + σjs)}Aj∏p

j=n+1{Γ (aj – σjs)}Aj
∏q

j=m+1{Γ (1 – bj + ρjs)}Bj
, (4)

where γ (·, x) and Γ (·, x) are the lower and upper incomplete gamma functions defined in
(6) and (7). The incomplete I-functions γ Im,n

p,q (z) and Γ Im,n
p,q (z) exist for all x ≥ 0 under the

same contour and conditions as stated in Rathie [27]. The incomplete I-functions fulfill
the following relation (known as decomposition formula):

γ Im,n
p,q (z) + Γ Im,n

p,q (z) = Im,n
p,q (z) (5)

for the familiar I-function given by Rathie [27]. Additionally, if we set x = 0 in (2), then we
obtain the I-function [27].

In the sequence we shall use the following statements and descriptions.
The familiar lower and upper incomplete gamma functions γ (s, x) and Γ (s, x), respec-

tively, are laid out as follows:

γ (s, x) =
∫ x

0
ys–1e–y dy

(�(s) > 0; x � 0
)

(6)

and

Γ (s, x) =
∫ ∞

x
ys–1e–y dy

(
x � 0;�(s) > 0 when x = 0

)
. (7)

These incomplete gamma functions fulfill the following relation (known as decomposition
formula):

γ (s, x) + Γ (s, x) = Γ (s)
(�(s) > 0

)
. (8)

In this article, several fractional calculus results associated with the incomplete I-
functions are obtained. For σ ,σ ′,ρ,ρ ′,η ∈ C and x > 0 with �(η) > 0, the left- and right-
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hand sided MSM fractional integral operators (see [19]) are defined as

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+ f
)
(x) =

x–σ

Γ (η)

∫ x

0
(x – y)η–1y–σ ′

× F3

(
σ ,σ ′,ρ,ρ ′;η; 1 –

y
x

, 1 –
x
y

)
f (y) dy (9)

and

(
Iσ ,σ ′ ,ρ,ρ′ ,η

– f
)
(x) =

x–σ ′

Γ (η)

∫ ∞

x
(y – x)η–1y–σ

× F3

(
σ ,σ ′,ρ,ρ ′;η; 1 –

x
y

, 1 –
y
x

)
f (y) dy, (10)

respectively. The left- and right-hand sided MSM fractional differential operators (see
[30]) are defined as

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+ f
)
(x) =

(
d

dx

)α(
I–σ ′ ,–σ ,–ρ′+α,–ρ,–η+α

0+ f
)
(x) (11)

and

(
Dσ ,σ ′ ,ρ,ρ′ ,η

– f
)
(x) =

(
–

d
dx

)α(
I–σ ′ ,–σ ,–ρ′ ,–ρ+α,–η+α

– f
)
(x), (12)

where α = [�(η)] + 1 and [�(η)] symbolizes the integer part in regard to �(η). If
max{|x|, |y|} < 1, then the third Appell function F3 is defined as

F3
(
σ ,σ ′,ρ,ρ ′;η; x; y

)
=

∞∑
i,j=0

(σ )i(σ ′)j(ρ)i(ρ ′)j

(η)i+j

xiyj

i!j!
. (13)

Here, (σ )n is the well-known Pochhammer symbol. Recent papers [2, 17, 25] include a
comprehensive demonstration related to the MSM operators together with their prop-
erties and applications. Saigo [29] introduced the fractional operators involving Gauss
hypergeometric function 2F1(). For σ ,ρ,η ∈ C, x > 0 along with �(σ ) > 0, the left- and
right-hand sided Saigo fractional integral operators are described as

(
Iσ ,ρ,η

0+ f
)
(x) =

x–σ–ρ

Γ (σ )

∫ x

0
(x – y)σ–1

2F1

(
σ + ρ, –η;σ ; 1 –

y
x

)
f (y) dy (14)

and

(
Iσ ,ρ,η

– f
)
(x) =

1
Γ (σ )

∫ ∞

x
(y – x)σ–1y–σ–ρ

2F1

(
σ + ρ, –η;σ ; 1 –

x
y

)
f (y) dy, (15)

respectively. The left-hand and right-hand sided Saigo differential operators are defined
as

(
Dσ ,ρ,η

0+ f
)
(x) =

(
d

dx

)[�(σ )]+1(
I–σ+[�(σ )]+1,–ρ–[�(σ )]–1,σ+η–[�(σ )]–1

0+ f
)
(x) (16)
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and

(
Dσ ,ρ,η

– f
)
(x) =

(
–

d
dx

)[�(σ )]+1(
I–σ+[�(σ )]+1,–ρ–[�(σ )]–1,σ+η

– f
)
(x). (17)

For ρ = –σ and ρ = 0 in (14)–(17), the Riemann–Liouville and Erdélyi–Kober fractional
operators are obtained respectively (for more explanation see [15]). 2F1 is associated with
F3 as

F3(σ ,γ – σ ,ρ,γ – ρ;γ ; x; y) = 2F1(σ ,ρ;γ ; x + y – xy).

The MSM fractional operators (9)–(12) are connected to Saigo operators (14)–(17) by

(
Iσ ,0,ρ,ρ′,η

0+ f
)
(x) =

(
Iη,σ–η,–ρ

0+ f
)
(x),(

Iσ ,0,ρ,ρ′,η
– f

)
(x) =

(
Iη,σ–η,–ρ

– f
)
(x), (18)

and

(
D0,σ ′ ,ρ,ρ′ ,η

0+ f
)
(x) =

(
Dη,σ ′–η,ρ′–η

0+ f
)
(x),(

D0,σ ′ ,ρ,ρ′ ,η
– f

)
(x) =

(
Dη,σ ′–η,ρ′–η

– f
)
(x). (19)

The following are well-known results (see [30]) and will be needed in proving the sub-
sequent theorems.

