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Abstract
Considering stochastic perturbations of white and color noises, we introduce the
Markov switched stochastic Nicholson-type delay system with patch structure. By
constructing a traditional Lyapunov function we show that solutions of the addressed
system are not only positive, but also do not explode to infinity in finite time and, in
fact, are ultimately bounded. Then we estimate its ultimate boundedness, moment,
and Lyapunov exponent. Finally, we present an example of numerical simulations to
verify theoretical results.
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1 Introduction
Considering that in the models of marine protected areas and B-cell chronic lymphocytic
leukemia [1] the mortality rate is perturbed by the white noise of the environment, Yi and
Liu [2] and Wang et al. [3] have presented a stochastic Nicholson-type delay system with
patch structure:

dxi(t) =

[
–

(
ai +

n∑
j=1,j �=i

bij

)
xi(t) +

n∑
j=1,j �=i

bjixj(t)

+ pixi(t – τi)e–γixi(t–τi)

]
dt + σixi(t) dBi(t), (1.1)

where i ∈ I := {1, 2, . . . , n}, xi(t) is the size of the population at time t, ai is the per capita
daily adult death rate, pi is the maximum per capita daily egg production, 1

γi
is the size at

which the population reproduces at its maximum rate, τi is the generation time, bij (i �= j)
is the migration coefficient from compartment i to compartment j, Bi(t) is an indepen-
dent white noise with Bi(0) = 0 and intensity σ 2

i . It is well known that the scalar Nichol-
son blowflies delay differential equation originated from [4, 5], and Berezansky et al. [6]
summarized some results and introduced several open problems to attract many scholars
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[7–18]. Stochastic system (1.1) can be regarded as a generalization of the deterministic
Nicholson blowflies model.

In the real world, it is complex for any practical system, since besides white noises, there
are color noise interferences. One type of color noises is the so-called telegraph noise,
which causes the system to switch from one environmental regime to another [19] and
can mostly be modeled by a continuous-time Markov chain to describe the switching pro-
cess between two or more regimes. To the best of our knowledge, almost no one or a few
researchers consider the Markov switched stochastic Nicholson-type delay system with
patch structure. This prompts us to propose the following stochastic system:

dxi(t) =

[
–

(
ai

(
ξ (t)

)
+

n∑
j=1,j �=i

bij
(
ξ (t)

))
xi(t) +

n∑
j=1,j �=i

bji
(
ξ (t)

)
xj(t)

+ pi
(
ξ (t)

)
xi(t – τi)e–γi(ξ (t))xi(t–τi)

]
dt + σi

(
ξ (t)

)
xi(t) dBi(t) (1.2)

with initial conditions

ξ (0) = ι ∈ S, xi(s) = ϕi(s) ∈ C
(
[–τi, 0], [0, +∞)

), ϕi(0) > 0, i ∈ I, (1.3)

where ξ (t) (t ≥ 0) is a continuous-time irreducible Markov chain with invariant distri-
bution π = (πk , k ∈ S), which takes values in a finite state space S = {1, 2, . . . , N}, and its
generator Q = (νij)N×N satisfies

P
(
ξ (t + δ) = j|ξ (t) = i

)
=

{
νijδ + o(δ) if i �= j,
1 + νiiδ + o(δ) if i = j,

as δ → 0+.

Here νij ≥ 0 for i, j ∈ S with i �= j, and
∑j=N

j=1 νij = 1 for each i ∈ S, Bi(t) are indepen-
dent Brownian motions with Bi(0) = 0 (i ∈ I), and they are independent of the Markov
chain ξ (t). For i, j ∈ I and k ∈ S, the parameters τi, ai(k), and γi(k) are positive, and bij(k),
pi(k), and σ 2

i (k) are nonnegative constants. Since system (1.2) describes the dynamics of
a Markov switched stochastic Nicholson-type delay system with patch structure, it is im-
portant to study whether or not the solution:

• remains positive or never becomes negative,
• does not explode to infinity in finite time,
• is ultimately bounded in mean, and
• to estimate the moment and sample Lyapunov exponent.
In this paper, we discuss these problems one by one. In Sect. 2, we consider the existence

and uniqueness of the global positive solution of (1.2)–(1.3). Next, we study its ultimate
boundedness in mean, its moment, and its sample Lyapunov exponent in Sect. 3. We carry
out an example and its numerical simulation to illustrate theoretical results in Sect. 4.
Finally, we provide a brief conclusion to summarize our work.

