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Abstract
In this paper, we present a numerical method to solve two-dimensional fuzzy
Fredholm integral equations (2D-FFIE) by combing the sinc method with double
exponential (DE) transformation. Using this method, the fuzzy Fredholm integral
equations are converted into dual fuzzy linear systems. Convergence analysis is
performed in terms of the modulus of continuity. Numerical experiments
demonstrate the efficiency of the proposed method.
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1 Introduction
Integral equations have some applications in different fields, such as physics, biological
models, and so on [1–5]. They can be solved by different numerical or analytical meth-
ods. Specifically, fuzzy integral equations also appear in different problems, for exam-
ple, optimal control theory, mathematical economics, and engineering. The existence and
uniqueness of solutions of fuzzy Fredholm integral equations have been studied, which
were implemented by means of the Banach fixed point theorem [6–9]. In recent years, the
researches on fuzzy differential equations and fuzzy integral equations from both theo-
retical and numerical points of view have been developed. There were some numerical
methods to solve fuzzy differential equations [10–15] and fuzzy integral equations [16–
23]. Rivaz et al. [24] and Ezzati et al. [25] presented the homotopy perturbation method
and fuzzy bivariate Bernestein polynomials method to solve 2D-FFIE, respectively. Other
noticeable methods applied to 2D-FFIE were the block-pulse functions [26], triangular
functions method [27], cubature method [28], and iterative method [29, 30].

In [22], the sinc method was proposed to solve one-dimensional fuzzy integral equa-
tions. However, the convergence analysis was not given. The primary aim of this paper is
to extend the application of the sinc method together with DE transformation to find the
approximate solution of 2D-FFIE. In addition, we prove the convergence of the proposed
method. The proposed method has its advantages such as simple structure, easy to pro-
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gramming, and high accuracy. In addition, the proposed method does not need iterative
operation, and the calculation cost is reduced

The outline of this paper is as follows. In Sect. 2, we introduce some preliminaries and
basic definitions. In Sect. 3, we present the proposed algorithm. Section 4 is focused on
discussing the convergence of the proposed method. To demonstrate the effectiveness of
the proposed method, we will show some numerical results on several tests in Sect. 5.
Finally, some conclusion remarks are given in Sect. 6.

2 Preliminaries
2.1 The basic concepts of fuzzy equations
First, we review several necessary basic definitions and relevant results about fuzzy num-
bers and fuzzy-number-valued functions.

Definition 2.1 (see [31]) A fuzzy number is a function u : R → [0, 1] satisfying the fol-
lowing properties:

(1) u is upper semicontinuous over R,
(2) u(x) = 0 outside of some interval [a, b] ⊂ R,
(3) there exist real numbers a and b with c ≤ a ≤ b ≤ d, such that u is monotonic

increasing on [c, a], and monotonic decreasing on [b, d], and u(x) = 1 for all
x ∈ [a, b],

(4) u is a fuzzy convex set, that is, for all x, y ∈R and λ ∈ [0, 1],
u(λx + (1 – λ)y) ≥ min{u(x), u(y)}.

The set of all fuzzy numbers is denoted by R�. Note that every α ∈ R can be seen as a
fuzzy number α = χ{α}, and so R⊂R�.

Based on [32], the fuzzy number r ∈ [0, 1] in parametric form is denoted by an ordered
pair of functions (u(r), u(r)), which satisfies the following requirements:

(1) u(r) is a bounded left-continuous nondecreasing function on [0, 1],
(2) u(r) is a bounded left-continuous nonincreasing function on [0, 1],
(3) u(r) ≤ u(r).

It is generally known that the addition and multiplication operations of real numbers can
be extended to fuzzy numbers. For all u = (u(r), u(r)), v = (v(r), v(r)), and k ∈R, we have:

(1) u = v if and only if u(r) = v(r) and u(r) = v(r),
(2) u ⊕ v = (u(r) + v(r), u(r) + v(r)),
(3)

k ⊗ u =

{
(ku(r), ku(r)), k ≥ 0,
(ku(r), ku(r)), k < 0.

Definition 2.2 (see [33]) For all u = (u(r), u(r)) and v = (v(r), v(r)), the quantity D(u, v) =
supr∈[0,1] max{|u(r) – v(r)|, |u(r) – v(r)|} is the distance between u and v.

