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Abstract
In this paper, we propose and analyze a stochastic SIVS model with saturated
incidence and Lévy jumps. We first prove the existence of a global positive solution of
the model. Then, with the help of semimartingale convergence theorem, we obtain a
stochastic threshold of the model that completely determines the extinction and
persistence of the epidemic. At last, we further study the threshold dynamics of a
stochastic SIRS model with saturated or bilinear incidence by a similar method and
carry out some numerical simulations to demonstrate our theoretical results.
Comparing with the method given by Zhou and Zhang (Physica A 446:204–216,
2016), we find that the method used in this paper is simple and effective.
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1 Introduction
In recent years a large number of mathematical models based on the mechanism of disease
transmission have been formulated to help us better understand how the disease spreads
in the future because explicit elements of biology and behavior are included in the models
[2–4]. In reality, epidemic models are inevitably affected by random environmental fluc-
tuations, which play an important role in the study of transmission dynamics of infectious
diseases [5–7]. To improve the understanding of the mechanism of disease transmission,
many scholars have introduced white noise in deterministic models [8–13]. For example,
Liu et al. [14] considered a stochastic SIRS epidemic model with standard incidence and
established sufficient conditions for the existence of ergodic stationary distribution of the
model. Fan et al. [15] established a class of SIR epidemic models with generalized non-
linear incidence rate and gave some sufficient conditions guaranteeing the extinction and
persistence of the epidemic disease. Rifhat et al. [16] studied the dynamics of a class of
periodic stochastic SIS epidemic models with general nonlinear incidence and gave suffi-
cient conditions for the existence of a stochastic nontrivial periodic solution. Cai et al. [17]
proposed a stochastic SIRS epidemic model with nonlinear incidence rate and presented
a stochastic threshold that determines the outcome of the disease.
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Let S(t), I(t), and V (t) denote the numbers of individuals that are susceptible to infection,
of individuals that are infective, and of individuals that are immune to infection as a result
of vaccination. Zhao and Jiang [18] proposed and studied the following SIVS model:

⎧
⎪⎪⎨

⎪⎪⎩

dS = [(1 – q)Λ – (μ + p)S – βSI + κI + εV ] dt + σ1S dB1(t),

dI = [βSI – (μ + κ + δ)I] dt + σ2I dB2(t),

dV = [qΛ + pS – (μ + ε)V ] dt + σ3V dB3(t),

(1)

where Λ is the constant input of new individuals into the population per unit time, q is
the fraction of vaccinated for newborns, μ is the natural death rate, p is the proportional
coefficient of vaccinated for the susceptible, κ is the recovery rate of infectious individuals,
ε is the rate of losing the immunity of vaccinated individuals, δ is the disease-caused death
rate of infectious individuals, β is the transmission coefficient between compartments S
and I , Bi(t) (i = 1, 2, 3) are standard Brownian motions defined on a complete probability
space (Ω ,F , {F }t≥0,P) with filtration {F }t≥0 satisfying the usual conditions, and σ 2

i ≥ 0
(i = 1, 2, 3) are the intensities of environmental white noise. Zhao and Jiang [18] proved
that, under the condition μ > σ 2

1 ∨σ 2
2 ∨σ 2

3
2 ,

• if RS
0 < 1, then I(t) → 0, that is, the disease is extinct;

• if RS
0 > 1, then 1

t
∫ t

0 I(s) ds → μ(μ+ε+p)(μ+κ+δ)
β(μ+δ)(μ+ε) (RS

0 – 1), that is, the disease is persistent in
mean,

where RS
0 = βΛ(μ(1–q)+ε)

μ(μ+κ+δ)(μ+ε+p) – σ 2
2

2(μ+κ+δ) ≡ R0 – σ 2
2

2(μ+κ+δ) , that is, RS
0 is the stochastic threshold of

model (1), which can completely determine the extinction and persistence of the disease,
and R0 is the threshold of the corresponding deterministic model of (1). It is worth noting
that the incidence rate in (1) is bilinear, whereas some researchers point out that the dis-
ease transmission process can have a nonlinear incidence rate [19, 20]. Capasso and Serio
[19] introduced a saturated incidence rate βSI/(1 + aI) into the epidemic model, where
a > 0 is the infection force of disease.

Meanwhile, epidemic systems may suffer sudden environmental shocks, such as med-
ical negligence, floods, toxic pollutants, and so on. These discontinuous environmental
factors break the continuity of the solution and seriously affect the transmission process
of the disease, but it cannot be described by white noise. Therefore some researchers turn
to use the non-Gaussian Lévy noise to model these discontinuous abrupt environmental
shocks in nature [21–26]. Particularly, Zhang and Wang [27] introduced Lévy jumps into
a stochastic SIR model and discussed the asymptotic behavior around the equilibriums of
the deterministic model. Based on this model, Zhou and Zhang [1] further investigated
the effect of Lévy jumps on the dynamics of a stochastic SIR epidemic model and found a
threshold, which was not accurately given in [27].