2 Preliminary results
In this section, we introduce some basic definitions and lemmas, which are important for
the proof of the main result. Unless otherwise specified, (Ω , {Ft}t≥0,P) is a complete prob-
ability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continu-
ous, and F0 contains all P-null sets). Let Bi(t) (i ∈ I) be independent standard Brownian
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motions defined on this probability space. For simplicity, in the following sections, we use
the following notation:

h– = min
j∈S

{
h(j)

}
, h+ = max

j∈S

{
h(j)

}
, τ = min

i∈I
{τi},

R+ = (0,∞), R
n
+ = {xi ∈R+, i ∈ I}.

Let p ≥ 1 be such that for each i ∈ I , Ai(p, ξ (t)) > 0, and Ci(p, ξ (t)) is bounded, where

Ai
(
p, ξ (t)

)
= ai

(
ξ (t)

)
–

p – 1
p

n∑
j=1,j �=i

(
bji

(
ξ (t)

)
– bij

(
ξ (t)

))
–

p – 1
2

σ 2
i
(
ξ (t)

)
,

Ci
(
p, ξ (t)

)
= p max

x∈R+

{
–Ai

(
ξ (t)

)
xp +

pi(ξ (t))
eγi(ξ (t))

xp–1
}

.

It is easy to see that for i ∈ I , Ai(1, ξ (t)) = ai(ξ (t)) > 0 and by continuity we can find p > 1
such that Ai(p, ξ (t)) > 0. Considering the function F(x) := –αxp + βxp–1, we can easily ob-
tain that F(x) increases on [0, β(p–1)

αp ] and decreases on [ β(p–1)
αp , +∞), where α,β > 0 and

p > 1. Also, F(0) = F( β

α
) = 0, limx→+∞ F(x) = –∞, and maxx∈R+ F(x) = F( β(p–1)

αp ) is bounded.
Thus it is natural that Ci(p, ξ (t)) = pF( pi(ξ (t))(p–1)

epγi(ξ (t))Ai(ξ (t)) ) is also bounded.

Definition 2.1 (see [20]) System (1.2) is said to be ultimately bounded in mean if there is
a positive constant L independent of initial conditions (1.3) such that

lim sup
t→∞

E
∣∣x(t)

∣∣ ≤ L.

Lemma 2.1 For A ∈R, B ∈R+, we have Ax2+Bx
1+x2 ≤ G(A, B) for x ∈R, where

G(A, B) =

{
(A +

√
A2 + B2)/2, A ≥ 0,

–B2/4A, A < 0.

Proof By Lemma 1.2 of [21] the result easily follows, so we omit the proof. �

Lemma 2.2 For any given initial conditions (1.3), there exists a unique solution x(t) =
(x1(t), . . . , xn(t)) of system (1.2) on [0,∞), which remains in R

n
+ with probability one, that is,

x(t) ∈R
n
+ for all t ≥ 0 almost surely.

Proof Because all coefficients of system (1.2) are locally Lipschitz continuous, for any
given initial condition (1.3), there exists a unique maximal local solution x(t) on [–τ ,νe),
where νe is the explosion time.