It is proved that (R�, D) is a complete metric space, which possesses the following prop-
erties:

(1) D(u ⊕ w, v ⊕ w) = D(u, v) ∀u, v, w ∈ R�,
(2) D(k ⊗ u, k ⊗ v) = |k|D(u, v) ∀u, v ∈R�, k ∈R,
(3) D(u ⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e) ∀u, v, w, e ∈ R�.



Ma et al. Advances in Difference Equations        (2020) 2020:290 Page 3 of 19

Definition 2.3 (see [34]) Suppose f , g : [a, b] → R� are fuzzy real-valued functions. The
uniform distance between f , g is defined by DU = sup{D(f (x), g(x))|x ∈ [a, b]}.

Definition 2.4 (see [35]) If for every ε > 0, there exists δ > 0 such that D(f (x), f (x0)) < ε

whenever x ∈ [a, b], |x – x0| < δ, then the fuzzy real-valued function f : [a, b] → R� is
referred to as continuous at the point x0 ∈ [a, b]. If f is continuous at each x0 ∈ [a, b], then
f is called a fuzzy continuous function.

In addition, C�([a, b] × [c, d]) represents the space of all fuzzy continuous functions
f : [a, b] × [c, d] →R�.

Definition 2.5 (see [29]) Suppose f : [a, b]× [c, d] →R� is a bounded mapping. Then the
function ω[a,b]×[c,d](f , ·) : R+ ∪ 0 → R+ is defined by ω[a,b]×[c,d](f , δ) = sup{D(f (x, y), f (s, t)) :
x, s ∈ [a, b]; y, t ∈ [c, d];

√
(x – s)2 + (y – t)2 ≤ δ} is referred as to the modulus of oscillation

of f on [a, b] × [c, d].

Definition 2.6 (see [29]) Suppose that f : [a, b] × [c, d] → R�, and �n
x : a = x0 < x1 <

· · · < xn = b and �n
y : c = y0 < y1 < · · · < yn = d are two segmentations of the intervals [a, b]

and [c, d], respectively. Consider any intermediate points ξi ∈ [xi–1, xi], ηj ∈ [yj–1, yj] (i, j =
1, . . . , n) and δ : [a, b] → R�, σ : [c, d] → R�. For simplify, the divisions Px = ([xi–1, xi]; ξi)
and Py = ([yj–1, yj];ηj) (i, j = 1, . . . , n) are abbreviated to Px = (�n, ξ ) and Py = (�n,η),
which are called as δ-fine and σ -fine, respectively, if [xi–1, xi] ⊂ (ξi – δ(ξi), ξi + δ(ξi)) and
[yj–1, yj] ⊂ (ηj – σ (ηj),ηj + σ (ηj)).

The function f is said to be two-dimensional Henstock integrable to I ∈ R� if for each
ε > 0, there are functions δ : [a, b] → R+ and σ : [c, d] →R+ such that for any δ-fine and σ -
fine divisions, we have D(

∑n
i=0

∑n
j=0(xi – xi–1)(yj – yj–1) ⊗ f (ξi,ηj), I) < ε, where

∑
denotes

the fuzzy summation. Then I is called the two-dimensional Henstock integral of f and de-
noted by I(f ) = (FH)

∫ d
c (FH)

∫ b
a f (x, y) dx dy. If the functions δ and σ are constant, this in-

tegral is called the Riemann integral. In this case, I ∈R� is known as the two-dimensional
integral of f on [a, b] × [c, d] and is denoted by (FR)

∫ d
c (FR)

∫ b
a f (x, y) dx dy.

Lemma 2.1 If f and g are Henstock-integrable mappings on [a, b] × [c, d] and D(f (x, y),
g(x, y)) is Lebesgue integrable, then

D
(

(FH)
∫ d

c
(FH)

∫ b

a
f (x, y) dx dy, (FH)

∫ d

c
(FH)

∫ b

a
g(x, y) dx dy

)

≤ (L)
∫ d

c
(L)

∫ b

a
D

(
f (x, y), g(x, y)

)
dx dy. (1)

Definition 2.7 (see [36]) The fuzzy linear system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑m
j=1 a1j ⊗ xj =

∑m
j=1 b1j ⊗ xj ⊕ y1,∑m

j=1 a2j ⊗ xj =
∑m

j=1 b2j ⊗ xj ⊕ y2,
...∑m

j=1 amj ⊗ xj =
∑m

j=1 bmj ⊗ xj ⊕ ym,

(2)
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where A = (aij)m×m and B = (bij)m×m are crisp coefficient matrices, and Y = (y1, . . . , ym)T is
a fuzzy vector, is called a dual fuzzy linear system, and X = (x1, . . . , xm)T is called a solution
of the fuzzy linear system (2).