Motivated by our discussion, in this paper, we devote our main attention to investigating
a stochastic SIVS model with saturated incidence driven by Lévy noise as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [(1 – q)Λ – (μ + p)S – βSI
1+aI + κI + εV ] dt + σ1S dB1(t)

+
∫

Y
γ1(u)S(t–)Ñ(dt, du),

dI = [ βSI
1+aI – (μ + κ + δ)I] dt + σ2I dB2(t) +

∫

Y
γ2(u)I(t–)Ñ(dt, du),

dV = [qΛ + pS – (μ + ε)V ] dt + σ3V dB3(t) +
∫

Y
γ3(u)V (t–)Ñ(dt, du),

(2)
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where S(t–), I(t–), and V (t–) are the left limits of S(t), I(t), and V (t), respectively,
Ñ(dt, du) := N(dt, du) – λ(du) dt is a compensated Poisson process, N is the Poisson
counting measure with characteristic measure λ on a measurable subset Y of (0,∞) with
λ(Y) < ∞ and γi(u) > –1 (i = 1, 2, 3). The biological meaning of all parameters in (2) is the
same as in system (1).

In the deterministic epidemic model, the threshold is an interesting and important re-
search topic and has been well solved. However, under the influence of white noise and
Lévy noise, there are few studies on the threshold dynamics of the stochastic epidemic
model. On the other hand, researches on such a problem in the literature often need to
limit the noise intensity, which leads to a great limitation of the obtained stochastic thresh-
old. Therefore the main purpose of this paper is finding a new method to study the thresh-
old behavior of a stochastic SIVS model (2) and extension of this method to other models.
Comparing with the results given by Zhou and Zhang [1], we find our method to be sim-
ple and effective. This paper is organized as follows. In Sect. 2, we show the existence and
uniqueness of a positive solution of model (2). In Sect. 3, under some conditions, we give
the stochastic threshold of model (2) that can completely determine extinction and per-
sistence of the disease. Furthermore, we discuss the threshold of a stochastic SIRS model
with Lévy jumps by the same method in Sect. 4.

2 Existence and uniqueness of a positive solution of model (2)
To study the long asymptotic behavior of model (2), we first need to investigate the global
existence of a positive solution. To this end, we give the following two technical assump-
tions.

Assumption 1 For each m > 0, there exists Lm > 0 such that

∫

Y

∣
∣Hi(x, u) – Hi(y, u)

∣
∣2

λ(du) ≤ Lm|x – y|2 with |x| ∨ |y| ≤ m,

where Hi(x, u) = γi(u)x(t–), i = 1, 2, 3.

Assumption 2 There exist positive constants Ki (i = 1, 2, 3) such that

∣
∣ln

(
1 + γi(u)

)∣
∣ ≤ Ki for γi > –1.

Theorem 1 Under Assumptions 1 and 2, for any initial value (S(0), I(0), V (0)) ∈R
3
+, system

(2) has a unique global solution (S(t), I(t), V (t)) ∈R
3
+ for all t ≥ 0 almost surely.

Proof By Assumption 1, for any given initial value (S(0), I(0), V (0)) ∈R
3
+, there is a unique

local solution (S(t), I(t), V (t)) on t ∈ [0, τe), where τe is the explosion time. To show that
this solution is global, we need to show that τe = ∞ a.s. Adopting the approach similar to
that in [1, 26], we define the stopping time by

τn = inf

{

t ∈ [0, τe) : min
{

S(t), I(t), V (t)
} ≤ 1

n
or max

{
S(t), I(t), V (t)

} ≥ n
}

,

where inf∅ = ∞. Set τ∞ = limn→∞ τn; then τ∞ ≤ τe a.s. If we can show that τ∞ = ∞, then
τe = ∞ and (S(t), I(t), V (t)) ∈ R

3
+ a.s. for all t > 0. If this statement is false, then there exist
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constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Hence there is an integer n1 ≥ n0

such that P{τn ≤ T} ≥ ε for all n ≥ n1. Define the function V : R3
+ →R+ as follows:

V
(
S(t), I(t), V (t)

)
=

(

S – c – c log
S
c

)

+ (I – 1 – log I) + (V – 1 – log V ),

where 0 < c < μ+δ

β
. Using the generalized Itô formula, we obtain

L V (S, I, V ) =
(

1 –
c
S

)[

(1 – q)Λ – (μ + p)S –
βSI

1 + aI
+ κI + εV

]

+
(V – 1)[qΛ + pS – (μ + ε)V ]

V
+

(I – 1)[ βSI
1+aI – (μ + κ + δ)I]

I

+
∫

Y

[
cγ1(u) – c ln

(
1 + γ1(u)