Firstly, we prove that x(t) is positive on [0,νe) almost surely. For t ∈ [0, τ ], system (1.2)
with initial conditions given in (1.3) becomes the system of stochastic linear differential
equations:

⎧⎪⎨
⎪⎩

dxi(t) = [–(ai(ξ (t)) +
∑n

j=1,j �=i bij(ξ (t)))xi(t) +
∑n

j=1,j �=i bji(ξ (t))xj(t)
+ αi(ξ (t))] dt + σi(ξ (t))xi(t) dBi(t),

ξ (0) = ι ∈ S, xi(0) = ϕi(0) > 0, i ∈ I,
(2.1)
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where αi(ξ (t)) = pi(ξ (t))ϕi(t – τi)e–γi(ξ (t))ϕi(t–τi) ≥ 0 a.s., t ∈ [0, τ ]. From the stochastic com-
parison theorem [22], xi(t) ≥ Ii(t) a.s. for t ∈ [0, τ ], where Ii(t) (i ∈ I) are the solutions of
the stochastic differential equations

{
dIi(t) = [–(ai(ξ (t)) +

∑n
j=1,j �=i bij(ξ (t)))Ii(t) + αi(ξ (t))] dt + σi(ξ (t))Ii(t) dBi(t),

ξ (0) = ι ∈ S, Ii(0) = ϕi(0) > 0, i ∈ I.
(2.2)

For t ∈ [0, τ ], system (2.2) has the explicit solutions

Ii(t) = eηi(ξ (t))
(

ϕi(0) +
∫ t

0
e–ηi(ξ (s))αi

(
ξ (s)

)
ds

)
> 0 a.s.,

where ηi(ξ (t)) = –(ai(ξ (t)) +
∑n

j=1,j �=i bij(ξ (t)) – σ 2
i (ξ (t))

2 )t + σi(ξ (t))Bi(t). Hence, for t ∈ [0, τ ],
i ∈ I , we have xi(t) ≥ Ii(t) > 0 a.s.

Using the same method, we have xi(t) > 0 a.s. for t ∈ [τ , 2τ ], i ∈ I . Moreover, repeating
this procedure, we also have xi(t) > 0 (i ∈ I) a.s. on [mτ , (m + 1)τ ] for any integer m ≥ 1.
Thus system (1.2) with initial conditions (1.3) has the unique positive solution x(t) almost
surely for t ∈ [0, τe).

Next, we prove that x(t) exists globally. Let m0 ≥ 1 be sufficiently large such that
max–τ≤t≤0 ϕi(t) < m0, i ∈ I . For every integer m ≥ m0, define the stopping time

νm = inf
{

t ∈ [0,νe) : xi(t) ≥ m for some i ∈ I
}

,

where throughout this paper, inf∅ := ∞. Obviously, νm is increasing as m → ∞. Set ν∞ =
limm→∞ νm, where ν∞ ≤ νe a.s. If we can prove that ν∞ = ∞ a.s., then νe = ∞ and x(t) ∈ Rn

+

for all t ≥ 0 a.s. For this purpose, we need to show that ν∞ = ∞ a.s. Define V (x) =
∑n

i=1(xi –
1 – ln xi). For t ∈ [0,νm ∧ T), it is easy to show by Itô formula that

dV (x) = LV
(
x, x(t – τ ), ξ (t)

)
+

n∑
i=1

σi
(
ξ (t)

)(
xi(t) – 1

)
dBi(t), (2.3)

where m ≥ m0 and T > 0 are arbitrary, and

LV
(
x, x(t – τ ), ξ (t)

)
=

n∑
i=1

[–ai
(
ξ (t)

)
xi(t) + ai

(
ξ (t)

)
+

n∑
j=1,j �=i

bij
(
ξ (t)

)
+

1
2
σ 2

i
(
ξ (t)

)
–

∑n
j=1,j �=i bij(ξ (t)))xj(t)

xi(t)

+ pi
(
ξ (t)

)
xi(t – τi)e–γi(ξ (t))xi(t–τi) –

pi(ξ (t))xi(t – τi)e–γi(ξ (t))xi(t–τi)

xi(t)

≤ max
j∈S

n∑
i=1

[
ai(j) +

n∑
j=1,j �=i

bij(j) +
1
2
σ 2

i (j) +
pi(j)
eγi(j)