Definition 2.8 (see [36]) A fuzzy number vector (x1, x2, . . . , xm)T given by xj = (xj(r), xj(r))
(j = 1, . . . , m, 0 ≤ r ≤ 1) is called a solution of Eq. (2) if

m∑
j=1

aijxj =
m∑

j=1

aijxj =
m∑

j=1

bijxj + yi,

m∑
j=1

aijxj =
m∑

j=1

aijxj =
m∑

j=1

bijxj + yi (i = 1, . . . , m).

(3)

Next, we introduce the method of [36] for solving Eq. (2). To solve Eq. (2), we write it in
the form

(S – T)X = Y , (4)

where the elements of S = (sij)2m×2m and T = (tij)2m×2m are determined as follows:

aij ≥ 0 �⇒ sij = aij, si+m,j+m = aij,

aij < 0 �⇒ si,j+m = –aij, si+m,j = –aij,

bij ≥ 0 �⇒ tij = bij, ti+m,j+m = bij,

bij < 0 �⇒ ti,j+m = –bij, ti+m,j = –bij,

(5)

assuming that the remaining sij and tij are zeros. Moreover, the right-hand side vector and
the unknowns are

Y = (y
1
, y

2
, . . . , y

m
, –y1, –y2, . . . , –ym)T ,

X = (x1, x2, . . . , xm, –x1, –x2, . . . , –xm)T ,

respectively. The structures of S and T suggest that sij ≥ 0, tij ≥ 0 (i, j = 1, . . . , 2m) and

S =

[
B1 C1

C1 B1

]
, T =

[
B2 C2

C2 B2

]
,

where B1 and B2 include the positive entries of A and B, respectively, and C1 and C2 include
the absolute values of negative entries of A and B, respectively. It is clear that

A = B1 – C1, B = B2 – C2.

2.2 Sinc method
Definition 2.9 (see [37]) Let f be a function on R with step size h > 0. Its Whittaker
cardinal is defined by the series

C(f , h)(x) =
∞∑

–∞
f (ih)S(i, h)(x) (6)
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whenever this series converges; S(i, h)(x) = sin[π (x/h–i)]
π (x/h–i) is known as the jth sinc func-

tion.

Definition 2.10 (see [37]) A function g(t) is said to decay double exponentially if there
exist constants α and C such that

∣∣g(t)
∣∣ ≤ C exp

(
–α exp |t|), t ∈ (–∞,∞).

Equivalently, a function g(t) is said to decay double exponentially with respect to confor-
mal map φ if there exist constants α and C such that

∣∣g(
φ(t)

)
φ′(t)

∣∣ ≤ C exp
(
–α exp |t|), t ∈ (–∞,∞).

We describe the following sinc quadrature rule by means of DE transformation, which has
been fully discussed in [38]:

∫ b

a
f (x) dx = h

N∑
i=–N

f
(
φ(ih)

)
φ′(ih) + O

(
exp

(
–2πdN

log(2πdN/α)

))
, (7)

where h = log(2πdN/α)
N and

φ(t) =
b – a

2
tanh

(
π

2
sinh(t)

)
+

b + a
2

,

φ′(t) =
b – a

2
π/2 cosh(t)

cosh2(π/2 sinh(t))
, t ∈R.

(8)

By [39], if f (x, y) is decaying double exponentially with respect to conformal maps φ1(s) =
b–a

2 tanh( π
2 sinh(s)) + b+a

2 and φ2(t) = d–c
2 tanh( π

2 sinh(t)) + d+c
2 , then the function f (x, y) can

be expanded in series of sinc function as follows:

f
(
φ1(t),φ2(s)

)
φ′

1(s)φ′
2(t) =

∞∑
i=–∞

∞∑
j=–∞

f
(
φ1(ih1),φ2(jh2)

)
φ′

1(ih1),φ′
2(jh2)

× sinc

(
t

h1
– i

)
sinc

(
s

h2
– j

)
+ e(t, s, h1, h2),

where e(s, t, h1, h2) is the remainder term, which depends on the variables s, t and the mesh
sizes h1 = log(2πd1N/α1)

N and h2 = log(2πd2M/α2)
M . Integrating this expression with respect to x

and y, we derive

∫ b

a

∫ d

c
f (x, y) dx dy =

∫ ∞

–∞

∫ ∞

–∞
f
(
φ1(s),φ2(t)

)
φ′

1(s)φ′
2(t) ds dt.