)]
λ(du) +

1
2
(
cσ 2

1 + σ 2
2 + σ 2

3
)

+
∫

Y

[
γ2(u) – ln

(
1 + γ2(u)

)
+ γ3(u) – ln

(
1 + γ3(u)

)]
λ(du)

= Λ + c(μ + p) + 2μ + κ + δ + ε – μS – μV –
c(1 – q)Λ

S

–
c(κI + εV )

S
–

βS
1 + aI

–
qΛ

V
–

pS
V

–
(

μ + δ –
cβ

1 + aI

)

I

+
∫

Y

[
cγ1(u) – c ln

(
1 + γ1(u)

)]
λ(du) +

1
2
(
cσ 2

1 + σ 2
2 + σ 2

3
)

+
∫

Y

[
γ2(u) – ln

(
1 + γ2(u)

)
+ γ3(u) – ln

(
1 + γ3(u)

)]
λ(du).

Using the inequality x – ln(x + 1) ≥ 0 for x > –1 and Assumption 2, we get

L V (S, I, V ) ≤ (
Λ + c(μ + p) + 2μ + κ + δ + ε

)
+

1
2
(
cσ 2

1 + σ 2
2 + σ 2

3
)

+ 3M := K ,

where M = maxi=2,3{
∫

Y
[cγ1(u) – c ln(1 + γ1(u))]λ(du),

∫

Y
[γi(u) – ln(1 + γi(u))]λ(du)}. Then

using a similar discussion as in [1], we obtain the desired result. �

3 The threshold of model (2)
In model (1), there exists a stochastic threshold RS

0 that completely determines the ex-
tinction and prevalence of disease. When the Lévy noise is considered in model (2), we
also try to find such a threshold RL

0 . Now let us introduce some notations and useful lem-
mas:

M1(t) = σ1

∫ t

0
S(s) dB1(s), M2(t) =

∫ t

0

∫

Y

γ1(u)S
(
s–)

Ñ(ds, du),

M3(t) = σ2

∫ t

0
I(s) dB2(s), M4(t) =

∫ t

0

∫

Y

γ2(u)I
(
s–)

Ñ(ds, du),

M5(t) = σ3

∫ t

0
V (s) dB3(s), M6(t) =

∫ t

0

∫

Y

γ3(u)V
(
s–)

Ñ(ds, du),

M̃(t) =
∫ t

0

∫

Y

ln
(
1 + γ2(u)

)
Ñ(dt, du), α =

1
2
σ 2

2 +
∫

Y

[
γ2(u) – ln

(
1 + γ2(u)

)]
λ(du),
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RL
0 =

1
μ + κ + δ

(
βΛ(μ(1 – q) + ε)

μ(μ + ε + p)
– α

)

,
〈
f (t)

〉
=

1
t

∫ t

0
f (s) ds.

The following lemmas are elementary.

Lemma 1 ([28]) Let A(t) and U(t) be two continuous adapted increasing processes on t ≥ 0
with A(0) = U(0) = 0 a.s. Let M(t) be a real-valued continuous local martingale with M(0) =
0 a.s. Let X0 be a nonnegative F0-measurable random variable such that EX0 < ∞. Define
X(t) = X0 + A(t) – U(t) + M(t) for t ≥ 0. If X(t) is nonnegative, then limt→∞ A(t) < ∞ implies
that limt→∞ U(t) < ∞, limt→∞ X(t) < ∞, and –∞ < limt→∞ M(t) < ∞ with probability
one.

Lemma 2 ([29]) Let M(t), t ≥ 0, be a local martingale vanishing at time 0. Define

ρM(t) :=
∫ t

0

d〈M, M〉(s)
(1 + s)2 , t ≥ 0,

where 〈M, M〉(t) is the Meyer angle-bracket process. Then

lim
t→∞

M(t)
t

= 0 a.s., provided that lim sup
t→∞

ρM(t) < ∞ a.s.

Remark 1 ([29]) Suppose that

ψ2
loc :=

{

ψ(t, z) predictable
∣
∣
∣

∫ t

0

∫

Y

∣
∣ψ(s, z)

∣
∣2

λ(du) ds < ∞
}

and, for ψ ∈ ψ2
loc,

M(t) =
∫ t

0

∫

Y

ψ(s, z)Ñ(ds, du).

Then, by [30, Proposition 2.4],

〈M, M〉(t) =
∫ t

0

∫

Y

∣
∣ψ(s, z)

∣
∣2

λ(du) ds.

Lemma 3 ([31]) Let f ∈ C[[0,∞) × Ω , (0,∞)]. Suppose there exist positive constants δ0, δ
such that

log f (t) = δt – δ0

∫ t

0
f (s) ds + F(t) a.s.

for all t ≥ 0, where F ∈ C[[0,∞) × Ω , (–∞,∞)] and limt→∞ F(t)
t = 0 a.s. Then

lim
t→∞

〈
f (t)

〉
=

δ

δ0
.