]
:= K . (2.4)

In the last inequality, we used the fact that supx≥0 xe–x = 1
e . For any m ≥ m0, integrating

both sides of (2.3) from 0 to νm ∧ T and taking expectations yield that

EV
(
x(νm ∧ T)

) ≤ V
(
x(0)

)
+

∫ νm∧T

0
K dt ≤ V

(
x(0)

)
+ KT := K1. (2.5)
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Since for every ω ∈ {νm ≤ T}, there exists at least one of xi(νm,ω) (i ∈ I) equal to m, we
have that V (x(νm ∧ T)) ≥ (m – 1 – ln m). Then from (2.5) it follows that

K1 ≥ EV
(
x(νm ∧ T)

) ≥ E
[
I{νm≤T}(ω)V

(
x(νm ∧ T)

)] ≥ P{νm ≤ T}(m – 1 – ln m),

where I{νm≤T} is the indicator function of {νm ≤ T}. Letting m → ∞ gives limm→∞ P{νm ≤
T} = 0, and hence P{ν∞ ≤ T} = 0. Since T > 0 is arbitrary, we must have P{ν∞ < ∞} = 0.
So P{ν∞ = ∞} = 1 as required, which completes the proof of Lemma 2.2. �

Remark 2.1 Without color noises (i.e., ξ (t) ≡ constant), system (1.2) is a stochastic
Nicholson-type delay system with white noises in [2, 3]. Moreover, without migrations
(i.e., bij(ξ (t)) ≡ 0, i, j ∈ I), system (1.2) is a direct extension of n stochastic Nicholson’s
blowflies delay differential equations that includes the stochastic model in [21, 23], and the
restricted conditions ai > σ 2

i
2 (i ∈ I) in [23, 24] for the existence and uniqueness of global

positive solution are unnecessary. Thus Lemma 2.2 generalizes and improves Lemma 2.2
in [23, 24], Lemma 2.2 in [3], Theorem 2.1 in [21], and Theorem 2.1 in [2].

3 Main results
By Lemma 2.2, we show that the solution of the Markov switched stochastic Nicholson-
type delay system (1.2) with initial conditions (1.3) remain in R

n
+ almost surely and do not

explode to infinity in finite time. This good property gives a great opportunity to study
more complicated dynamic behaviors of system (1.2). In this section, we study the re-
maining problems: estimating the ultimate boundedness in mean, the average in time of
the pth moment, and a sample Lyapunov exponent for system (1.2).

Theorem 3.1 For any given initial conditions (1.3), the solution x(t) = (x1(t), . . . , xn(t)) of
system (1.2) has the property

lim sup
t→∞

E
∣∣x(t)

∣∣ ≤ nc
a

, (3.1)

where a = mini∈I{a–
i }, c = maxi∈I{( pi

eγi
)+}, that is, system (1.2) is ultimately bounded in mean.

Proof By Lemma 2.2 the global solution x(t) of (1.2) is positive on t ≥ 0 with probability
one. It follows from (1.2) and the fact supx≥0 xe–x = 1

e that

d
n∑

i=1

xi(t) =
n∑

i=1

[
–ai

(
ξ (t)

)
xi(t) + pi

(
ξ (t)

)
xi(t – τi)e–γi(ξ (t))xi(t–τi)

]
dt

+
n∑

i=1

σi
(
ξ (t)

)
xi(t) dBi(t)

≤
n∑

i=1

[
–ai

(
ξ (t)

)
xi(t) +

pi(ξ (t))
eγi(ξ (t))

]
dt +

n∑
i=1

σi
(
ξ (t)

)
xi(t) dBi(t)

≤
n∑

i=1

[
–axi(t) + c

]
dt +

n∑
i=1

σi
(
ξ (t)

)
xi(t) dBi(t), (3.2)
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which, together with Itô’s formula, implies that

d

[ n∑
i=1

eatxi(t)

]
≤ nceat dt +

n∑
i=1

σi
(
ξ (t)