Using the termwise integration, it follows that

∫ b

a

∫ d

c
f (x, y) dx dy = h1h2

N∑
i=–N

M∑
i=–M

f
(
φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2)

+ O
(

exp

(
–2πd1

h1

))
+ O

(
exp

(
–2πd2

h2

))
. (9)
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3 The proposed approach
We consider the following 2D-FFIE:

u(x, y) = f (x, y) ⊕ λ

∫ b

a

∫ d

c
K(x, y, s, t) ⊗ u(s, t) ds dt, (x, y) ∈ E, (10)

where λ > 0, E = [a, b] × [c, d], K is crisp given function on E × E, and u(x, y), f (x, y) are
continuous fuzzy real-valued functions.

Here we present a numerical method to solve Eq. (10). Applying the quadrature formula
(9) to the integral term of Eq. (10), we obtain

∫ b

a

∫ d

c
K(x, y, s, t) ⊗ u(s, t) ds dt

≈ h1h2

N∑
i=–N

M∑
j=–M

K
(
x, y,φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2) ⊗ uij, (11)

where uij is an approximation value of u(xi, yj) with xi = φ1(ih1) and yj = φ2(jh2). By substi-
tuting Eq. (11) into Eq. (10) the latter can be written as

u(x, y) = f (x, y) ⊕ λh1h2

N∑
i=–N

M∑
j=–M

K
(
x, y,φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2) ⊗ uij. (12)

To determine the unknown values uij (i = –N , . . . , N ; j = –M, . . . , M), choosing the sinc
points xk = φ1(kh1) and yl = φ2(lh2) as collocation points, we get

u(xk , yl) = f (xk , yl) ⊕ λh1h2

N∑
i=–N

M∑
j=–M

K
(
xk , yl,φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2) ⊗ uij. (13)

Equivalently, the dual fuzzy linear systems can be shown as follows:

A ⊗ U = B ⊗ U + F , (14)

where A = (akl
ij ) and B = (bkl

ij ) (i, k = –N , . . . , N ; j, l = –M, . . . , M) are m × m (m = (2N + 1) ×
(2M + 1)) fuzzy matrices. Also, F and U are m × 1 fuzzy vectors, and

A = Im×m, bkl
ij = λh1h2K

(
xk , yl,φ1(ih1),φ2(jh2)

)
,

F =
[
f (x–N , y–M), . . . , f (x–N , yM), . . . , f (xN , y–M), . . . , f (xN , yM)

]T ,

U = [u–N ,–M, . . . , u–N ,M, . . . , uN ,–M, . . . , uN ,M]T .

(15)

By Definition 2.8 the coefficient matrices A, B can be converted to 2m × 2m crisp linear
systems as follows:

S ⊗ Ũ = F̃ ⊕ T ⊗ Ũ , (16)
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where the matrices S and T are defined as in Definition 2.8. Moreover,

F̃ =
[
f (x–N , y–M), . . . , f (xN , yM), –f (x–N , y–M), . . . , –f (xN , yM)

]T ,

Ũ = [u–N ,–M, . . . , uN ,M, –u–N ,–M, . . . , –uN ,M]T .

Equation (16) has a unique solution if and only if the matrix S – T is invertible, and thus

Ũ = (S – T)–1F̃ . (17)

According to the Nyström method in [40], we obtain an approximate solution of Eq. (10)
at arbitrary points as follows:

uNM(x, y) = f (x, y) ⊕ λh1h2

N∑
i=–N

M∑
j=–M

K
(
x, y,φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2) ⊗ uij. (18)

To simplify the discussion, assuming that K(x, y,φ1(ih1),φ2(jh2))φ′
1(ih1) φ′

2(jh2) ≥ 0, the
approximate solution uNM(x, y) at arbitrary points of Eq. (18) can be written in the form

uNM(x, y) = f (x, y) ⊕ λh1h2

N∑
i=–N

M∑
j=–M

K
(
x, y,φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2) ⊗ uij,

uNM(x, y) = f (x, y) ⊕ λh1h2

N∑
i=–N

M∑
j=–M

K
(
x, y,φ1(ih1),φ2(jh2)

)
φ′

1(ih1)φ′
2(jh2) ⊗ uij.

Theorem 3.1 (see [7]) Suppose A = (aij)m×m and B = (Bij)m×m are nonnegative matrices.
Equation (16) has a unique fuzzy solution if and only if the inverse matrix of A – B exists
and has only nonnegative entries.