Ma and Yu Advances in Difference Equations        (2020) 2020:273 Page 6 of 16

Lemma 4 ([32]) Let F , G, f , g : R+ → R and H , h : R+ × Y → R be Borel-measurable
bounded functions such that H > –1, and let Y (t) satisfy the equation

dY (t) =
[
F(t)Y (t) + f (t)

]
dt +

[
G(t)Y (t) + g(t)

]
dW (t)

+
∫

Y

[
Y

(
t–)

H(t, u) + h(t, u)
]
Ñ(dt, du),

where Y (0) = Y0. Then the solution can be explicitly expressed as

Y (t) = Φ(t)
(

Y0 +
∫ t

0
Φ–1(s)

[(

f (s) – G(s)g(s) –
∫

Y

H(s, u)h(s, u)
1 + H(s, u)

λ(du)
)

ds

+ g(s) dW (s) +
∫

Y

h(s, u)
1 + H(s, u)

Ñ(ds, du)
])

,

where

Φ(t) = exp

[∫ t

0

(

F(s) –
1
2

G2(s) +
∫

Y

[
ln

(
1 + H(s, u)

)
– H(s, u)

]
λ(du)

)

ds

+
∫ t

0
G(s) dW (s) +

∫ t

0

∫

Y

ln
(
1 + H(s, u)

)
Ñ(ds, du)

]

is the fundamental solution of the corresponding homogeneous linear equation

dZ(t) = F(t)Z(t) dt + G(t)Z(t) dW (t) +
∫

Y

Z
(
t–)

H(t, u)Ñ(dt, du).

Lemma 5 Let the conditions of Theorem 1 hold. Assume further that there exists a constant
L > 0 such that

∫ t

0

∫

Y

γ 2
i (u)λ(du) ds ≤ Lt, i = 1, 2, 3. (3)

Then the solution (S(t), I(t), V (t)) of system (2) with initial value (S(0), I(0), V (0)) ∈ R
3
+ has

the following properties:

lim sup
t→∞

[
S(t) + I(t) + V (t)

]
< ∞ a.s.,

and limt→∞
Mj(t)

t = 0 (j = 1, 2, . . . , 6) a.s.

Proof From (2) we can obtain

d(S + I + V ) =
[
Λ – μS – (μ + δ)I – μV

]
dt + σ1S dB1(t) + σ2I dB2(t) + σ3V dB3(t)

+
∫

Y

[
γ1(u)S

(
t–)

+ γ2(u)I
(
t–)

+ γ3(u)V
(
t–)]

Ñ(dt, du). (4)

By Lemma 4 the solution of Eq. (4) has the following form:

S(t) + I(t) + V (t)

=
Λ

μ
+

[

S(0) + I(0) + V (0) –
Λ

μ

]

e–μt – δ

∫ t

0
e–μ(t–s)I(s) ds + M(t)
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≤ Λ

μ
+

[

S(0) + I(0) + V (0) –
Λ

μ

]

e–μt + M(t),

where

M(t) = σ1

∫ t

0
e–μ(t–s)S(s) dB1(s) + σ2

∫ t

0
e–μ(t–s)I(s) dB2(s)

+ σ3

∫ t

0
e–μ(t–s)V (s) dB3(s) +

∫ t

0

∫

Y

e–μ(t–s)γ1(u)S
(
s–)

Ñ(ds, du)

+
∫ t

0

∫

Y

e–μ(t–s)γ2(u)I
(
s–)

Ñ(ds, du) +
∫ t

0

∫

Y

e–μ(t–s)γ3(u)V
(
s–)

Ñ(ds, du)

is a continuous local martingale with M(0) = 0.
Denote X(t) = Λ

μ
+ [S(0) + I(0) + V (0) – Λ

μ
]e–μt + M(t), X(0) = S(0) + I(0) + V (0), A(t) =

Λ
μ

(1 – e–μt), and U(t) = (S(0) + I(0) + V (0))(1 – e–μt). Then X(t) = X(0) + A(t) – U(t) + M(t)
and A(t) and U(t) are continuous adapted increasing processes on t ≥ 0 with A(0) = U(0) =
0. Then Lemma 1 implies that limt→∞ X(t) < ∞, which leads to

lim sup
t→∞

[
S(t) + I(t) + V (t)

]
< ∞ a.s.

On the other hand, simple calculation shows that

〈M1, M1〉(t) = σ 2
1

∫ t

0
S2(s) ds,

and thus

lim sup
t→∞

ρ1(t) = lim sup
t→∞

∫ t

0

σ 2
1 S2(s) ds
(1 + s)2 ≤ σ 2

1 sup
t≥0

S2(t) < ∞.