Lemma 1.1 Let σ ,σ ′,ρ,ρ ′,η,λ ∈C and �(η) > 0.
(a) If �(λ) > max{0,�(σ ′ – ρ ′),�(σ + σ ′ + ρ – η)}, then

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+ tλ–1)(x) = x–σ–σ ′+η+λ–1

× Γ (λ)Γ (–σ ′ + ρ ′ + λ)Γ (–σ – σ ′ – ρ + η + λ)
Γ (ρ ′ + λ)Γ (–σ – σ ′ + η + λ)Γ (–σ ′ – ρ + η + λ)

. (20)

(b) If �(λ) > max{�(ρ),�(–σ – σ ′ + η),�(–σ – ρ ′ + η)}, then

(
Iσ ,σ ′ ,ρ,ρ′ ,η

– t–λ
)
(x) = x–σ–σ ′+η–λ

× Γ (–ρ + λ)Γ (σ + σ ′ – η + λ)Γ (σ + ρ ′ – η + λ)
Γ (λ)Γ (σ – ρ + λ)Γ (σ + σ ′ + ρ ′ – η + λ)

. (21)

Motivated by the work of Srivastava et al. [32], we have derived the fractional calcu-
lus results associated with the incomplete I-functions. In Sect. 2, MSM fractional order
integrals of left-hand and right-hand type are derived for the incomplete I-functions. In
Sect. 3, MSM fractional order derivatives of left-hand and right-hand type are derived for
the incomplete I-functions. In Sect. 4, Caputo-type MSM fractional order derivatives of
left-hand and right-hand type are derived for the incomplete I-functions. In Sect. 5, we
have derived the special cases of the incomplete I-functions.
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2 Fractional integration of incomplete I-functions
Some fractional integrations pertaining to the incomplete I-functions are presented in this
part. First, we shall investigate the MSM fractional order integrals of left-hand side type
for the incomplete I-functions.

Theorem 2.1 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈C be so that �(η),μ > 0 and �(λ) > max{0,�(σ ′ –ρ ′),
�(σ + σ ′ + ρ – η)}. Thereupon, for x > 0,

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ–σ ′+η+λ–1

× γ Im,n+3
p+3,q+3

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (1 + σ ′ – ρ ′ – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – ρ ′ – λ,μ; 1),

(1 + σ + σ ′ + ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 + σ + σ ′ – η – λ,μ; 1), (1 + σ + σ ′ + ρ – η – λ,μ; 1)

]
, (22)

provided every member in (22) does exist.

Proof The LHS of (22) is given by

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+

(
zλ–1 1

2π i

∫
$
φ(s, y)cszμs ds

))
(x), (23)

where φ(s, y) is given in (3). Interchanging the order of integration in the above equation
yields

1
2π i

∫
$
φ(s, y)cs(Iσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ+μs–1)(x) ds, (24)

using the results (20) and (3), we get the RHS of (22). �

The properties given below are immediate consequences of definitions (1), (2), and (20),
and consequently they are stated without proof here.

Theorem 2.2 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that �(η),μ > 0 and �(λ) > max{0,
�(σ ′ – ρ ′),�(σ + σ ′ + ρ – η)}. Thereupon, for x > 0,

(
Iσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ–σ ′+η+λ–1×

× Γ Im,n+3
p+3,q+3

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (1 + σ ′ – ρ ′ – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – ρ ′ – λ,μ; 1),

(1 + σ + σ ′ + ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 + σ + σ ′ – η – λ,μ; 1), (1 + σ + σ ′ + ρ – η – λ,μ; 1)

]
, (25)

provided every member in (25) does exist.
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In accordance with (18) and rearranging the involved parameters, we have the subse-
quent results for Saigo operators.

Corollary 1 Let σ ,ρ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{0,�(ρ – η)}.
Therefore, for x > 0,

(
Iσ ,ρ,η

0+ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–ρ+λ–1γ Im,n+2
p+2,q+2

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 + ρ – λ,μ; 1),

(1 + ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – η – λ,μ; 1)

]
, (26)

provided every member in (26) does exist.

Corollary 2 Let σ ,ρ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{0,�(ρ – η)}.
Thereupon, for x > 0,

(
Iσ ,ρ,η

0+ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–ρ+λ–1Γ Im,n+2
p+2,q+2

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 + ρ – λ,μ; 1),

(1 + ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – η – λ,μ; 1)

]
, (27)

provided every member in (27) does exist.

A similar type of image formulas associated with the Riemann–Liouville fractional in-
tegral are as follows.

Corollary 3 Let σ ,η,λ, c ∈C be such that �(σ ),μ > 0 and �(λ) > max{0,�(–σ –η)}. Then,
for x > 0,

(
Iσ ,–σ ,η

0+ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+λ–1γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – σ – λ,μ; 1)

]
, (28)

provided every member in (28) does exist.
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Corollary 4 Let σ ,η,λ, c ∈C be such that �(σ ),μ > 0 and �(λ) > max{0,�(–σ –η)}. Then,
for x > 0,

(
Iσ ,–σ ,η

0+ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2, p

(bj,ρj; Bj)1,q

])
(x)

= xσ+λ–1Γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – σ – λ,μ; 1)

]
, (29)

provided every member in (29) does exist.