Remark 1 Based on [7], the matrix S – T is invertible if and only if the matrices (B1 + C1) –
(B2 + C2) and (B1 + C2) – (B2 + C1) are both invertible. Furthermore, if (S – T)–1 exists, then
it must have the same structure type as S – T , that is,

(S – T)–1 =

[
E H
H E

]
,

where E = 1
2 [((B1 + C1) – (B2 + C2)) + ((B1 + C2) – (B2 + C1))] and H = 1

2 [((B1 + C1) –
(B2 + C2)) – ((B1 + C2) – (B2 + C1))].

4 Convergence analysis
In this section, we discuss the convergence of the proposed approach in terms of the mod-
ulus of continuity.

Theorem 4.5 Assume that K(x, y, s, t) is analytic and positive on E × E and that the ex-
act solution u(x, y) is continuous on E. If Q∗ = λLL1 < 1, then we have the following error
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bound:

D
(
u(x, y), uNM(x, y)

)

≤ Q∗

1 – Q∗

(
ω[a,b]×[c,d]

(
u,

√
(b – a)2h2

1 + (d – c)2h2
2

16

)
+

(b – a)(d – c)
L0L1

ε

)
.

Proof Since K(x, y, s, t) is analytic on the compact set of E × E, we obtain that K(x, y, s, t)
is uniformly continuous. Therefore for every ε > 0, there exists δ > 0 such that for all
(s1, t1), (s2, t2) ∈ E,

∣∣K(x, y, s1, t1) – K(x, y, s2, t2)
∣∣ < ε whenever

√
(s2 – s1)2 + (t2 – t1)2 < δ.

Therefore K(x, y, s, t) is uniformly bounded, that is, there is L > 0 such that |K(x, y, s, t)| ≤ L
for all (x, y, s, t). Let si = φ1(ih1) and tj = φ2(jh2). According to Eq. (10), Eq. (18) and the
properties of (R�, D), we have

D
(
u(x, y), uNM(x, y)

)
= D(f

(
x, y, f (x, y)

)
+ λD

(∫ b

a

∫ d

c
K(x, y, s, t) ⊗ u(s, t) ds dt,

h1h2

N∑
i=–N

M∑
j=–M

K(x, y, si, tj)φ′
1(ih1)φ′

2(jh2) ⊗ uij

)

= λD

(∫ b

a

∫ d

c
K(x, y, s, t) ⊗ u(s, t) ds dt,

h1h2

N∑
i=–N

M∑
j=–M

K(x, y, si, tj)φ′
1(ih1)φ′

2(jh2) ⊗ uij

)

≤ λD

(∫ b

a

∫ d

c
K(x, y, s, t) ⊗ u(s, t) ds dt,

h1h2

N∑
i=–N

M∑
j=–M

K(x, y, s, t)φ′
1(ih1)φ′

2(jh2) ⊗ u(si, tj)

)

+ λD

(
h1h2

N∑
i=–N

M∑
j=–M

K(x, y, s, t)φ′
1(ih1)φ′

2(jh2) ⊗ u(si, tj),

h1h2

N∑
i=–N

M∑
j=–M

K(x, y, si, tj)φ′
1(ih1)φ′

2(jh2) ⊗ u(si, tj)

)

+ λD

(
h1h2

N∑
i=–N

M∑
j=–M

K(x, y, si, tj)φ′
1(ih1)φ′

2(jh2) ⊗ u(si, tj),

h1h2

N∑
i=–N

M∑
j=–M

K(x, y, si, tj)φ′
1(ih1)φ′

2(jh2) ⊗ uij

)

≤ λLD

(∫ b

a

∫ d

c
u(s, t) ds dt, h1h2

∞∑
i=–∞

∞∑
j=–∞

φ′
1(ih1)φ′

2(jh2) ⊗ u(si, tj)

)
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+ λh1h2

N∑
i=–N

M∑
j=–M

∣∣K(x, y, s, t) – K(x, y, si, tj)
∣∣φ′

1(ih1)φ′
2(jh2)D

(
u(si, tj), 0

)

+ λh1h2

N∑
i=–N

M∑
j=–M

∣∣K(x, y, si, tj)
∣∣φ′

1(ih1)φ′
2(jh2)D

(
u(si, tj), uij

)

≤ λLD

(∫ b

a

∫ d

c
u(s, t) ds dt,

∞∑
i=–∞

∞∑
j=–∞

(si+1 – si)(tj+1 – tj) ⊗ u(si, tj)

)

+ λεh1h2

N∑
i=–N

M∑
j=–M

φ′
1(ih1)φ′

2(jh2)D
(
u(si, tj), 0

)

+ λLh1h2

N∑
i=–N

M∑
j=–M

φ′
1(ih1)φ′

2(jh2)D
(
u(x, y), uNM(x, y)

)
.