According to Lemma 2, limt→∞ M1
t = 0 a.s. Meanwhile, by Remark 1 and condition (3) we

get

〈M2, M2〉(t) =
∫ t

0

∫

Y

γ 2
1 (u)S2(s)λ(du) ds,

and thus

lim sup
t→∞

ρ2(t) = lim sup
t→∞

∫ t

0

∫

Y

γ 2
1 (u)S2(s)
(1 + s)2 λ(du) ds ≤ L sup

t≥0
S2(t) < ∞.

Applying Lemma 2 again yields limt→∞ M2
t = 0 a.s. The rest of Lemma 5 can be proved

similarly. The proof is complete. �

We are now in position to state and prove our main results of this paper.

Theorem 2 Let the conditions of Lemma 5 hold, and let (S(t), I(t), V (t)) be the solution of
system (2) with initial value (S(0), I(0), V (0)) ∈R

3
+.
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(I) If RL
0 < 1, then

lim sup
t→∞

ln I(t)
t

≤ (μ + κ + δ)
(
RL

0 – 1
)

< 0 a.s.,

which means that limt→∞ I(t) = 0 a.s.
Moreover,

lim
t→∞

〈
S(t)

〉
=

(μ(1 – q) + ε)Λ
μ(μ + ε + p)

, lim
t→∞

〈
V (t)

〉
=

(p + μq)Λ
μ(μ + ε + p)

a.s.

(II) If RL
0 > 1, then

lim
t→∞

〈
I(t)

〉
=

μ + κ + δ

μ + δ

(

a
(

1 +
κ

μ + δ

)

+
β(μ + ε)

μ(μ + ε + p)

)–1(
RL

0 – 1
)

> 0 a.s.

Moreover,

lim
t→∞

〈
S(t)

〉
= S̃∗, lim

t→∞
〈
V (t)

〉
= Ṽ ∗ a.s.,

where S̃∗ = (μ(1–q)+ε)Λ
μ(μ+ε+p) +

(μ+ε)(μ+δ)(μ+κ+δ+α– βΛ(μ(1–q)+ε)
μ(μ+ε+p) )

aμ(μ+ε+p)(μ+κ+δ)+β(μ+ε)(μ+δ) and Ṽ ∗ = qΛ+p̃S∗
μ+ε

.

Proof From system (2) we get

d(S + I) +
ε

μ + ε
dV

=
(

μ(1 – q) + ε

μ + ε
Λ – (μ + p)S – (μ + δ)I +

εp
μ + ε

S
)

dt + σ1S dB1(t)

+ σ2I dB2(t) + σ3V dB3(t) +
∫

Y

γ1(u)S
(
t–)

Ñ(dt, du)

+
∫

Y

γ2(u)I
(
t–)

Ñ(dt, du) +
∫

Y

γ3(u)V
(
t–)

Ñ(dt, du).

Integrating this from 0 to t and dividing both sides by t, we have

μ(1 – q) + ε

μ + ε
Λ –

μ(μ + ε + p)
μ + ε

〈
S(t)

〉
– (μ + δ)

〈
I(t)

〉
=

1
t
ϕ1(t), (5)

where ϕ1(t) = S(t)+ I(t)–S(0)– I(0)+ ε
μ+ε

(V (t)–V (0))–
∑4

i=1 Mi – ε
μ+ε

(M5 +M6). Similarly,

(1 – q)Λ –
(

μ + p +
β

a

)
〈
S(t)

〉
+

1
a

〈
βS

1 + aI

〉

+ κ
〈
I(t)

〉
+ ε

〈
V (t)

〉
=

1
t
ϕ2(t), (6)

and

qΛ + p
〈
S(t)

〉
– (μ + ε)

〈
V (t)

〉
=

1
t
ϕ3(t), (7)

where ϕ2(t) = S(t) – S(0) – M1(t) – M2(t), ϕ3(t) = V (t) – V (0) – M5(t) – M6(t). Then by
Lemma 5 we have

lim
t→∞

ϕ1(t)
t

= 0, lim
t→∞

ϕ2(t)
t

= 0, lim
t→∞

ϕ3(t)
t

= 0. (8)
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Applying Itô’s formula to the second equation of system (2) leads to

ln I(t) – ln I(0)
t

=
〈

βS
1 + aI

〉

– (μ + κ + δ) – α +
σ2B2(t)

t
+

M̃
t

. (9)

Substituting (5)–(7) into (9) yields that

ln I(t)
t

=
βΛ(μ(1 – q) + ε)

μ(μ + ε + p)
– (μ + κ + δ) – α

–
(

aκ + (μ + δ)
(

a +
β(μ + ε)

μ(μ + ε + p)

))
〈
I(t)

〉
+

F1(t)
t

, (10)

where F1(t) = –(a + β(μ+ε)
μ(μ+ε+p) )ϕ1(t) + aϕ2(t) + aε

μ+ε
ϕ3(t) + ln I(0) + σ2B2(t) + M̃. According to

Remark 1 and Assumption 2, this implies

〈M̃, M̃〉(t) =
∫ t

0

∫

Y

[
ln(1 + γ2(u)

]2
λ(du) ds ≤ K2

2 λ(Y)t.