)
eatxi(t) dBi(t). (3.3)

Integrating both sides of (3.3) from 0 to t and then taking the expectations, we have

eatE

( n∑
i=1

xi(t)

)
≤

n∑
i=1

xi(0) +
nc
a

(
eat – 1

)
. (3.4)

This implies

lim sup
t→∞

E

( n∑
i=1

xi(t)

)
≤ nc

a
. (3.5)

Since E|x(t)| = E
√∑n

i=1 x2
i (t) ≤ E(

∑n
i=1 xi(t)), it is easy to get lim supt→∞ E|x(t)| ≤ nc

a , which
is the required statement (3.1). The proof is now completed. �

Theorem 3.2 The solution x(t) = (x1(t), . . . , xn(t)) of (1.2) with initial conditions (1.3) sat-
isfies

lim sup
t→∞

1
t

∫ t

0
E

( n∑
i=1

xp
i (s)

)
ds ≤

∑
j∈S

n∑
i=1

Ci(p, j)πj ≤
n∑

i=1

C+
i (p), (3.6)

–H+
i ≤ –

∑
j∈S

πjHi(j) ≤ lim inf
t→∞

1
t

ln xi(t) ≤ lim sup
t→∞

1
t

ln xi(t)

≤
∑
j∈S

πjG(j) ≤ G+ a.s., (3.7)

where A(ξ (t)) = – mini∈I Ai(2, ξ (t)), B(ξ (t)) =
√∑n

i=1
p2

i (ξ (t))
e2γ 2

i (ξ (t)) , G(ξ (t)) = G(A(ξ (t)), B(ξ (t))),

and Hi(ξ (t)) = ai(ξ (t)) +
∑n

j=1,j �=i bij(ξ (t)) + 1
2σ 2

i (ξ (t)), i ∈ I .

Proof In view of Itô’s formula, Young’s inequality, and the fact supx≥0 xe–x = 1
e , from (1.2)

it follows that

d

( n∑
i=1

xp
i (t)

)

=
n∑

i=1

p

[(
–ai

(
ξ (t)

)
–

n∑
j=1,j �=i

bij
(
ξ (t)

)
+

p – 1
2

σ 2
i
(
ξ (t)

))
xp

i (t)

+
n∑

j=1,j �=i

bji
(
ξ (t)

)
xj(t)xp–1

i (t) + pi
(
ξ (t)

)
xp–1

i (t)xi(t – τi)e–γi(ξ (t))xi(t–τi)

]
dt

+
n∑

i=1

pσi
(
ξ (t)

)
xp

i (t) dBi(t)
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≤
n∑

i=1

p

[(
–ai

(
ξ (t)

)
+

p – 1
p

n∑
j=1,j �=i

(
bji

(
ξ (t)

)
– bij

(
ξ (t)

))
+

p – 1
2

σ 2
i
(
ξ (t)

))
xp

i (t)

+
pi(ξ (t))
eγi(ξ (t))

xp–1
i (t)

]
dt +

n∑
i=1

pσi
(
ξ (t)

)
xp

i (t) dBi(t)

=
n∑

i=1

p
[

–Ai
(
p, ξ (t)

)
xp

i (t) +
pi(ξ (t))
eγi(ξ (t))

xp–1
i (t)

]
dt +

n∑
i=1

pσi
(
ξ (t)

)
xp

i (t) dBi(t)

≤
n∑

i=1

Ci
(
p, ξ (t)

)
dt +

n∑
i=1

pσi
(
ξ (t)

)
xp

i (t) dBi(t).

Since the Markov chain ξ (t) has an invariant distribution π = (πi, i ∈ S), this implies

lim sup
t→∞

1
t

∫ t

0
E

( n∑
i=1

xp
i (s)

)
ds ≤ lim sup

t→∞
1
t

[
E

( n∑
i=1

xp
i (0)

)
+

∫ t

0

n∑
i=1

Ci
(
p, ξ (s)

)
ds

]

=
∑
j∈S

n∑
i=1

Ci(p, j)πj

≤
n∑

i=1

C+
i (p).