Since u(x, y) is continuous, D(u(si, tj), 0) ≤ D(u(x, y), 0) ≤ sup(x,y)∈E ‖u(x, y)‖� ≤ L0, and we
get

D
(
u(x, y), uNM(x, y)

)
≤ λLD

(∫ b

a

∫ d

c
u(s, t) ds dt,

∞∑
i=–∞

∞∑
j=–∞

(si+1 – si)(tj+1 – tj) ⊗ u(si, tj)

)

+ λεh1h2L0

∞∑
i=–∞

∞∑
j=–∞

φ′
1(ih1)φ′

2(jh2)

+ λLh1h2

∞∑
i=–∞

∞∑
j=–∞

φ′
1(ih1)φ′

2(jh2)D
(
u(x, y), uNM(x, y)

)

≤ λL
∞∑

i=–∞

∞∑
j=–∞

(si+1 – si)(tj+1 – tj)ω[si ,si+1]×[tj ,tj+1]
(
u,

√
(si+1 – si)2 + (tj+1 – tj)2

)

+ λεL0L1 + λLL1D
(
u(x, y), uNM(x, y)

)
.

Here, since h1h2
∑∞

i=–∞
∑∞

j=–∞ φ′
1(ih1)φ′

2(jh2) → (b–a)(d –c), there exists a constant L1 > 0
such that h1h2

∑∞
i=–∞

∑∞
j=–∞ φ′

1(ih1)φ′
2(jh2) ≤ L1. On the other hand, based on the differen-

tial mean value theorem, we have si+1 –si = φ′
1(ξi)h1 ≤ b–a

4 h1 and tj+1 –tj = φ′
2(ηj)h2 ≤ d–c

4 h2,
and thus

D
(
u(x, y), uNM(x, y)

)

≤ λL
∞∑

i=–∞

∞∑
j=–∞

(si+1 – si)(tj+1 – tj)ω[a,b]×[c,d]

(
u,

√
(b – a)2h2

1 + (d – c)2h2
2

16

)

+ λεL0L1 + λLL1D
(
u(x, y), uNM(x, y)

)

≤ λL(b – a)(d – c)ω[a,b]×[c,d]

(
u,

√
(b – a)2h2

1 + (d – c)2h2
2

16

)

+ λεL0L1 + λLL1D
(
u(x, y), uNM(x, y)

)
.
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Therefore we can conclude that

D
(
u(x, y), uNM(x, y)

) ≤ λL(b – a)(d – c)
1 – λLL1

ω[a,b]×[c,d]

(
u,

√
(b – a)2h2

1 + (d – c)2h2
2

16

)

+
λL0L1

1 – λLL1
ε.

Thus the proof of the theorem is completed. �

Remark 2 Because Q∗ < 1, it is easy to verify that limN ,M→∞
h1,h2→0

supx,y∈E D(u(x, y), uNM(x, y)) =

0, that is, the proposed algorithm is convergent.

5 Numerical experiments
In this section, the performance of our numerical approach was tested on three illustrative
examples. All experiments are implemented using MATLAB. Here we choose M = N and
h1 = h2 = log π

2
N in all tables and figures. To simplify the discussion, we use Er = |u – uNM|

and Er = |u – uNM|.

Example 5.1 Consider the following 2D-FFIE in Eq. (10) with

f (x, y, r) = x sin

(
y
2

)(
r2 + r

)
, f (x, y, r) = x sin

(
y
2

)(
4 – r3 – r

)
,

λ = 1, and K(x, y, s, t) = x2ys for 0 ≤ x, y, s, t ≤ 1. The exact solution of this example is

u(x, y, r) =
(

x sin

(
y
2

)
–

16
21

(
cos

(
1
2

)
– 1

)
x2y

)(
r2 + r

)
,

u(x, y, r) =
(

x sin

(
y
2

)
–

16
21

(
cos

(
1
2

)
– 1

)
x2y

)(
4 – r3 – r

)
.