Then by Lemma 2

lim
t→∞

M̃
t

= 0 a.s. (11)

On the other hand, by the large number theorem for martingales we obtain

lim
t→∞

B2(t)
t

= 0 a.s. (12)

This, together with (8) and (11), yields

lim
t→∞

F1(t)
t

= 0 a.s. (13)

According to (13) and I(t) > 0, taking the limit superior of both sides of (10), we have

lim sup
t→∞

ln I(t)
t

≤ (μ + κ + δ)
(
RL

0 – 1
)

< 0 a.s.

if RL
0 < 1. Furthermore, from (3), (7), and (8) we easily to see that

lim
t→∞

〈
S(t)

〉
=

(μ(1 – q) + ε)Λ
μ(μ + ε + p)

, lim
t→∞

〈
V (t)

〉
=

(p + μq)Λ
μ(μ + ε + p)

a.s.

If RL
0 > 1, from (10), (13), and Lemma 3 we get

lim
t→∞

〈
I(t)

〉
=

μ + κ + δ

μ + δ

(

a
(

1 +
κ

μ + δ

)

+
β(μ + ε)

μ(μ + ε + p)

)–1(
RL

0 – 1
)

> 0 a.s.

Meanwhile, from (5), (7), and (8) by simple calculation we have

lim
t→∞

〈
S(t)

〉
= S̃∗, lim

t→∞
〈
V (t)

〉
= Ṽ ∗ a.s.

This completes the proof of Theorem 2. �
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Remark 2 From Theorem 2 it follows that the disease will go to extinct when RL
0 < 1 and

will prevail when RL
0 > 1. Therefore the parameter RL

0 is the threshold of model (2).

Particularly, if the corresponding incidence rate is bilinear with respect to susceptible
and infective individuals, then the stochastic SIVS model with jumps has the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [(1 – q)Λ – (μ + p)S – βSI + κI + εV ] dt + σ1S dB1(t)

+
∫

Y
γ1(u)S(t–)Ñ(dt, du),

dI = [βSI – (μ + κ + δ)I] dt + σ2I dB2(t) +
∫

Y
γ2(u)I(t–)Ñ(dt, du),

dV = [qΛ + pS – (μ + ε)V ] dt + σ3V dB3(t) +
∫

Y
γ3(u)V (t–)Ñ(dt, du).

(14)

By the method used in Theorem 2 we have the following conclusions.

Corollary 1 Let the conditions of Lemma 5 hold, and let (S(t), I(t), V (t)) be the solution of
system (14) with initial value (S(0), I(0), V (0)) ∈R

3
+.

(I) If RL
0 < 1, then

lim sup
t→∞

ln I(t)
t

≤ (μ + κ + δ)
(
RL

0 – 1
)

< 0 a.s.,

that is, limt→∞ I(t) = 0 a.s.
Moreover,

lim
t→∞

〈
S(t)

〉
=

(μ(1 – q) + ε)Λ
μ(μ + ε + p)

, lim
t→∞

〈
V (t)

〉
=

(p + μq)Λ
μ(μ + ε + p)

a.s.

(II) If RL
0 > 1, then

lim
t→∞

〈
I(t)

〉
=

μ(μ + κ + δ)(μ + ε + p)
β(μ + δ)(μ + ε)

(
RL

0 – 1
)

> 0 a.s.

Moreover,

lim
t→∞

〈
S(t)

〉
=

μ + κ + δ + α

β
, lim

t→∞
〈
V (t)

〉
=

qΛ + p
β

(μ + κ + δ + α)
μ + ε

a.s.

Remark 3 We easily find that the parameter RL
0 is also the threshold of model (14). Ob-

viously, RL
0 < RS

0 < R0, that is, a Lévy noise is able to suppress the outbreak of the disease.
The model considered in [18] is a particular case of model (14) (γi(u) = 0, i = 1, 2, 3). In
comparison with [18], our Corollary 1 improves and extends the related results.

Example 1 Let (S, I, V ) be the solution of model (14) with (S(0), I(0), V (0)) = (0.8, 0.1, 2).
Λ = 0.7, q = 0.7, μ = 0.21, p = 0.5, β = 0.75, κ = 0.3, ε = 0.2, δ = 0.2, σ1 = 0.01, σ2 = 0.05,
σ3 = 0.01, γ1 = 0.08, γ2 = 0.2, γ3 = 0.08, Y = (0,∞), λ(Y) = 1. We use these parameters to
simulate the related results.