Using Itô’s formula, the Young and Cauchy inequalities, and the fact supx≥0 xe–x = 1
e

again, from (1.2) and Lemma 2.1 we get that

ln
(
1 +

∣∣x(t)
∣∣2) = ln

(
1 +

∣∣x(0)
∣∣2) +

n∑
i=1

∫ t

0

2
1 + |x(s)|2

×
[(

–ai
(
ξ (s)

)
–

n∑
j=1,j �=i

bij
(
ξ (s)

)
+

1
2
σ 2

i
(
ξ (s)

))
x2

i (s)

+
n∑

j=1,j �=i

bji
(
ξ (s)

)
xi(s)xj(s) + pi

(
ξ (s)

)
xi(s)xi(s – τ )e–γi(ξ (s))xi(s–τ )

]
ds

+
n∑

i=1

[
Mi(t) –

∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|)2 ds

]

≤ ln
(
1 +

∣∣x(0)
∣∣2) +

n∑
i=1

∫ t

0

2
1 + |x(s)|2

×
[(

–ai
(
ξ (s)

)
+

1
2

n∑
j=1,j �=i

(
bji

(
ξ (s)

)
– bij

(
ξ (s)

))
+

1
2
σ 2

i
(
ξ (s)

))
x2

i (s)

+
pi(ξ (s))
eγi(ξ (s))

xi(s)

]
ds +

n∑
i=1

[
Mi(t) –

∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|2)2 ds

]

= ln
(
1 +

∣∣x(0)
∣∣2) + 2

n∑
i=1

∫ t

0

–Ai(2, ξ (s))x2
i (s) + pi(ξ (s))

eγi(ξ (s)) xi(s)
1 + |x(s)|2 ds

+
n∑

i=1

[
Mi(t) –

∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|2)2 ds

]
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≤ ln
(
1 +

∣∣x(0)
∣∣2) + 2

∫ t

0

A(ξ (s))|x(s)|2 + B(ξ (s))|x(s)|
1 + |x(s)|2 ds

+
n∑

i=1

[
Mi(t) –

∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|2)2 ds

]

≤ ln
(
1 +

∣∣x(0)
∣∣2) + 2

∫ t

0
G

(
ξ (s)

)
ds

+
n∑

i=1

[
Mi(t) –

∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|2)2 ds

]
, (3.8)

where Mi(t) = 2
∫ t

0
σi(ξ (ξ (s))x2

i (s)
1+|x(s)|2 dBi(s), i ∈ I .

Meanwhile, the exponential martingale inequality (Theorem 1.7.4 of [25]) implies that,
for every l > 0,

P
{

sup
0≤t≤l

[
Mi(t) –

∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|2)2 ds

]
> 2 ln l

}
≤ 1

l2 , i ∈ I.

Using the convergence of
∑∞

l=1
1
l2 and the Borel–Cantelli lemma (Lemma 1.2.4 of [25]), we

obtain that there exists a set Ω0 ∈ F with P(Ω0) = 1 and a random integer l0 = l0(ω) such
that, for every ω ∈ Ω0,

Mi(t) ≤
∫ t

0

2σ 2
i (ξ (s))x4

i (s)
(1 + |x(s)|2)2 ds + 2 ln l (3.9)

for all 0 ≤ t ≤ l, l ≥ l0, i ∈ I . Substituting (3.9) into (3.8), for any ω ∈ Ω0, l ≥ l0, 0 < l – 1 ≤
t ≤ l, we have

1
t

ln
(
1 +

∣∣x(t)
∣∣2) ≤ 1

l – 1
[
ln

(
1 +

∣∣x(0)
∣∣2)] +

2
t

∫ t

0
G

(
ξ (s)

)
ds +

2n ln l
l – 1

.