From Table 1 and Fig. 1 we can find that the numerical solutions are more and more
close to the exact solutions as N and M increase. In Table 2, comparing the proposed
method with the triangular function method [27] and block pulse function method [26],
we see that the proposed method has a higher accuracy and much smaller error with less
collocation points. The condition number of the matrix S – T is uniformly bounded with
infinity norm in Fig. 2. This shows that the current method is stable. Figure 3 shows that
the numerical solutions are in good agreement with exact solution.

Table 1 Numerical errors on the level sets with N =M in (x, y) = (0.5.0.5) for Example 5.1

r N = 4 N = 8 N = 16
Er E

r
Er E

r
Er E

r

0.00 0 5.2e-06 0 2.7e-09 0 6.7e-16
0.20 3.1e-07 5.0e-06 1.6e-10 2.6e-09 4.9e-17 6.7e-16
0.40 7.3e-07 4.6e-06 3.8e-10 2.4e-09 1.1e-16 7.2e-16
0.60 1.3e-06 4.2e-06 6.5e-10 2.2e-09 1.7e-16 5.6e-16
0.80 1.9e-06 3.5e-06 9.8e-10 1.8e-09 2.5e-16 5.6e-16
1.00 2.6e-06 2.6e-06 1.4e-09 1.4e-09 3.3e-16 3.3e-16
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Figure 1 Numerical errors with N = 10 of Example 5.1

Table 2 Comparison of methods with (x, y) = (0.3.0.6) of Example 5.1

r Present method Method of [27] Method of [26]
n = 2N + 1 = 17 n = 2N = 20 n = 52
(Er , E

r
) (Er , E

r
) (Er , E

r
)

0.1 (3.2e-11, 1.1e-09) (1.5e-07, 5.3e-06) (0.0007, 0.0004)
0.3 (1.1e-10, 1.1e-09) (5.2e-07, 5.0e-06) (0.0002, 0.0011)
0.5 (2.2e-10, 9.9e-10) (1.0e-06, 4.6e-06) (0.0020, 0.0008)
0.7 (3.5e-10, 8.7e-10) (1.6e-06, 4.0e-06) (0.0007, 0.0003)
0.9 (5.0e-10, 7.0e-10) (2.3e-06, 3.2e-06) (0.0011, 0.0024)

Example 5.2 Consider the following 2D-FFIE in Eq. (10):

f (x, y, r) = r
(

xy +
1

676
(
x2 + y2 – 2

))
, f (x, y, r) = (2 – r)

(
xy +

1
676

(
x2 + y2 – 2

))
,
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Figure 2 Condition number of the matrix S – T with Example 5.1

Figure 3 Exact solution and approximate solution with N = 2 of Example 5.1

λ = 1 and K(x, y, s, t) = 1
169 (x2 + y2 – 2)(s2 + t2 – 2) for 0 ≤ x, y, s, t ≤ 1. The exact solution of

this example is

u(x, y, r) = rxy, u(x, y, r) = (2 – r)xy.

It is evident from the Table 3 and Fig. 4 that if we increase the collocation points, then the
absolute error decreases. Comparing the presented method and the triangular function
method [27] in Table 4, we see that the former is more accurate than the latter. Figure 5
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Table 3 Numerical errors on the level sets with N =M in (x, y) = (0.5.0.5) for Example 5.2

r N = 4 N = 8 N = 16
Er E

r
Er E

r
Er E

r

0.00 0 7.6e-07 0 4.3e-10 0 1.1e-16
0.20 7.6e-08 6.8e-07 4.2e-11 3.8e-10 1.4e-17 5.6e-17
0.40 1.5e-07 6.1e-07 8.5e-11 3.4e-10 2.8e-17 1.1e-16
0.60 2.3e-07 5.3e-07 1.3e-10 3.0e-10 2.8e-17 5.6e-17
0.80 3.0e-07 4.5e-07 1.7e-10 2.6e-10 5.6e-17 5.6e-17
1.00 3.8e-07 3.9e-07 2.1e-10 2.1e-10 5.6e-17 5.6e-17

Figure 4 Numerical errors with N = 10 of Example 5.2

suggests that the condition number of the discrete coefficient matrix remains unchanged
under different values of M = N . In Fig. 6 we plotted the numerical solutions and exact
solutions for M = N = 2.
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Table 4 Comparison of methods with (x, y) = (0.1.0.4) of Example 5.2

r Present method Method of [27]
n = 2N + 1 = 17 n = 2N = 24
(Er , E

r
) (Er , E

r
)