Through simple calculation, we have RL
0 = 0.991 < 1. Then the disease will go to extinc-

tion by Corollary 1; see Fig. 1. However, for the corresponding deterministic model and
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Figure 1 The trajectories of stochastic model (14) with jumps (RL0 < 1), stochastic model (1) with white noise
(RS0 > 1), and corresponding deterministic model (R0 > 1)

stochastic model with white noise, the disease is persistent since R0 = βΛ(μ(1–q)+ε)
μ(μ+κ+δ)(μ+ε+p) =

1.0176 > 1 and RS
0 = R0 – σ 2

2
2(μ+κ+δ) = 1.0159 > 1, respectively; see Fig. 1.

In Fig. 2, we choose γ2 = 0.05, and other parameters remain unchanged. Note that RL
0 =

1.0142 > 1, so that by Corollary 1 the disease will prevail. Moreover,

lim
t→∞

〈
I(t)

〉
=

μ(μ + κ + δ)(μ + ε + p)
β(μ + δ)(μ + ε)

(
RL

0 – 1
)

= 0.0153,

lim
t→∞

〈
S(t)

〉
=

μ + κ + δ + α

β
= 0.9499, and

lim
t→∞

〈
V (t)

〉
=

qΛ + p
β

(μ + κ + δ + α)
μ + ε

= 2.3536.

Comparing Figs. 1 and 2, we can see that a Lévy noise can suppress the outbreak of the
disease.

4 Extensions
In this section, using the same method as before, we investigate the threshold of stochastic
SIRS model with saturated or bilinear incidence driven by Lévy noise. Zhang and Wang
[27] considered a stochastic SIR model with jumps and the corresponding incidence rate,
which is bilinear with respect to the numbers of susceptible and infective individuals. If we
consider the transmission of the disease governed by the saturated incidence rate βS/(1 +
aI) and the recovered individuals lose immunity and return to the susceptible class at the
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Figure 2 The trajectories of stochastic model (14) with jumps (RL0 > 1), stochastic model (1) with white noise
(RS0 > 1), and corresponding deterministic model (R0 > 1)

rate ε, then the model in [27] takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dS = (Λ – μS – βSI
1+aI + εR) dt + σ1S dB1(t) +

∫

Y
γ1(u)S(t–)Ñ(dt, du),

dI = ( βSI
1+aI – (μ + κ + δ)I) dt + σ2I dB2(t) +

∫

Y
γ2(u)I(t–)Ñ(dt, du),

dR = (κI – (μ + ε)R) dt + σ3R dB3(t) +
∫

Y
γ3(u)R(t–)Ñ(dt, du).

(15)

By using a similar method in Theorem 1 we can prove the existence of a unique positive
solution of model (15), so we omit the proof.

Let

RL
0 =

1
μ + κ + δ

(
βΛ

μ
– α

)

,

where α = 1
2σ 2

2 +
∫

Y
[γ2(u) – ln(1 + γ2(u))]λ(du).

From system (15) we obtain

κ
〈
I(t)

〉
– (μ + ε)

〈
R(t)

〉
=

1
t
ϕ4(t), (16)

Λ –
(

μ +
β

a

)
〈
S(t)

〉
+

1
a

〈
βS

1 + aI

〉

+ ε
〈
R(t)

〉
=

1
t
ϕ5(t), (17)

and

Λ – μ
〈
S(t)

〉
–

(μ + ε)(μ + κ + δ) – εκ

μ + ε

〈
I(t)

〉
=

1
t
ϕ6(t), (18)
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where ϕ4(t) = R(t) – R(0) – M5(t) – M6(t), ϕ5(t) = S(t) – S(0) – M1(t) – M2(t), and ϕ6(t) =
S(t) + I(t) – S(0) – I(0) + ε

μ+ε
(R(t) – R(0)) –

∑4
i=1 Mi – ε

μ+ε
(M5 + M6). Substituting (16)–(18)

into (9), we have

ln I(t)
t

=
βΛ

μ
– (μ + κ + δ) – α –

(aμ + β)(μ + ε)(μ + κ + δ) – βεκ

μ(μ + ε)
〈
I(t)

〉
–

F2(t)
t

, (19)

where

F2(t) =
aε

μ + ε
ϕ4(t) + aϕ5(t) –

aμ + β

μ
ϕ6(t) + ln I(0) + σ2B2(t) + M̃.

Based on (19), by a similar discussion in Sect. 3, we get the following results.

Theorem 3 Let the conditions of Lemma 5 hold, and let (S(t), I(t), R(t)) be the solution of
system (15) with initial value (S(0), I(0), R(0)) ∈R

3
+.

(I) If RL
0 < 1, then

lim sup
t→∞

ln I(t)
t

≤ (μ + κ + δ)
(
RL

0 – 1
)

< 0 a.s.,

that is, limt→∞ I(t) = 0 a.s.
Moreover,

lim
t→∞

〈
S(t)

〉
=

Λ

μ
, lim

t→∞
〈
R(t)

〉
= 0 a.s.