The corresponding corollary (1) introduces the Erdélyi–Kober fractional integral as fol-
lows.

Corollary 5 Let σ ,η,λ, c ∈C be such that �(σ ),μ > 0 and �(λ) > max{0,�(–η)}. Then, for
x > 0,

(
I+

η,σ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xλ–1γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – σ – η – λ,μ; 1)

]
, (30)

provided every member in (30) does exist.

Corollary 6 Let σ ,η,λ, c ∈C be such that �(σ ),μ > 0 and �(λ) > max{0,�(–η)}. Then, for
x > 0,

(
I+

η,σ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xλ–1Γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – σ – η – λ,μ; 1)

]
, (31)

provided every member in (31) does exist.

The coming results lead to the right-hand sided MSM fractional order integrals of the
incomplete I-functions.

Theorem 2.3 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that �(η),μ > 0 and �(λ) > max{�(ρ),
�(–σ – σ ′ + η),�(–σ – ρ ′ + η)}. Then, for x > 0,

(
Iσ ,σ ′ ,ρ,ρ′ ,η

– z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ–σ ′+η–λ

× γ Im,n+3
p+3,q+3

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 + ρ – λ,μ; 1), (1 – σ – σ ′ + η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 – σ – ρ ′ + η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ + ρ – λ,μ; 1), (1 – σ – σ ′ – ρ ′ + η – λ,μ; 1)

]
, (32)
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provided every member in (32) does exist.

Proof The LHS of (32) is given by

(
Iσ ,σ ′ ,ρ,ρ′ ,η

–

(
z–λ 1

2π i

∫
$
φ(s, y)csz–μs ds

))
(x), (33)

where φ(s, y) is given in (3). Interchanging the order of integration in the above equation
yields

1
2π i

∫
$
φ(s, y)cs(Iσ ,σ ′ ,ρ,ρ′ ,η

– z–(λ+μs))(x) ds, (34)

using the results (21) and (3), we get the RHS of (32). �

Theorem 2.4 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that �(η),μ > 0 and �(λ) > max{�(ρ),
�(–σ – σ ′ + η),�(–σ – ρ ′ + η)}. Then, for x > 0,

(
Iσ ,σ ′ ,ρ,ρ′ ,η

– z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ–σ ′+η–λ

× Γ Im,n+3
p+3,q+3

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 + ρ – λ,μ; 1), (1 – σ – σ ′ + η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 – σ – ρ ′ + η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ + ρ – λ,μ; 1), (1 – σ – σ ′ – ρ ′ + η – λ,μ; 1)

]
, (35)

provided every member in (35) does exist.

The Saigo, Riemann–Liouville, and Erdélyi–Kober fractional order integrals of the in-
complete I-functions are given below.

Corollary 7 Let σ ,ρ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{�(–ρ),�(–η)}.
Then, for x > 0,

(
Iσ ,ρ,η

– z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–ρ–λγ Im,n+2
p+2,q+2

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 – ρ – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – ρ – η – λ,μ; 1)

]
, (36)

provided every member in (36) does exist.
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Corollary 8 Let σ ,ρ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{�(–ρ),�(–η)}.
Then, for x > 0,

(
Iσ ,ρ,η

– z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–ρ–λΓ Im,n+2
p+2,q+2

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 – ρ – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – ρ – η – λ,μ; 1)

]
, (37)

provided every member in (37) does exist.

Corollary 9 Let σ ,η,λ, c ∈C be such that �(σ ),μ > 0 and �(λ) > max{�(σ ),�(–η)}. Then,
for x > 0,

(
Iσ ,–σ ,η

– z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ–λγ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 + σ – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – λ,μ; 1)

]
, (38)

provided every member in (38) does exist.

Corollary 10 Let σ ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{�(σ ),�(–η)}.
Then, for x > 0,

(
Iσ ,–σ ,η

– z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ–λΓ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 + σ – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – λ,μ; 1)

]
, (39)

provided every member in (39) does exist.

Corollary 11 Let σ ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{0,�(–η)}. Then
the right-hand Erdélyi–Kober integration K–

η,σ (= Iσ ,0,η
– ) for x > 0,

(
K–

η,σ z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–λγ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – σ – η – λ,μ; 1)

]
, (40)

provided every member in (40) does exist.
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Corollary 12 Let σ ,η,λ, c ∈ C be such that �(σ ),μ > 0 and �(λ) > max{0,�(–η)}. Then
the right-hand Erdélyi–Kober integration K–

η,σ (= Iσ ,0,η
– ) for x > 0 is as follows:

(
K–

η,σ z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–λΓ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – σ – η – λ,μ; 1)

]
, (41)

provided every member in (41) does exist.

3 Fractional differentiation of incomplete I-functions
Right now, we study the MSM fractional order derivatives pertaining to the incomplete I-
functions. The following are well-known results and will be used in subsequent theorems
(see [30]).