0.1 (2.6e-11, 5.0e-10) (4.9e-07, 9.4e-06)
0.3 (7.8e-11, 4.4e-10) (1.5e-06, 8.4e-06)
0.5 (1.3e-10, 3.9e-10) (2.5e-06, 7.4e-06)
0.7 (1.8e-10, 3.4e-10) (3.4e-06, 6.4e-06)
0.9 (2.3e-10, 2.9e-10) (4.4e-06, 5.4e-06)

Figure 5 Condition number of the matrix S – T with Example 5.2

Figure 6 Exact solution and approximate solution with N = 2 of Example 5.2
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Table 5 Numerical errors on the level sets with N =M in (x, y) = (0.5.0.5) for Example 5.3

r N = 4 N = 8 N = 16
Er E

r
Er E

r
Er E

r

0.00 5.7e-05 1.1e-04 3.0e-08 5.9e-08 9.8e-15 1.9e-14
0.20 4.1e-05 9.7e-05 2.1e-08 5.0e-08 6.9e-15 1.4e-14
0.40 2.0e-05 8.1e-05 1.0e-08 4.2e-08 3.3e-15 1.2e-14
0.60 6.0e-06 6.8e-05 3.1e-09 3.5e-08 9.2e-16 8.9e-15
0.80 3.3e-05 6.0e-05 1.7e-08 3.1e-08 4.4e-15 9.3e-15
1.00 5.7e-05 5.7e-05 3.0e-08 3.0e-08 9.8e-15 9.3e-15

Figure 7 Numerical errors with N = 10 of Example 5.3

Example 5.3 Consider the following 2D-FFIE in Eq. (10):

f (x, y, r) =
(
2r cos(1 – r) – 1

)(
1 + x2 + y –

13
24

(x + y)
)

,
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Figure 8 Condition number of the matrix S – T with Example 5.3

f (x, y, r) =
(

2 – sin
rπ
2

)(
1 + x2 + y –

13
24

(x + y)
)

,

λ = 1 and K(x, y, s, t) = (x + y)st for 0 ≤ x, y, s, t ≤ 1. The exact solution of this example is

u(x, y, r) =
(
2r cos(1 – r) – 1

)(
x2 + y + 1

)
, u(x, y, r) =

(
2 – sin

rπ
2

)(
x2 + y + 1

)
.

The results of Table 5 and Fig. 7 confirm the theoretical results. Figure 8 shows that the
condition number of the matrix S – T is bounded. Figure 9 shows the numerical and exact
solutions for some values of x, y, and r. We applied the proposed method to Example 5.3
and compared to the best results obtained in [41, 42] in Table 6. From Table 5 we see
that our method needs a very small number of collocation points to achieve high accu-
racy in comparison with the iterative method [41] and the Bernstein polynomials method
[42]. Furthermore, the proposed method is easy to implement, in contrast to the iterative
method [41], which needs complicated iterations costing too much time.

6 Conclusion
In this paper, we introduce a numerical scheme based on the sinc method together with DE
transformation to solve 2DFFIE. By solving dual fuzzy linear systems, we obtain approxi-
mate solutions. Moreover, we give an error analysis of the proposed method. We provide
numerical results to illustrate the effectiveness and accuracy of the presented method. We
also compared the proposed scheme to the other numerical methods, which confirms its
superiority and the importance of employing the sinc collocation method. In future work,
we will study the stability of the current method and utilize the proposed method to deal
with other kinds of fuzzy integral equations.
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Figure 9 Exact solution and approximate solution with N = 2 of Example 5.3

Table 6 Comparison of methods with (x, y) = (0.5.0.5) of Example 5.3

r Present method Method of [41] Method of [42]
n = 2N + 1 = 17 n = 2N = 20 n = 20
(Er , E

r
) (Er , E

r
) (Er , E

r
)

0.0 (3.0e-08, 5.9e-08) (4.7e-05, 2.8e-05) (1.0e-03, 2.2e-03)
0.2 (2.1e-08, 5.0e-08) (3.9e-05, 8.6e-05) (7.8e-04, 6.4e-03)
0.4 (1.0e-08, 4.2e-08) (9.0e-06, 8.0e-06) (1.3e-04, 8.1e-03)
0.6 (3.1e-09, 3.5e-08) (4.0e-06, 5.0e-06) (6.1e-04, 7.3e-03)
0.8 (1.7e-08, 3.1e-08) (1.2e-05, 3.3e-05) (1.8e-03, 4.7e-03)
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