(II) If RL
0 > 1, then

lim
t→∞

〈
I(t)

〉
=

μ(μ + ε)(μ + κ + δ)
(aμ + β)(μ + ε)(μ + κ + δ) – βεκ

(
RL

0 – 1
)

> 0 a.s.

Moreover,

lim
t→∞

〈
S(t)

〉
=

Λ

μ
–

[(μ + ε)(μ + κ + δ) – εκ](μ + κ + δ)
(aμ + β)(μ + ε)(μ + κ + δ) – βεκ

(
RL

0 – 1
)
,

lim
t→∞

〈
R(t)

〉
=

κ limt→∞〈I(t)〉
μ + ε

a.s.

Theorem 3 implies that the parameter RL
0 is the threshold of model (15). As a particu-

lar case, we consider the bilinear incidence rate. Then the corresponding stochastic SIRS
model with jumps has the following form:

⎧
⎪⎪⎨

⎪⎪⎩

dS = (Λ – μS – βSI + εR) dt + σ1S dB1(t) +
∫

Y
γ1(u)S(t–)Ñ(dt, du),

dI = (βSI – (μ + κ + δ)I) dt + σ2I dB2(t) +
∫

Y
γ2(u)I(t–)Ñ(dt, du),

dR = (κI – (μ + ε)R) dt + σ3R dB3(t) +
∫

Y
γ3(u)R(t–)Ñ(dt, du).

(20)

By Theorem 3 the following results are obvious.

Corollary 2 Let the conditions of Lemma 5 hold, and let (S(t), I(t), R(t)) be the solution of
system (20) with initial value (S(0), I(0), R(0)) ∈R

3
+.
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(I) If RL
0 < 1, then

lim sup
t→∞

ln I(t)
t

≤ (μ + κ + δ)
(
RL

0 – 1
)

< 0 a.s.,

that is, limt→∞ I(t) = 0 a.s.
Moreover,

lim
t→∞

〈
S(t)

〉
=

Λ

μ
, lim

t→∞
〈
R(t)

〉
= 0 a.s.

(II) If RL
0 > 1, then

lim
t→∞

〈
I(t)

〉
=

μ(μ + κ + δ)(μ + ε)
β(μ + κ + δ)(μ + ε) – βεκ

(
RL

0 – 1
)

> 0 a.s.

lim
t→∞

〈
S(t)

〉
=

μ + κ + δ + α

β
, lim

t→∞
〈
R(t)

〉
=

κ limt→∞〈I(t)〉
μ + ε

a.s.

Remark 4 In model (20), if we take ε = 0, then it becomes a stochastic SIR model with
jumps, which has been investigated by Zhou and Zhang [1]. Under the assumption that
the noise is small enough, that is, for some p > 1,

μ –
p – 1

2
σ 2 –

p
2
θ > 0,

where θ =
∫

Y
[(1 + γ1(u) ∨ γ2(u) ∨ γ3(u))p – 1 – (γ1(u) ∧ γ2(u) ∧ γ3(u))]λ(du) and σ 2 = σ 2

1 ∨
σ 2

2 ∨ σ 2
3 , they give the threshold RL

0 = 1
μ+κ+δ

(β Λ
μ

– α). However, by Corollary 2 we easily to
see that we need no assumption that the noise is small enough. So the related results are
improved. In comparison with the method given by Zhou and Zhang [1], our method is
simple and effective by use of the nonnegative semimartingale convergence theorem.

Example 2 Let (S, I, R) be the solution of model (20) with (S(0), I(0), R(0)) = (0.8, 0.1, 2),
Λ = 0.6, μ = 0.2, β = 0.2, κ = 0.2, δ = 0.05, ε = 0, σ1 = 0.01, σ2 = 0.2, σ3 = 0.1, γ1 = 0.01,
γ2 = 0.42, γ3 = 0.01, Y = (0,∞), λ(Y) = 1.

Figure 3 The trajectories of I(t) for model (20) with (a) γ2 = 0.42, (b) γ2 = 0.2, and other parameter values as in
Example 2
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When ε = 0, model (20) becomes a stochastic SIR model with jumps. Obviously, there
does not exist a constant p > 1 such that μ – p–1

2 σ 2 – p
2 θ > 0, which means that we cannot

determine whether the disease is extinct or not by the related results given in [1]. We
computed that RL

0 = 1
μ+κ+δ

( βΛ

μ
–α) = 0.9704 < 1. It follows from Corollary 2 that the disease

goes extinct; see Fig. 3(a). When γ2 = 0.2 and the other parameters remain unchanged,
we obtain RL

0 = 1.0804 > 1, implying that the disease will prevail; see Fig. 3(b). Therefore
Corollary 2 improves the related results in [1].
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