Lemma 3.1 Let σ ,σ ′,ρ,ρ ′,η,λ ∈C.
(a) If �(λ) > max{0,�(–σ + ρ),�(–σ – σ ′ – ρ ′ + η)}, then

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+ tλ–1)(x) = xσ+σ ′–η+λ–1

× Γ (λ)Γ (σ – ρ + λ)Γ (σ + σ ′ + ρ ′ – η + λ)
Γ (–ρ + λ)Γ (σ + σ ′ – η + λ)Γ (σ + ρ ′ – η + λ)

. (42)

(b) If �(λ) > max{�(–ρ ′),�(σ ′ + ρ – η),�(σ + σ ′ – η) + [�(η)] + 1}, then

(
Dσ ,σ ′ ,ρ,ρ′ ,η

– t–λ
)
(x) = xσ+σ ′–η–λ

× Γ (ρ ′ + λ)Γ (–σ – σ ′ + η + λ)Γ (–σ ′ – ρ + η + λ)
Γ (λ)Γ (–σ ′ + ρ ′ + λ)Γ (–σ – σ ′ – ρ + η + λ)

. (43)

Now, we represent the left-hand sided MSM fractional derivatives of the incomplete
I-functions.

Theorem 3.2 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–σ + ρ),
�(–σ – σ ′ – ρ ′ + η)}. Then, for x > 0,

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η+λ–1

× γ Im,n+3
p+3,q+3

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (1 – σ + ρ – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 + ρ – λ,μ; 1),

(1 – σ – σ ′ – ρ ′ + η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – σ ′ + η – λ,μ; 1), (1 – σ – ρ ′ + η – λ,μ; 1)

]
, (44)

provided every member in (44) does exist.
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Proof The LHS of (44) is given by

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+

(
zλ–1 1

2π i

∫
$
φ(s, y)cszμs ds

))
(x), (45)

where φ(s, y) is given in (3). Interchanging the order of integration in the above equation
yields

1
2π i

∫
$
φ(s, y)cs(Dσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ+μs–1)(x) ds, (46)

using the results (42) and (3), we get the RHS of (44). �

The properties given below are immediate consequences of definitions (1), (2), and (42),
and consequently they are disposed without demonstration as follows.

Theorem 3.3 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–σ + ρ),
�(–σ – σ ′ – ρ ′ + η)}. Then, for x > 0,

(
Dσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η+λ–1

× Γ Im,n+3
p+3,q+3

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (1 – σ + ρ – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 + ρ – λ,μ; 1),

(1 – σ – σ ′ – ρ ′ + η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – σ ′ + η – λ,μ; 1), (1 – σ – ρ ′ + η – λ,μ; 1)

]
, (47)

provided every member in (47) does exist.

The coming image formulas for incomplete I-functions involving the Saigo, Riemann–
Liouville, and Erdélyi–Kober fractional derivatives are as follows.

Corollary 13 Let σ ,ρ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–σ – ρ – η)}.
Then, for x > 0,

(
Dσ ,ρ,η

0+ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ+λ–1γ Im,n+2
p+2,q+2

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – ρ – λ,μ; 1),

(1 – σ – ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – η – λ,μ; 1)

]
, (48)

provided every member in (48) does exist.
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Corollary 14 Let σ ,ρ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–σ – ρ – η)}.
Then, for x > 0,

(
Dσ ,ρ,η

0+ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ+λ–1Γ Im,n+2
p+2,q+2

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – ρ – λ,μ; 1),

(1 – σ – ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 – η – λ,μ; 1)

]
, (49)

provided every member in (49) does exist.

Corollary 15 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–η)}. Then, for
x > 0,

(
Dσ ,–σ ,η

0+ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ+λ–1γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – ρ – λ,μ; 1)

]
, (50)

provided every member in (50) does exist.

Corollary 16 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–η)}. Then, for
x > 0,

(
Dσ ,–σ ,η

0+ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ+λ–1Γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – ρ – λ,μ; 1)

]
, (51)

provided every member in (51) does exist.

Corollary 17 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{0,�(–σ – η)}. Then
the left-hand sided Erdélyi–Kober differential D+

η,σ (= Dσ ,0,η
0+ ) of the incomplete I-function is

given for x > 0 by

(
D+

η,σ zλ–1γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xλ–1×

× γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ,μ; 1)

]
, (52)

provided every member in (52) does exist.
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Corollary 18 Let σ ,η,λ, c ∈C be such that μ > 0 and �(λ) > max{0,�(–σ – η)}. Then the
left-hand sided Erdélyi–Kober differential D+

η,σ (= Dσ ,0,η
0+ ) of the incomplete I-function is

given for x > 0 by

(
D+

η,σ zλ–1Γ Im,n
p,q

[
czμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xλ–1

× Γ Im,n+1
p+1,q+1

[
cxμ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ,μ; 1)

]
, (53)

provided every member in (53) does exist.

The next result leads to the right-hand MSM fractional derivative related to the incom-
plete I-functions.

Theorem 3.4 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–ρ ′),
�(σ ′ + ρ – η),�(σ + σ ′ – η) + [�(η)] + 1}. Then, for x > 0,

(
Dσ ,σ ′ ,ρ,ρ′ ,η

– z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η–λ

× γ Im,n+3
p+3,q+3

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – ρ ′ – λ,μ; 1), (1 + σ + σ ′ – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + σ ′ + ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 + σ ′ – ρ ′ – λ,μ; 1), (1 + σ + σ ′ + ρ – η – λ,μ; 1)

]
, (54)

provided every member in (54) does exist.