Letting l → ∞ and recalling that the Markov chain ξ (t) has an invariant distribution π =
(πj, j ∈ S), we get that

lim sup
t→∞

1
t

ln xi(t) ≤ lim sup
t→∞

1
2t

ln
(
1 +

∣∣x(t)
∣∣2)

≤ lim sup
l→∞

1
2(l – 1)

[
ln

(
1 +

∣∣x(0)
∣∣2) +

2n ln l
l – 1

]

+ lim sup
t→∞

1
t

∫ t

0
G

(
ξ (s)

)
ds

=
∑
j∈S

πjG(j) ≤ G+ a.s., i ∈ I.

By Itô’s formula, from system (1.2) we obtain that

ln xi(t) = ln xi(0) +
∫ t

0

[
–ai

(
ξ (s)

)
–

n∑
j=1,j �=i

bij
(
ξ (s)

)
–

1
2
σ 2

i
(
ξ (s)

)

+
∑n

j=1,j �=i bji(ξ (t))xj(t)
xi(s)

+
pi(ξ (s))xi(s – τi)e–γi(ξ (s))xi(s–τi)

xi(s)

]
ds
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+
∫ t

0
σi

(
ξ (s)

)
dBi

(
ξ (s)

)

≥ ln xi(0) –
∫ t

0
Hi

(
ξ (s)

)
ds +

∫ t

0
σi

(
ξ (s)

)
dBi

(
ξ (s)

)
a.s.,

which, with the help of the large number theorem for martingales (Theorem 1.3.4 [25])
and the invariant distribution of the Markov chain ξ (t), implies

lim inf
t→∞

1
t

ln xi(t) ≥ – lim
t→∞

1
t

∫ t

0
Hi

(
ξ (s)

)
ds = –

∑
j∈S

πjHi(j) ≥ –H+
i , i ∈ I.

The proof is completed. �

Remark 3.1 Under the conditions α > σ 2

2 in [23, 24] and 2(a1 + b2) – σ 2
1 – (b1 + b2)θ > 0,

2(a2 + b1) – σ 2
2 – (b1 + b2)/θ > 0 in [2], and λ+

max(–DA – AT D + D) < 0 in [3], the authors
of [2, 3] and [23, 24] have estimated the ultimate boundedness, moment, and Lyapunov
exponent of a relevant stochastic Nicholson-type model, respectively. However, these esti-
mates in Theorems 3.1 and 3.2 of this paper are independent of any a priori conditions and
only depend on the invariant distribution π of the Markov chain ξ (t). In particular, these
estimates can also be applied for no migration cases in [21]. Therefore Theorems 3.1 and
3.2 are a generalization and improvement of the corresponding results in [2, 3, 21, 23, 24].
Indeed, the stochastic models of [2, 3, 23, 24] are only concerned with white noises, but not
with color noises. Moreover, we prove the existence of global positive solutions and esti-
mate their ultimate boundedness, moment, and Lyapunov exponent without the restricted
conditions α > σ 2

2 in [23, 24], 2(a1 + b2) –σ 2
1 – (b1 + b2)θ > 0, 2(a2 + b1) –σ 2

2 – (b1 + b2)/θ > 0
in [2], and λ+

max(–DA – AT D + D) < 0 in [3]. Although Zhu et al. [21] have considered both
white and color noises in stochastic Nicholson’s blowflies model, it is a scalar equation, and
its initial condition ϕ(s) ∈ C([–τ , 0], (0, +∞)) is more strict than the initial conditions (1.3)
in this paper. Then the model considered in this paper, the Markov switched stochastic
Nicholson-type delay system with patch structure includes the models of [2, 3, 21, 23, 24]
with n = 1, 2 and a constant Markov chain ξ (t).

4 An example and its numerical simulations
In this section, we give an example with simulations to check our main results.