Proof The LHS of (54) is given by

(
Dσ ,σ ′ ,ρ,ρ′ ,η

–

(
z–λ 1

2π i

∫
$
φ(s, y)csz–μs ds

))
(x), (55)

where φ(s, y) is given in (3). Interchanging the order of integration in the above equation
yields

1
2π i

∫
$
φ(s, y)cs(Dσ ,σ ′ ,ρ,ρ′ ,η

– z–(λ+μs))(x) ds, (56)

using the results (43) and (3), we get the RHS of (54). �
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Theorem 3.5 Let σ ,σ ′,ρ,ρ ′,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–ρ ′),
�(σ ′ + ρ – η),�(σ + σ ′ – η) + [�(η)] + 1}. Then, for x > 0,

(
Dσ ,σ ′ ,ρ,ρ′ ,η

– z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η–λ

× Γ Im,n+3
p+3,q+3

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – ρ ′ – λ,μ; 1), (1 + σ + σ ′ – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + σ ′ + ρ – η – λ,μ; 1), (aj,σj; Aj)2,p

(1 + σ ′ – ρ ′ – λ,μ; 1), (1 + σ + σ ′ + ρ – η – λ,μ; 1)

]
, (57)

provided every member in (57) does exist.

The fractional order derivatives of Saigo, Riemann–Liouville, and Erdélyi–Kober type
involving the incomplete I-functions are given as follows.

Corollary 19 Let σ ,ρ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–σ – η),
�(ρ) + [�(σ )] + 1}. Then the right-hand Saigo derivative of the incomplete I-function is
given for x > 0 by

(
Dσ ,ρ,η

– z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ–λγ Im,n+2
p+2,q+2

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + ρ – λ,μ; 1), (aj,σj; Aj)2,p

(1 + ρ – η – λ,μ; 1)

]
, (58)

provided every member in (58) does exist.

Corollary 20 Let σ ,ρ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–σ – η),
�(ρ) + [�(σ )] + 1}. Then the right-hand Saigo derivative of the incomplete I-function is
given for x > 0 by

(
Dσ ,ρ,η

– z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ–λΓ Im,n+2
p+2,q+2

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + ρ – λ,μ; 1), (aj,σj; Aj)2,p

(1 + ρ – η – λ,μ; 1)

]
, (59)

provided every member in (59) does exist.
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Corollary 21 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–σ – η),�(–σ ) +
[�(σ )] + 1}. Then, for x > 0,

(
Dσ ,–σ ,η

– z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ–λγ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 + ρ – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – λ,μ; 1)

]
, (60)

provided every member in (60) does exist.

Corollary 22 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–σ – η),�(–σ ) +
[�(σ )] + 1}. Then, for x > 0,

(
Dσ ,–σ ,η

– z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–σ–λΓ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 + ρ – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – λ,μ; 1)

]
, (61)

provided every member in (61) does exist.

Corollary 23 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–σ – η), [�(σ )] + 1}.
Then the right-hand Erdélyi–Kober fractional differentiation D–

η,σ (= Dσ ,0,η
– ) for x > 0 is

(
D–

η,σ z–λγ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–λγ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ,μ; 1)

]
, (62)

provided every member in (62) does exist.

Corollary 24 Let σ ,η,λ, c ∈ C be such that μ > 0 and �(λ) > max{�(–σ – η), [�(σ )] + 1}.
Then the right-hand Erdélyi–Kober fractional differentiation D–

η,σ (= Dσ ,0,η
– ) for x > 0 is

(
D–

η,σ z–λΓ Im,n
p,q

[
cz–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–λΓ Im,n+1
p+1,q+1

[
cx–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ,μ; 1)

]
, (63)

provided every member in (63) does exist.

4 The Caputo-type fractional differentiation of incomplete I-functions
For σ ,ρ,η ∈C, x > 0 along with �(σ ) > 0, we characterize the respective Caputo fractional
differential operators of left-hand and right-hand type related to the Gauss hypergeomet-
ric function as follows (see [26]):

(cDσ ,ρ,η
0+ f

)
(x) =

(
I–σ+[�(σ )]+1,–ρ–[�(σ )]–1,σ+η–[�(σ )]–1

0+ f ([�(σ )]+1))(x) (64)
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and

(cDσ ,ρ,η
– f

)
(x) = (–1)[�(σ )]+1(I–σ+[�(σ )]+1,–ρ–[�(σ )]–1,σ+η

– f ([�(σ )]+1))(x), (65)

where f (n) stands for the nth order derivative pertaining to f . The functional relationship
within the MSM fractional order derivative of Caputo-type and MSM fractional derivative
is similar to that between the Caputo fractional order derivative and fractional derivative
of Riemann–Liouville type.

Considering σ ,σ ′,ρ,ρ ′,η ∈ C, x > 0 together with �(η) > 0, the respective left-hand
sided and right-hand sided Caputo-type MSM fractional differential operators, related
to third Appell function, are defined as

(cDσ ,σ ′ ,ρ,ρ′ ,η
0+ f

)
(x) =

(
I–σ ′ ,–σ ,–ρ′+α,–ρ,–η+α

0+ f (α))(x) (66)

and

(cDσ ,σ ′ ,ρ,ρ′ ,η
– f

)
(x) = (–1)α

(
I–σ ′ ,–σ ,–ρ′ ,–ρ+α,–η+α

– f (α))(x), (67)

where α = [�(η)] + 1.
The fractional operators (66) and (67) are connected to (64) and (65) as follows:

(cD0,σ ′ ,ρ,ρ′ ,η
0+ f

)
(x) =

(cDη,σ ′–η,ρ′–η
0+ f

)
(x) (68)

and

(cD0,σ ′ ,ρ,ρ′ ,η
– f

)
(x) =

(cDη,σ ′–η,ρ′–η
– f

)
(x). (69)

Now, we derive the Caputo-type MSM fractional order derivatives referring to the in-
complete I-functions. The following are well-known results and will be used in subsequent
theorems (see [13]).

Lemma 4.1 Let σ ,σ ′,ρ,ρ ′,η,λ ∈C and κ = [�(η)] + 1.
(a) If �(λ) – κ > max{0,�(–σ + ρ),�(–σ – σ ′ – ρ ′ + η)}, then

(cDσ ,σ ′ ,ρ,ρ′ ,η
0+ tλ–1)(x) = xσ+σ ′–η+λ–1

× Γ (λ)Γ (σ – ρ + λ – κ)Γ (σ + σ ′ + ρ ′ – η + λ – κ)
Γ (–ρ + λ – κ)Γ (σ + σ ′ – η + λ)Γ (σ + ρ ′ – η + λ – κ)

.

(70)

(b) If �(λ) + κ > max{�(–ρ ′),�(σ ′ + ρ – η),�(σ + σ ′ – η) + [�(η)] + 1}, then

(cDσ ,σ ′ ,ρ,ρ′ ,η
– t–λ

)
(x) = xσ+σ ′–η–λ

× Γ (ρ ′ + λ + κ)Γ (–σ – σ ′ + η + λ)Γ (–σ ′ – ρ + η + λ + κ)
Γ (λ)Γ (–σ ′ + ρ ′ + λ + κ)Γ (–σ – σ ′ – ρ + η + λ + κ)

.

(71)
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First, we give the left-hand sided Caputo-type MSM fractional derivative of the incom-
plete I-functions.

Theorem 4.2 Let σ ,σ ′,ρ,ρ ′,η,λ, a ∈ C, κ = [�(η)] + 1 be such that μ > 0 and �(λ) – κ >
max{0,�(–σ + ρ),�(–σ – σ ′ – ρ ′ + η)}. Then, for x > 0,

(
cDσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ–1γ Im,n
p,q

[
azμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η+λ–1

× γ Im,n+3
p+3,q+3

[
axμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (1 – σ + ρ – λ + κ ,μ; 1),
(bj,ρj; Bj)1,q, (1 + ρ – λ + κ ,μ; 1),

(1 – σ – σ ′ – ρ ′ + η – λ + κ ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – σ ′ + η – λ,μ; 1), (1 – σ – ρ ′ + η – λ + κ ,μ; 1)

]
, (72)

provided every member in (72) does exist.

Proof The LHS of (72) is given by

(
cDσ ,σ ′ ,ρ,ρ′ ,η

0+

(
zλ–1 1

2π i

∫
$
φ(s, y)aszμs ds

))
(x), (73)

where φ(s, y) is given in (3). Interchanging the order of integration in the above equation
yields

1
2π i

∫
$
φ(s, y)as(cDσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ+μs–1)(x) ds, (74)

using the results (70) and (3), we get the RHS of (72). �

The properties given below are immediate consequences of definitions (1), (2), and (70),
and consequently they are provided without detailed proof as follows.

Theorem 4.3 Let σ ,σ ′,ρ,ρ ′,η,λ, a ∈ C, κ = [�(η)] + 1 be such that μ > 0 and �(λ) – κ >
max{0,�(–σ + ρ),�(–σ – σ ′ – ρ ′ + η)}. Then, for x > 0,

(
cDσ ,σ ′ ,ρ,ρ′ ,η

0+ zλ–1Γ Im,n
p,q

[
azμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η+λ–1

× Γ Im,n+3
p+3,q+3

[
axμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1), (1 – σ + ρ – λ + κ ,μ; 1),
(bj,ρj; Bj)1,q, (1 + ρ – λ + κ ,μ; 1),

(1 – σ – σ ′ – ρ ′ + η – λ + κ ,μ; 1), (aj,σj; Aj)2,p

(1 – σ – σ ′ + η – λ,μ; 1), (1 – σ – ρ ′ + η – λ + κ ,μ; 1)

]
, (75)

provided every member in (75) does exist.



Jangid et al. Advances in Difference Equations        (2020) 2020:265 Page 18 of 24

Corollary 25 Let σ ,ρ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) – κ >
max{0,�(–σ – ρ – η)}. Then left-hand sided generalized Caputo fractional differentiation
cDσ ,ρ,η

0+ of the incomplete I-function is given for x > 0 by

(
cDσ ,ρ,η

0+ zλ–1γ Im,n
p,q

[
azμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ+λ–1γ Im,n+2
p+2,q+2

[
axμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – ρ – λ,μ; 1),

(1 – σ – ρ – η – λ + κ ,μ; 1), (aj,σj; Aj)2,p

(1 – η – λ + κ ,μ; 1)

]
, (76)

provided every member in (76) does exist.

Corollary 26 Let σ ,ρ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) – κ >
max{0,�(–σ – ρ – η)}. Then left-hand sided generalized Caputo fractional differentiation
cDσ ,ρ,η

0+ of the incomplete I-function is given for x > 0 by

(
cDσ ,ρ,η

0+ zλ–1Γ Im,n
p,q

[
azμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ+λ–1Γ Im,n+2
p+2,q+2

[
axμ

∣∣∣ (a1,σ1; A1 : y), (1 – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – ρ – λ,μ; 1),

(1 – σ – ρ – η – λ + κ ,μ; 1), (aj,σj; Aj)2,p

(1 – η – λ + κ ,μ; 1)

]
, (77)

provided every member in (77) does exist.