Example 4.1 We choose S = {1, 2, 3}, P = [–9, 4, 5; 2, –5, 3; 2, 2, –4], a1 = [0.2, 0.25, 0.3],
a2 = [0.1, 0.15, 0.2], a3 = [0.13, 0.18, 0.22], b12 = [0.3, 0.4, 0.5], b13 = [0.2, 0.3, 0.4], b21 =
[0.3, 0.4, 0.5], b23 = [0.1, 0.2, 0.3], b31 = [0.2, 0.3, 0.4], b32 = [0.1, 0.2, 0.3], p1 = [1.5, 1.6, 1.7],
p2 = [1.4, 1.5, 1.6], p3 = [1.3, 1.4, 1.5], γ1 = [1, 1.5, 2], γ2 = [2, 2.5, 3], γ3 = [1.5, 2, 2.5], σ1 =
[0.8, 0.9, 1], σ2 = [0.7, 0.8, 0.9], σ3 = [0.9, 1, 1.1], τ = 1 and initial conditions ϕ1(s) = 1.1,
ϕ2(s) = 1, ϕ3(s) = 0.9, s ∈ [–1, 0]. Then the irreducible Markov chain ξ (t) has a unique
stationary distribution π = (0.1818, 0.3377, 0.4805). It follows from Lemma 2.2 that sys-
tem (1.2) has a unique global solution x(t) = (x1(t), x2(t), x3(t)), which remains in R

3
+ with

probability one, as shown in Fig. 1(a). According to the numerical methods of stochas-
tic differential equations in [26, 27], we give the following discrete algorithm to simulate
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Figure 1 Numerical solutions of Markov switched stochastic Nicholson-type delay system with patch
structure (4.1) for initial values ϕ1(s) = 1.1, ϕ2(s) = 1, ϕ3(s) = 0.9, s ∈ [–1, 0]

Example 4.1:

xn+1
i = xn

i + �t

[
–

(
ai(ξn) +

n∑
j=1,j �=i

bij(ξn)

)
xn

i +
n∑

j=1,j �=i

bji(ξn)xn
j

+ pi(ξn)xn–k
i e–γi(ξn)xn–k

i

]
+ σi(ξn)xn

i
√

�tUn
i , n = 0, 1, 2, . . . , 200, (4.1)

where i = 1, 2, 3, �t = 0.01, k = 100, ξn ∈ S (Fig. 1(b)) is a 3-state Markov chain with gen-
erator P, {Un

i } is a sequence of mutually independent random variables with EUn
i = 0 and

E(Un
i )2 = 1, independent of the Markov chain ξn.

Furthermore, from Theorems 3.1 and 3.2 we have the following estimates:

lim sup
t→∞

E
∣∣x(t)

∣∣ ≤ 45
e

≈ 16.5546,

lim sup
t→∞

1
t

∫ t

0
E
(
x2

1(s) + x2
2(s) + x2

3(s)
)

ds ≤ 199.51,

–4.4 ≤ lim inf
t→∞

1
t

ln x1(t) ≤ lim sup
t→∞

1
t

ln x1(t) ≤ 199.51 a.s.,

–3.205 ≤ lim inf
t→∞

1
t

ln x2(t) ≤ lim sup
t→∞

1
t

ln x2(t) ≤ 199.51 a.s.,

–3.505 ≤ lim inf
t→∞

1
t

ln x3(t) ≤ lim sup
t→∞

1
t

ln x3(t) ≤ 199.51 a.s.
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5 Conclusions
This paper is concerned with n connected Nicholson’s blowflies models under pertur-
bations of white and color noises. Using a traditional Lyapunov function, we show that
the solution of the Markov switched stochastic Nicholson-type delay system with patch
structure remains positive and does not explode in finite time. Meanwhile, we esti-
mate its ultimate boundedness, pth moment, and Lyapunov exponent. From Remarks 2.1
and 3.1 we find that the results obtained in this paper extend and improve some results in
[2, 3, 21, 23, 24, 28, 29]. Inspired by the latest stochastic models in [30, 31], in the future
work, we will deeply study dynamic behaviors of the addressed system, such as persistence,
extinction, and so on.
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