Corollary 27 Let σ ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) – κ >
max{0,�(–σ – η)}. Then left-hand sided Caputo-type Erdélyi–Kober fractional differen-
tiation cD+

η,σ (= Dσ ,0,η
0+ ) of the incomplete I-function is given for x > 0 by

(
cD+

η,σ zλ–1γ Im,n
p,q

[
azμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xλ–1

× γ Im,n+1
p+1,q+1

[
axμ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ + κ ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ + κ ,μ; 1)

]
, (78)

provided every member in (78) does exist.

Corollary 28 Let σ ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) – κ >
max{0,�(–σ – η)}. Then left-hand sided Caputo-type Erdélyi–Kober fractional differen-
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tiation cD+
η,σ (= Dσ ,0,η

0+ ) of the incomplete I-function is given for x > 0 by

(
cD+

η,σ zλ–1Γ Im,n
p,q

[
azμ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xλ–1

× Γ Im,n+1
p+1,q+1

[
axμ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ + κ ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ + κ ,μ; 1)

]
, (79)

provided every member in (79) does exist.

Lastly, we represent the right-hand sided Caputo-type MSM fractional derivative of the
incomplete I-functions.

Theorem 4.4 Let σ ,σ ′,ρ,ρ ′,η,λ, a ∈ C, κ = [�(η)] + 1 be such that μ > 0 and �(λ) + κ >
max{�(–ρ ′),�(σ ′ + ρ – η),�(σ + σ ′ – η) + κ}. Then, for x > 0,

(
cDσ ,σ ′ ,ρ,ρ′ ,η

– z–λγ Im,n
p,q

[
az–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η–λ

× γ Im,n+3
p+3,q+3

[
ax–μ

∣∣∣ (a1,σ1; A1 : y), (1 – ρ ′ – λ – κ ,μ; 1), (1 + σ + σ ′ – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + σ ′ + ρ – η – λ – κ ,μ; 1), (aj,σj; Aj)2,p

(1 + σ ′ – ρ ′ – λ – κ ,μ; 1), (1 + σ + σ ′ + ρ – η – λ – κ ,μ; 1)

]
, (80)

provided every member in (80) does exist.

Proof The LHS of (80) is given by

(
cDσ ,σ ′ ,ρ,ρ′ ,η

–

(
z–λ 1

2π i

∫
$
φ(s, y)asz–μs ds

))
(x), (81)

where φ(s, y) is given in (3). Interchanging the order of integration in the above equation
yields

1
2π i

∫
$
φ(s, y)as(cDσ ,σ ′ ,ρ,ρ′ ,η

– z–(λ+μs))(x) ds, (82)

using the results (71) and (3), we get the RHS of (80). �

Theorem 4.5 Let σ ,σ ′,ρ,ρ ′,η,λ, a ∈ C, κ = [�(η)] + 1 be such that μ > 0 and �(λ) + κ >
max{�(–ρ ′),�(σ ′ + ρ – η),�(σ + σ ′ – η) + κ}. Then, for x > 0,

(
cDσ ,σ ′ ,ρ,ρ′ ,η

– z–λΓ Im,n
p,q

[
az–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xσ+σ ′–η–λ
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× Γ Im,n+3
p+3,q+3

[
ax–μ

∣∣∣ (a1,σ1; A1 : y), (1 – ρ ′ – λ – κ ,μ; 1), (1 + σ + σ ′ – η – λ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + σ ′ + ρ – η – λ – κ ,μ; 1), (aj,σj; Aj)2,p

(1 + σ ′ – ρ ′ – λ – κ ,μ; 1), (1 + σ + σ ′ + ρ – η – λ – κ ,μ; 1)

]
, (83)

provided every member in (83) does exist.

Corollary 29 Let σ ,ρ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) + κ >
max{�(–σ –η),�(ρ) +κ}. Then the right-hand sided generalized Caputo fractional deriva-
tive cDσ ,ρ,η

– of the incomplete I-function is given for x > 0 by

(
cDσ ,ρ,η

– z–λγ Im,n
p,q

[
az–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ–λγ Im,n+2
p+2,q+2

[
ax–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ – κ ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + ρ – λ,μ; 1), (aj,σj; Aj)2,p

(1 + ρ – η – λ – κ ,μ; 1)

]
, (84)

provided every member in (84) does exist.

Corollary 30 Let σ ,ρ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) + κ >
max{�(–σ –η),�(ρ) +κ}. Then the right-hand sided generalized Caputo fractional deriva-
tive cDσ ,ρ,η

– of the incomplete I-function is given for x > 0 by

(
cDσ ,ρ,η

– z–λΓ Im,n
p,q

[
az–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= xρ–λΓ Im,n+2
p+2,q+2

[
ax–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ – κ ,μ; 1),
(bj,ρj; Bj)1,q, (1 – λ,μ; 1),

(1 + ρ – λ,μ; 1), (aj,σj; Aj)2,p

(1 + ρ – η – λ – κ ,μ; 1)

]
, (85)

provided every member in (85) does exist.

Corollary 31 Let σ ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) + κ >
max{�(–σ – η),κ}. Then the right-hand sided Caputo-type Erdélyi–Kober fractional
derivative cD–

η,σ (= cDσ ,ρ,η
– ) of the incomplete I-function is given for x > 0 by

(
cD–

η,σ z–λγ Im,n
p,q

[
az–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–λ

× γ Im,n+1
p+1,q+1

[
ax–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ – κ ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ – κ ,μ; 1)

]
, (86)

provided every member in (86) does exist.
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Corollary 32 Let σ ,η,λ, a ∈ C, κ = [�(σ )] + 1 be such that μ > 0 and �(λ) + κ >
max{�(–σ – η),κ}. Then the right-hand sided Caputo-type Erdélyi–Kober fractional
derivative cD–

η,σ (= cDσ ,ρ,η
– ) of the incomplete I-function is given for x > 0 by

(
cD–

η,σ z–λΓ Im,n
p,q

[
az–μ

∣∣∣ (a1,σ1; A1 : y), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q

])
(x)

= x–λ

× Γ Im,n+1
p+1,q+1

[
ax–μ

∣∣∣ (a1,σ1; A1 : y), (1 – σ – η – λ – κ ,μ; 1), (aj,σj; Aj)2,p

(bj,ρj; Bj)1,q, (1 – η – λ – κ ,μ; 1)

]
, (87)

provided every member in (87) does exist.

5 Special cases and concluding remarks
By specializing the parameters in definition (2), we obtain the following functions as spe-
cial cases of the incomplete I-function Γ Im,n

p,q (z):
(i) Incomplete I-function Γ Im,n

p,q (z): if we set Bj (j = 1, . . . , m) = 1 in (2), then we obtain

Γ Im,n
p,q (z) = Γ Im,n

p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (aj,σj; Aj)2,p

(bj,ρj; 1)1,m, (bj,ρj; Bj)m+1,q

]

=
1

2π i

∫
$
φ(s, x)zs ds, (88)

where

φ(s, x) =
{γ (1 – a1 + σ1s, x)}A1

∏m
j=1 Γ (bj – ρjs)

∏n
j=2{Γ (1 – aj + σjs)}Aj∏p

j=n+1{Γ (aj – σjs)}Aj
∏q

j=m+1{Γ (1 – bj + ρjs)}Bj
. (89)

(ii) Incomplete H-function Γ
m,n
p,q (z): if we set Bj (j = 1, . . . , m) = 1 and

Aj (j = n + 1, . . . , p) = 1 in (2), then we obtain (see [32])

Γ
m,n
p,q (z) = Γ Im,n

p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (aj,σj; Aj)2,n, (aj,σj; 1)n+1,p

(bj,ρj; 1)1,m, (bj,ρj; Bj)m+1,q

]

= Γ
m,n
p,q

[
z
∣∣∣ (a1,σ1; A1 : x), (aj,σj; Aj)2,n, (aj,σj)n+1,p

(bj,ρj)1,m, (bj,ρj; Bj)m+1,q

]

=
1

2π i

∫
$
ψ(s, x)zs ds, (90)

where

ψ(s, x) =
{γ (1 – a1 + σ1s, x)}A1

∏m
j=1 Γ (bj – ρjs)

∏n
j=2{Γ (1 – aj + σjs)}Aj∏p

j=n+1 Γ (aj – σjs)
∏q

j=m+1{Γ (1 – bj + ρjs)}Bj
. (91)
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(iii) Incomplete H-function Γ m,n
p,q (z): if we set Bj (j = 1, . . . , q) = 1 and Aj (j = 1, . . . , p) = 1

in (2), then we obtain (see [32])

Γ m,n
p,q (z) = Γ Im,n

p,q

[
z
∣∣∣ (a1,σ1; 1 : x), (aj,σj; 1)2,p

(bj,ρj; 1)1,q

]

= Γ m,n
p,q

[
z
∣∣∣ (a1,σ1 : x), (aj,σj)2,p

(bj,ρj)1,q

]

=
1

2π i

∫
$
ψ(s, x)zs ds, (92)

where

ψ(s, x) =
γ (1 – a1 + σ1s, x)

∏m
j=1 Γ (bj – ρjs)

∏n
j=2 Γ (1 – aj + σjs)∏p

j=n+1 Γ (aj – σjs)
∏q

j=m+1 Γ (1 – bj + ρjs)
. (93)

(iv) Incomplete Fox–Wright function pΨ
(Γ )

q (z): if we take the substitutions z = –z,
Aj (j = 1, . . . , p) = Bj (j = 1, . . . , q) = 1, aj → (1 – aj) (j = 1, . . . , p) and bj → (1 – bj)
(j = 1, . . . , q) in (2), then we obtain (see [24])

pΨ
(Γ )

q (z) = Γ I1,p
p,q+1

[
–z

∣∣∣ (1 – a1,σ1; 1 : x), (1 – aj,σj; 1)2,p

(0, 1), (1 – bj,ρj; 1)1,q

]

=p Ψ (Γ )
q

[
(a1,σ1, x), (aj,σj)2,p;

(bj,ρj)1,q;
z

]
. (94)

Remark 1 Similarly, one can easily obtain another class of incomplete functions as special
cases of the incomplete I-function γ Im,n

p,q (z).

It is to note that if we use the relations (90) and (92), then one can obtain the fractional
calculus results associated with the incomplete H-functions and incomplete H-functions
(see [32]) as special cases of our results. Moreover, all the results investigated in this pa-
per, taking into account the decomposition formula (8) (or y = 0 in the results involving
Γ Im,n

p,q (z)), lead to the known results provided earlier by Kataria and Vellaisamy [13].
In the present article, we investigated a number of fractional calculus image formulas

involving incomplete I-functions associated with the MSM operators. The incomplete
I-functions generalize I-function, H-function, H-function, Meijer G-function, hyperge-
ometric function, and many other functions. Additionally, the MSM fractional operators
generalize Saigo, Riemann–Liouville, Erdélyi–Kober fractional calculus operators. In con-
sideration of the indicated fact, one can obtain numerous image formulas comprising a
class of special functions (see [14, 15, 27, 30, 32]) as limiting cases of the main outcomes.
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